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Available at: http://www.pmf.ni.ac.rs/filomat

Toric Objects Associated with the Dodecahedron
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Abstract. In this paper we illustrate a tight interplay between homotopy theory and combinatorics
within toric topology by explicitly calculating homotopy and combinatorial invariants of toric objects
associated with the dodecahedron. In particular, we calculate the cohomology ring of the (complex and
real) moment-angle manifolds over the dodecahedron, and of a certain quasitoric manifold and of a related
small cover. We finish by studying Massey products in the cohomology ring of moment-angle manifolds
over the dodecahedron and how the existence of nontrivial Massey products influences the behaviour of
the Poincaré series of the corresponding Pontryagin algebra.

1. Introduction

Toric topology studies topological properties of spaces that are equipped with well-behaved toric sym-
metries, and extend its applications to related areas of topology, geometry, combinatorics, and mathematical
physics. The study of these objects focuses on the rich and varied interactions between the combinatorial
structure of the orbit spaces and the equivariant topology of the actions. In this paper we survey some
homotopy theoretical constructions and methods coming from toric topology and illustrate them on toric
objects over the dodecahedron.

We start by recalling a number of key definitions and results from toric topology concerned with the
notion of a moment-angle-complex. For an exhaustive source on ideas and methods of toric topology we
refer the reader to the fundamental monograph [22].

1.1. Moment-Angle-Complexes and Manifolds
An abstract simplicial complex K on a vertex set [m] = {1, 2, . . . ,m} is a collection of subsets of [m] such

that,

(i) for each i ∈ [m], {i} ∈ [m],
(ii) for every σ ∈ K, if τ ⊂ σ then τ ∈ K.
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We assume that ∅ ∈ K. The elements of K are called faces. The maximal faces (under inclusion) are called
facets. The dimension of a face σ of a simplicial complex K is defined as dim σ = |σ| − 1, where |σ| denotes
the cardinality of σ. The dimension of K, dim K, is defined as the maximum dimension of the faces of K. A
complex K is pure if all of its facets are of the same dimension. The i-skeleton ski(K) of a simplicial complex
K is the collection of all faces of K of dimension not greater than i.

For a subset J ∈ [m] we define a full subcomplex KJ of the simplicial complex K as the subcomplex of K
containing all simplices of K whose vertices lie in J

KJ := {σ ∈ K | σ ⊂ J} .

Let K be a simplicial complex on [m] and dim K = n − 1. Let us denote by (X,A) = {(Xi,Ai)}mi=1 a
collection of topological pairs of CW-complexes. The polyhedral product of (X,A) over K is a topological
spaceZK(X,A) = (X,A)K =

⋃
σ∈K D(σ) where

D(σ) =

m∏
i=1

Yi, and Yi =

Xi if i ∈ σ
Ai if i < σ

By definition, D(∅) = A1 × · · · × Am.
In the case (X,A) = {(D2,S1)}mi=1,ZK(X,A) is denoted byZK and it is called the moment-angle-complex of K

and in the case (X,A) = {(D1,S0)}mi=1,ZK(X,A) is denoted by RK and it is called the real moment-angle-complex
of K. The spacesZK and RK are intensively studied in toric topology, see [22, Chapter 4].

One of the most important classes of simplicial complexes K is that of triangulated spheres. If K is a
triangulation of a sphere,ZK is a topological (m + n)-dimensional manifold. In this case much more can be
said about topology and geometry of a (real) moment-angle manifold.

In what follows we shall be concerned by a subclass of triangulated spheres that is called polytopal
spheres. Suppose a simplicial complex K on the vertex set [m] is a polytopal triangulated sphere, that is, K is
the boundary of a simplicial polytope P∗, combinatorially dual to a convex simple n-dimensional polytope
P with m facets F1, . . . ,Fm. Thus, K is a pure simplicial complex of dimension dim K = n − 1. Moreover,
K = ∂P∗ is simplicially isomorphic (combinatorially equivalent) to the nerve complex KP of P with respect
to the closed covering of the boundary of P by its facets. Thus, combinatorial type of KP determines the
face poset structure of P, and vice verse.

For the sake of completeness we recall the classical definition of a simple convex polytope.

Definition 1.1. A simple convex n-dimensional polytope P in the Euclidean space Rn with scalar product 〈 , 〉
is a bounded intersection of m halfspaces

P = {x ∈ Rn : 〈ai, x〉 + bi ≥ 0 for i = 1, . . . ,m} (1)

where ai ∈ Rn, bi ∈ R. We assume that its facets

Fi = {x ∈ P : 〈ai, x〉 + bi = 0} for i = 1, . . . ,m.

are in general position, that is, exactly n of them meet at a single point. Furthermore, we assume that there
are no redundant inequalities in (1), no inequality can be removed from (1) without changing the set P.

The following construction first appeared in the seminal paper of Davis and Januszkiewicz [29].

Definition 1.2. Suppose Pn is a simple convex polytope with the set of facets F = {F1, . . . ,Fm}. Denote by
TFi a 1-dimensional coordinate subgroup in TF � Tm for each 1 ≤ i ≤ m and TG =

∏
TFi ⊂ TF for a face

G = ∩Fi of a polytope Pn. Then the moment-angle manifold over P is defined as a quotient space

ZP = TF × Pn/ ∼,

where (t1, p) ∼ (t2, q) if and only if p = q ∈ P and t1t−1
2 ∈ TG(p), G(p) is a minimal face of P which contains

p = q.
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If in the above settings we replace TF � Tm by ZF2 = Zm
2 and t1t−1

2 is replaced by t1 − t2, we get a real
moment-angle manifold over P as a quotient space:

RP = ZF2 × Pn/ ∼ .

Remark 1.3. (1) It can be deduced from Construction 1.2 that if P1 and P2 are combinatorially equivalent,
that is, their nerve complexes are combinatorially equivalent, thenZP1 � ZP2 and RP1 � RP2 . The opposite
statement is not true, in general.

(2) For any n-dimensional convex simple polytope P, Buchstaber and Panov proved the following facts:
the moment-angle manifoldZP is a smooth (m + n)-dimensional closed 2-connected manifold which can be
embedded in Cm as a nondegenerate intersection of Hermitian quadrics; the real moment-angle manifold
RP is a smooth n-dimensional closed non simply connected orientable manifold which can be embedded
in Rm as a nondegenerate intersection of real quadrics, see [18] and [22, Chapter 6].

(3) For any n-dimensional convex simple polytope P, it was also proved in [18] that: ZP is equivariantly
homeomorphic to the moment-angle-complex ZKP (D2,S1); RP is equivariantly homeomorphic to the real
moment-angle-complexZKP (D1,S0), see [22, Chapter 6] for more details.

It is easy to see that, using the face poset structure of a simple polytope P and Buchstaber-Panov
theorem, one can obtain the following well known description of the (singular) cohomology groups of a
(real) moment-angle manifold over P as a reformulation of the Hochster’s formula.

For a simple polytope P with the set of facets F = {F1, . . . ,Fm} and a subset J ⊆ [m], denote PJ = ∪ j∈JF j.
Then

Hl(ZP) =
∑
J⊂[m]

H̃l−|J|−1(PJ),

Hl(RP) =
∑
J⊂[m]

H̃l−1(PJ).

1.2. Quasitoric Manifolds and Small Covers
Quasitoric manifolds and small covers are extensively studied in toric topology in the last twenty years.

A detailed exposition on them can be found in Buchstaber and Panov’s monographs [20] and [22]. Here we
briefly review the main definition and results about them.

Let

Gd =

{
S0 if d = 1
S1 if d = 2 , Rd =

{
Z2 if d = 1
Z if d = 2. and Kd =

{
R if d = 1
C if d = 2.

where S0 = {−1, 1} and S1 = {z||z| = 1} are multiplicative subgroups of real and complex numbers, respec-
tively. The standard action of Gn

d onKn
d is given as

Gn
d ×K

n
d → K

n
d : (t1, . . . , tn) · (x1, . . . , xn) 7→ (t1x1, . . . , tnxn).

A Gn
d-manifold is a differentiable manifold with a smooth action of Gn

d .

Definition 1.4. A map f : X → Y between two G-spaces X and Y is called weekly equivariant if for any
x ∈ X and 1 ∈ G it holds

f (1 · x) = ψ(1) · f (x)

where ψ : G→ G is some automorphism of group G.

Let Mdn be a dn-dimensional Gn
d-manifold. A standard chart on Mdn is a pair (U, f ), where U is a Gn

d-stable
open subset of Mdn and f is a weekly equivariant diffeomorphism from U onto some Gn

d-stable open subset
of Kn

d . A standard atlas is an atlas which consists of standard charts. A Gn
d action on a Gn

d-manifold Mdn is
called locally standard if manifold Mdn has a standard atlas. The orbit space for a locally standard action is
naturally regarded as a manifold with corners.
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Definition 1.5. A Gn
d -manifold πd : Mdn

→ Pn, d = 1, 2 is a smooth closed dn-dimensional Gn
d - manifold

admitting a locally standard Gn
d -action such that its orbit space is a simple convex n-polytope Pn regarded

as a manifold with corners. If d = 1 such a Gn
d-manifold is called a small cover and if d = 2 a quasitoric

manifold.

1.3. Finite Group Actions and Equivariant Cohomology of Polyhedral Products
Alongside with the action of a compact torus Tm and its subgroups onZK, or on any polyhedral product

(X,A)K, where K is a simplicial complex on the vertex set [m], one can consider the following class of
naturally arising (finite) group actions on polyhedral products.

Suppose K is a G-simplicial complex on [m] = {1, 2, . . . ,m}, that is a finite group G ⊆ Aut(K) ⊆ Σm acts on
[m] in such a way that each simplex σ = (i1, . . . , ik) ∈ K is mapped to a simplex 1(σ) = (1(i1), . . . , 1(ik)) ∈ K for
any 1 ∈ G. Note that G always acts on 2[m] and the orbit of J ∈ 2[m] is G(J) = {1(J)| 1 ∈ G} ⊂ 2[m]. This action
of G on 2[m] restricts to the initial G-action on K ⊆ 2[m] if and only if G acts simplicially on K.

Remark 1.6. Note that, G takes simplices of K to simplices of the same dimension (every 1 ∈ G is 1-1 on the
set of simplices K), therefore, G takes missing faces of K to missing faces of K. Thus, we can define G-action
on K by either images of the simplices of K or images of the missing faces of K.

Remark 1.7. Note that, due to the above remark, G acts on each skeleton ski(K) of K for 0 ≤ i ≤ dim(K), as
well as on barycentric subdivision bs(K) of K, cones and suspensions over K (if I ⊂ J then 1(I) ⊂ 1(J) for any
1 ∈ G, the vertices of cones and suspensions are fixed points of G-action).

Proposition 1.8. For a full subcomplex KJ ⊂ K on J ⊆ [m] and any 1 ∈ G, 1(KJ) = K1(J). Moreover, both the
image G(KJ) = ∪1∈G K1(J) and the full subcomplex KG(J) are G-simplicial complexes on the same vertex sets and
G(KJ) ⊂ KG(J).

Proof. If σ ∈ KJ = K ∩ 2J, then 1(σ) ∈ 1(KJ) by definition of G-action on K, and 1(KJ) ⊂ K1(J). On the other
hand, if τ ∈ 1(KJ) then τ = 1(ω), whereω ⊂ J as 1 is a 1-1 map on [m], thus K1(J) ⊂ 1(KJ). As an element of KG(J)
is of the form σ = (h1(i1), . . . , hk(ik)), where h j ∈ G, i j ∈ J and hs , ht for s , t, proving that G(KJ) ⊂ KG(J).

Definition 1.9. Let G be a topological group. Suppose X is a G-space and consider the principal G-bundle
EG→ BG. The orbit space XG = (EG×X)/G of the free action 1(e, x) = (e1−1, 1x) of G on EG×X is called the
Borel construction of X with respect to the G action. Equivariant cohomology of X with respect to the G action
is ordinary cohomology of the Borel construction,

H∗G(X;k) = H∗(XG;k).

Example 1.10. Suppose X = ∗. Then H∗G(X;k) = H∗(EG/G;k) = H∗(BG;k). Thus, the projection XG → BG
yields the H∗(BG;k)-module structure on H∗G(X;k).
Suppose X = ZK and G = Tm. Then the Borel construction XG is homotopy equivalent to the Davis-
Januszkiewicz space of K, (CP∞, ∗)K, and the equivariant cohomology of a moment-angle-complex

H∗G(ZK) = H∗((CP∞, ∗)K) � Z[K]

is isomorphic to the Stanley-Reisner algebra of K (see [21, Theorem 7.30]). Moreover, for the canonical
action of Tn on a quasitoric manifold M2n = M(P,Λ) one has a homotopy equivalence

M2n
Tn ' (ZP)Tm .

Therefore, the Tn-equivariant cohomology ring of M2n is also isomorphic to the face ringZ[P] of P, see [21,
Proposition 7.38, Corollary 7.39].

We consider the case of a moment-angle-complexZK and a simplicial action of G on K. TheZ[G]-module
structure on H∗(ZK) was studied in [1, 36]. We are interested in the H∗(BG)-module structure on H∗G(ZK).
Note that H∗

{e}(ZK) = H∗(ZK) for the trivial group action onZK.
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Proposition 1.11. Let K be a simplicial complex on [m] and let G ⊆ Aut(K) ⊂ Σm. ThenZK is a G-space.

Proof. Consider the cellular decomposition of ZK based on the decomposition of the unit disk D2 into 3
cells: one 2-dimensional D, one 1-dimensional T and one 0-dimensional {1}, see [21, Section 7.3]. Then the
cells ofZK are enumerated by vectors C ∈ {D,T, 1}m andZK becomes a cellular subcomplex in (D2)m; a cell
C of (D2)m is inZK if and only if the set of indices CD corresponding to D coordinates of C forms a simplex
in K. Since G ⊆ Aut(K) acts simplicially on K, it acts by permuting cells in the above cell decomposition of
ZK.

Problem 1.12. Determine the H∗(BG)-module structure and theZ[G]-algebra structure of the equivariant cohomol-
ogy H∗G(ZK) when G ⊆ Aut(K). In particular, find the widest possible class of K and G such that the Serre spectral
sequence of the fibration

ZK → (ZK)G → BG

collapses in the E2 term.

Problem 1.13. Compute the cohomology ring and determine the homotopy type of the fixed point set F(G,ZK) of a
G-action onZK.

2. The Cohomology Ring ofZI and RI

In this section we study combinatorics of the simplicial complex I given as the boundary of the
icosahedron and generators of cohomology ring of its moment-angle complexZI and real moment-angle-
complex RI. Recall that the icosahedron is the regular polyhedron and Platonic solid having 12 vertices, 30
edges and 20 equivalent equilateral triangle faces. Any polyhedron can be associated with a combinatorial
dual figure, where the vertices of one correspond to the faces of the other and the edges between pairs of
vertices of one correspond to the edges between pairs of faces of the other. However, not all such duals
are geometric polyhedra. The dual of the icosahedron is the dodecahedron, another regular polyhedron
and Platonic solid having 20 vertices, 30 edges and 12 equivalent regular pentagon faces. In the rest of the
paper we assume that the vertices of the icosahedron are labelled with numbers 1, . . . , 12 as in Figure 1.
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Figure 1: The icosahedron

2.1. Cohomology of Moment-Angle Manifolds

Let k be a field or the ring of integers Z and k[v1, . . . , vm] be the polynomial algebra where deg vi = 2.
Let Λ[u1, . . . ,um] be the exterior algebra where deg ui = 1. Given a subset I = {i1, . . . , ik} ⊂ [m] let vI denote
the square-free monomial vi1 · · · vik in k[v1, . . . , vm].

The Stanley-Reisner ring or the face ring of a simplicial complex K on m vertices is the quotient graded
ring

k[K] := k[v1, . . . , vm]/IK,

where IK = (vI | I < K) is the ideal generated by those monomials vI for which I is not a simplex of K. The
ideal IK is known as the Stanley-Reisner ideal of K.

The cohomology ring ofZK over kwas obtained by Buchstaber, Panov, and Baskakov.

Theorem 2.1. ([22, Buchstaber-Panov Theorem 4.5.]) There are isomorphisms, functorial in K, of bigraded
algebras

H∗,∗ (ZK;k) � Tork[v1,...,vm](k[K],k) � H∗,∗[Λ[u1, . . . ,um] ⊗ k[K], d]

where the bigrading and the differential on the right hand side are defined by

bideg ui = (−1, 2), bideg vi = (0, 2), dui = vi, dvi = 0.

A module structure of H∗(ZK;k) can thus be obtained using a well-known result from combinatorial
commutative algebra, the Hochster’s formula, which represents the above Tor-algebra as a direct sum of
reduced simplicial cohomology groups of all full subcomplexes in K. Multiplication in H∗(ZK;k) was firstly
described by Baskakov.
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Theorem 2.2. ([7, Baskakov Theorem 1], [22, Hochster Theorem 4.5.8]) There are isomorphisms of k-modules

Tor−i,2 j
k[v1,...,vm](k[K];k) �

⊕
J⊂[m],|J|= j

H̃|J|−i−1(KJ;k)Hl (ZK;k) �
⊕
J⊂[m]

H̃l−|J|−1(KJ;k)

These isomorphisms sum up into a ring isomorphism H∗ (ZK;k) �
⊕

J⊂[m] H̃∗(KJ;k) where the ring structure on the
right hand side is given by the canonical maps

Hk−|I|−1(KI;k) ⊗Hl−|J|−1(KI;k)→ Hk+l−|I|−|J|−1(KI∪J;k)

which are induced by simplicial maps KI∪J → KI ∗ KJ for I ∩ J = ∅ and zero otherwise. �

Due to [22, Construction 3.2.8, Theorem 3.2.9] the Tor-algebra of K acquires a multigraded refinement and
the multigraded components can be calculated in terms of full subcomplexes. Namely, for any simplicial
complex K on [m] we have

Tor−i,2J
k[v1,...,vm](k[K],k) � H̃|J|−i−1(KJ;k)

where J ⊂ [m] and Tor−i,2a
k[v1,...,vm](k[K],k) = 0, if a is not a (0, 1)-vector.

Moreover, if we denote by R(K) = Λ[u1, . . . ,um] ⊗ k[K]/(v2
i = uivi = 0, 1 ≤ i ≤ m) a graded algebra

with the differential d as in Theorem 2.1, then R(K) also acquires multigrading and the following k-module
isomorphism holds

Tor−i,2a
k[v1,...,vm](k[K],k) � H−i,2a[R(K), d]

for any simplicial complex K.
Now we turn to the real case. By [20, Theorem 8.9] one has k-module isomorphisms

Hp(RK;k) �
⊕
J⊂[m]

Hp−1(KJ;k). (1)

The multiplicative structure was given firstly by Cai [23]. Consider a differential graded algebra r(K)
which is a quotient algebra of a free graded algebra on 2m variables ui, t j, where deg(ui) = 1,deg(t j) = 0, by
the Stanley-Reisner ideal of K in variables {ui} and the following relations:

uiti = ui, tiui = 0,uit j = t jui, titi = ti, tit j = t jti,uiui = 0,uiu j = −u jui.

Theorem 2.3. There is a graded ring isomorphism

H∗(RK;k) � H∗[r(K), d]

where d(ti) = ui and d(ui) = 0. �

2.2. Cohomology Generators ofZI
We explicitly list the generators of the cohomology ring of the moment-angle complex of the boundary of

the icosahedron. In our description, we appeal on the action of the group A5 on the icosahedron. Denote by
ZI the moment-angle manifold of the boundary of the icosahedron, which is equivariantly homeomorphic
to the moment-angle manifoldZD of the dodecahedronD.

By Hochster theorem, nontrivial cohomological classes arise in noncontractible full subcomplexes IJ.

Proposition 2.4. b3(ZI) = b−1,4(ZI) = 36.

Proof. Noncontractible simplicial complex on two vertices is S0. We consider the orbits of subcomplexes
on two vertices with respect to the symmetry group A5 of the icosahedron. There are two types of full
subcomplexes on two vertices ofZI homotopy equivalent to S0, as illustrated in Figure 2.
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Figure 2: The case |J| = 2

There are six subcomplexes in the orbit of the full subcomplex on J = {1, 7} and 30 subcomplexes in the
orbit of the full subcomplex on J = {1, 12}, thus

b3(ZI) = b−1,4(ZI) = 6 + 30 = 36.

Proposition 2.5. b4(ZI) = b−2,6(ZI) = 160.

Proof. Noncontractible simplicial complexes on three vertices are either homotopy equivalent to S1, S0 or
S0
∨ S0. In the boundary of the icosahedron any noncontractible full subcomplex on three vertices lies in

the orbit of one of the following full subcomplex on the sets {1, 8, 11}, {1, 11, 12} or {1, 7, 12} as illustrated in
Figure 3.

Figure 3: The case |J| = 3

There are 20 full subcomplexes in the orbit of the full subcomplex on {1, 8, 11} and they are homotopy
equivalent to S0

∨ S0. In each of the orbits of the full subcomplexes on {1, 11, 12} and {1, 7, 12} there are 60
full subcomplexes and they are homotopic to S0. They contribute to the cohomology ofZI with

b4(ZI) = b−2,6(ZI) = 20 · 2 + 60 + 60 = 160.

Proposition 2.6. b5(ZI) = b−3,8(ZI) = 315.
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Proof. A noncontractible flag 2-dimensional simplicial complex on four vertices is homotopy equivalent to
S1, S0, S0

∨S0 or S0
∨S0
∨S0. All noncontractible full subcomplexes on four vertices lie in some of the orbits

of the full subcomplex on the sets {1, 7, 9, 10}, {1, 8, 9, 11}, {1, 5, 7, 11}, {1, 5, 11, 12}, {1, 2, 5, 12} or {1, 2, 5, 7} as
in Figure 4.

Figure 4: The case |J| = 4

Full subcomplexes I{1,7,9,10}, I{1,5,7,11}, I{1,5,11,12}, I{1,2,5,12} and I{1,2,5,7} are homotopy equivalent to S0,
while I{1,8,9,11} is homotopy equivalent to S0

∨ S0. In the orbits of full subcomplexes I{1,7,9,10}, I{1,5,11,12},
I{1,2,5,12} and I{1,2,5,7} there are 60 full subcomplexes, in the orbit of I{1,5,7,11} there are 15 full subcomplexes
and 30 full subcomplexes in the orbit of I{1,5,7,11}. They contribute to the cohomology ofZI with

b5(ZI) = b−3,8(ZI) = 60 + 60 + 60 + 60 + 15 + 30 · 2 = 315.

Lemma 2.7. b−3,10(ZI) = 12.

Proof. There are six types of noncontractible full subcomplexes on five vertices as in Figure 5, but by the
Hochster formula only the pentagons have a nontrivial class in the first cohomology group H̃1(IJ) and give
generators of H−3,10(ZI). It is obvious that all 12 pentagons lie in the orbit of the full subcomplex I{2,3,4,5,6}.
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Figure 5: The case |J| = 5

Proposition 2.8. b6(ZI) = b−4,10(ZI) = 300.

Proof. The full subcomplexes which give generators of H−4,10(ZI) are those of five types homotopy equiv-
alent to the union of two points, see Figure 5. In the orbit of each of the full subcomplexes I{1,7,8,9,10},
I{1,7,8,9,11}, I{1,8,9,10,11}, I{1,5,7,10,11} and I{1,5,10,11,12} lie exactly 60 full subcomplexes. Thus,

b−4,10(ZI) = 60 + 60 + 60 + 60 + 60 = 300.

Lemma 2.9. b−4,12(ZI) = 112.

Proof. There are seven types of noncontractible full subcomplexes on six vertices, see Figure 6. Three of them
are homotopy equivalent to S1, one to the disjoint union of the point and S1 and three to S0. Therefore, only
I{1,3,5,8,11,12}, I{1,2,4,7,8,11}, I{1,2,5,7,8,11} and I{1,8,9,10,11,12} have nontrivial H̃1(IJ). In the orbit of I{1,3,5,8,11,12} and
I{1,2,4,7,8,11} there is exactly 60 full subcomplexes, while in the orbits of I{1,2,4,7,8,11}, I{1,2,5,7,8,11} and I{1,8,9,10,11,12}
there are thirty, ten and twelve full subcomplexes, respectively.
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Figure 6: The case |J| = 6

Thus,
b−4,12(ZI) = 60 + 30 + 10 + 12 = 112.

Lemma 2.10. b−5,12(ZI) = 112.

Proof. Among seven types of noncontractible full subcomplexes on six vertices shown at Figure 6 there
are four homotopy equivalent to the disjoint union of two points and one to the the disjoint union of the
point and S1 and they only have nontrivial H̃0(IJ). In the orbits of I{3,4,6,9,10,12}, I{1,2,7,8,9,12}, I{1,7,8,9,10,11} and
I{1,8,9,10,11,12} there are 10, 30, 60 and 12 full subcomplexes.

Thus,
b−5,12(ZI) = 10 + 30 + 60 + 12 = 112.

Using Lemma 2.7 and Proposition 2.10, the seventh Betty number is calculated

Proposition 2.11. b7(ZI) = 124.

Proposition 2.12. b9 = b−5,14(ZI) = 300.

Proof. The full subcomplexes giving generators of H−6,16(ZI) are those of five types homotopy equivalent
to S1, see Figure 7. Thus,

b9 = b−6,16(ZI) = 60 + 60 + 60 + 60 + 60 = 300.

Lemma 2.13. b−6,14(ZI) = 12.

Proof. There are six types of noncontractible full subcomplexes on seven vertices as in Figure 7, but only
complements of the pentagons give generators of H−6,14(ZI) since H̃0(IJ) for J = {1, 7, 8, 9, 10, 11, 12} .
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Figure 7: The case |J| = 7

By Lemmas 2.9 and 2.13, the eighth Betty number can be calculated.

Proposition 2.14. b8(ZI) = 124.

Proposition 2.15. b10(ZI) = b−6,16(ZI) = 315.

Proof. There are six types of noncontractible full subcomplexes on eight vertices as in Figure 8. Seven of
them have homotopy type of S1, while one is homotopy equivalent to S1

∨ S1.
The full subcomplexes in the orbits of I{2,3,4,5,6,7,9,10}, I{1,3,5,6,8,9,11,12},

I{1,3,5,8,9,10,11,12}, I{1,2,3,5,7,8,9,11}, I{1,2,5,7,8,9,10,11} and I{2,3,4,5,6,8,11,12} contribute to the cohomology ofZI with

b10(ZI) = b−6,16(ZI) = 60 + 60 + 30 · 2 + 15 + 60 + 60 = 315.

Proposition 2.16. b11(ZI) = b−7,18(ZI) = 160.

Proof. There are three types of noncontractible full subcomplexes on nine vertices as in Figure 9.
They contribute to the cohomology ofZI with

b11(ZI) = b−7,18(ZI) = 60 + 60 + 20 · 2 + 60 = 160.
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Figure 8: The case |J| = 8

Figure 9: The case |J| = 9

Proposition 2.17. b12(ZI) = b−8,20(ZI) = 36.

Proof. There are two types of noncontractible full subcomplexes on ten vertices as in Figure 10.
By the symmetry,

b3(ZI) = b−1,4(ZI) = 6 + 30 = 36.
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Figure 10: The case |J| = 10

We summarize results about the bigraded Betti numbers ofZI in Table 1.

1 24

22

36 20

160 18

315 16

12 300 14

112 112 12

300 12 10

315 8

160 6

36 4

2

1 0
-9 -8 -7 -6 -5 -4 -3 -2 -1 0

Table 1: The bigraded Betti numbers b−i,2 j(I) of the boundary of icosahedron

From Propositions 2.4, 2.5, 2.6, 2.8, 2.11, 2.12, 2.14, 2.15, 2.16 and 2.17 we get description of the cohomol-
ogy of theZI
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Theorem 2.18. (a)

Hi(ZI,k) �



k if i = 0 or 15,
k36 if i = 3 or 12,
k160 if i = 4 or 11,
k315 if i = 5 or 10,
k300 if i = 6 or 9,
k124 if i = 7 or 8,
0 elsewhere.

(b) H∗(ZI,Z) is torsion free.

Next we briefly discuss the real moment-angle manifold RD over the dodecahedron D. Real moment-
angle manifolds (also known as universal abelian covers over polytopes, see [29, §4.1]) and real moment-
angle-complexes have recently attracted attention in geometric group theory and combinatorics due to their
relations to the study of the right-angled Coxeter group. Recall that for a simplicial complex K on the set
of vertices [m], its right-angled Coxeter group is the quotient of the free group on m generators 11, . . . , 1m

modulo relations 1i1 j = 1 j1i for all {i, j} ∈ sk1(K).
The right-angled Coxeter group RCP of a simple polytope P is the right-angled Coxeter group of the

simplicial complex ∂P∗. Thus the right-angled Coxeter group of the dodecahedronD is given by

RCD =
F〈11, . . . , 112〉

(12
i = 1, 1i1 j = 1 j1i| 1 ≤ i ≤ 12, {i, j} ∈ sk1(K ))

Proposition 2.19. The following statements hold:

(a) RD is a 3-dimensional closed orientable manifold and a space of a regular 512-fold covering over the small cover
MR(D). RD ' K(G, 1), where G = [RCD,RCD] is a commutator subgroup of RCD.

(b) H∗(RD) is torsion free. The Betti numbers of RD are given by:

b0(RD) = b3(RD) = 1, b1(RD) = b2(RD) = 935.

Proof. To prove statement (a) first note that D is of dimension n = 3 and has m = 12 vertices. Therefore,
RD is a smooth 3-dimensional closed orientable manifold and a covering space of a regular 2m−n = 512-fold
covering over a small cover MR(D) (see [37]).

There is a homotopy fibration

RD → (RP∞, ∗)I → BZm
2 (2)

and a short exact sequence of groups

1→ [RCD,RCD]→ RCD → Zm
2 → 1. (3)

It follows from the works of Davis [28] and Davis-Januszkiewicz [29] that (RP∞, ∗)I ' K(RCD, 1). Thus,
the exact homotopy sequence of the fibration (2) shows thatRD is aspherical and π1(RD) = [RCD,RCD]. Zm

2
is abelian, so [RCD,RCD] ⊆ π1(RD) and from the exact sequence (3) the index (π1(RD) : [RCD,RCD]) = 1.
This finishes the proof of statement (a).

To prove statement (b) observe that by Alexander duality and the universal coefficient theorem, the
integral cohomology H∗(RD) is torsion free. Now, using (1)

b1(RD) =
∑
J⊆[m]

rk H̃0(DJ).
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By Theorem 2.2, the sum in the right side of the above equality and the calculation shown in Table 1, it
follows that

m∑
|J|=1

β−(|J|−1),2|J|(I) = 935.

The rest follows from statement (a) and Poincaré duality for RD.

3. Quasitoric Manifolds and Small Covers over Dodecahedron

A fullerene P is a 3-dimensional polytope with only 5- and 6-gonal faces. Grbić and Beben [8] recently
proved that a moment-angle manifold ZP over a fullerene P has LS-category equal to 3. Moreover, they
proved that all its triple and higher Massey products of decomposable elements vanish. Fullerenes are
originally considered in quantum physics and chemistry of carbon allotropes. This class of polytopes were
brought into algebraic topology in the series of recent works by Buchstaber and Erokhovets [10–13]. In those
papers they established a number of combinatorial properties of fullerenes and topological properties of
their toric spaces. Furthermore, they constructed all fullerenes from a dodecahedron via several polytopal
truncation operations. In the recent paper with Masuda, Panov, and Park [14] they solved positively the
cohomological rigidity problem for quasitoric manifolds over Pogorelov class polytopes. The Pogorelov class
polytopes are 3-dimensional polytopes with no 3- and 4-belts of facets and it contains fullerenes.

It was proved in [30] that if there exists a smooth projective toric variety over a simple 3-dimensional
polytope P, then P has at least one triangular or quadrangular face. Therefore, it follows from combina-
torial structure of fullerenes and, more generally, Pogorelov class polytopes, that they support quasitoric
manifolds ([29]) but do not support smooth projective toric varieties.

In particular, a dodecahedron is a flag 3-polytope which can not have a Delzant realization in the ambient
Euclidean space.

The Four Color Theorem was used in [29, Example 1.21] to prove that there is a quasitoric manifold
(and small cover) over any simple 3-polytope. The argument is simple: assume that a simple 3-polytope
is colored regularly by four colors a, b, c and d, then assign the columns (1, 0, 0)t, (0, 1, 0)t and (0, 0, 1)t to
the facets colored by color 1, 2 an 3, respectively. To the facets colored in 4, assign (−1,−1,−1)t and in this
way, form the characteristic matrix that satisfies the non-singular condition. However, there are quasitoric
manifolds over a 4-colorable simple polytope that are not arising in this way. For example, Garrison and
Scott [37] using computer search found 25 small covers up to homeomorphism over the dodecahedron.

The quasitoric manifolds and small covers discussed above are examples of a general class of small
covers and quasitoric manifolds in toric topology, see [29, Example 1.15]. The orbit polytopes for these
manifolds are simple n-polytopes which admit regular coloring in n or n + 1 colors while manifolds are
called canonical. The class of canonical small covers and quasitoric manifolds contains pullbacks from
the linear models which have various nice properties, for example they are all stable parallelizable [29,
Corollary 6.10]. Baralić and Živaljević [5] found an application of canonical quasitoric manifolds and used
it to prove results of a Knaster-Kuratowski-Mazurkiewicz type.

We will describe quasitoric manifolds over the dodecahedron arising from 4-coloring. In general, it is
possible to have non-isomorphic regular 4-coloring over a simple 3-polytope whose characteristic matrices
may produce non-homeomorphic quasitoric manifolds. In [58] it is stated that there exist exactly two
nonisomorphic 5-colorings of the dodecahedron with four faces of each color and that they are symmetric
to each other up to permutation of colors. Two colorings are considered to be isomorphic if they differ by
permutation of colors and direct isometric transformation. We prove this results in the next lemma.

Lemma 3.1. There are exactly two nonisomorphic regular colorings of the dodecahedron in 4 colors and they are
plane symmetric.

Proof. Regular coloring of the faces of the dodecahedron corresponds dually to the coloring of the vertices
of the icosahedron. First, observe that in a regular 4-coloring it is not possible to color four vertices of the
icosahedron in the same color since it would result in having two neighboring vertices colored in the same
color. Thus, every color is used exactly three times.
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Figure 11: Regular 4-coloring of the icosahedron

Without lost of generality we assume that the vertex labeled by 1 and the vertices in its link, labeled by
2, 3, 4, 5 and 6 are colored as in Figure 11. The vertex 8 can be colored either in yellow or in pink. Assume
that it is yellow. Then the remaining five vertices of the icosahedron lie in the link of the vertex 6 or in the
link of vertex 8 and they cannot be yellow, contradicting the fact that there must be three yellow vertices in
regular 4-coloring. Thus, the vertex 8 is pink, and consequently the vertices 9 and 12 are yellow. For the
remaining three vertices there are only two options as shown in Figure 11.

Next we prove that these two colorings are not isomorphic, that is, one coloring cannot be obtained
from the other using symmetries of the icosahedron and permutations of colors. Assume that this can be
achieved. Consider six red edges in Figure 11. They all have property that the opposite edge has different
colored vertices from the vertices of the edge, so the icosahedron on the right in Figure 11 should be put in
position that red edges are as in the icosahedron on the left. There are exactly 12 positions that fix red edges
and they are obtained using rotations through pairs of opposite red edges or using rotations around axes
through the shaded triangles, see Figure 12. Clearly, all are distinct from the coloring of the left icosahedron
in Figure 11, while the icosahedrons in second and third row of Figure 12 depict that two distinct colors
have chiral distribution of colors.

There is a procedure to construct a small cover and a quasitoric manifold over a given polytope and we
will illustrate it on a dodecahedron.

Let Pn be a simple polytope with m facets F1, . . . , Fm. By Definition 1.5, every point in π−1(int(Fi)) has
the same isotropy group which is one-dimensional subgroup of Gn

d . We denote it by Gd(Fi).

Definition 3.2. Let Pn be a combinatorial simple polytope and l is a map from facets of Pn to one-dimensional
subgroups of Tn. Then (Pn; l) is called a characteristic pair and l is called a characteristic map if

l(Fi1 ) × . . . × l(Fik ) −→ Tm

is injective whenever Fi1 ∩ . . . ∩ Fik , ∅.

Each Gn
d -manifold πd : Mdn

→ Pn determines a characteristic map ld on Pn

ld : {F1, . . . ,Fm} → K
n
d
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Figure 12: Symmetries of the icosahedron fixing six red edges

defined by mapping each facet of Pn to nonzero elements of Kn
d (for notation see subsection 1.2) such that

ld(Fi) = λi = (λ1,i, . . . , λn,i)t
∈ Kn

d , where λi is primitive vector such that

Gd(Fi) =
{
(tλ1,i , . . . , tλn,i )|t ∈ Kd, |t| = 1

}
.

From the characteristic map we obtain an integer (n × m)-matrix ΛKd (Mdn) := (λi, j) which is called the
characteristic matrix of Mdn. For d = 2 each λi is determined up to sign. Since the Gn

d-action on Mdn is locally
standard, the characteristic matrix ΛKd (Mdn) satisfies the nonsingular condition for Pn, i. e. if n facets Fi1 ,

. . . , Fin of Pn meet at vertex, then
∣∣∣∣det Λ(i1,...,in)

Kd
(Mdn)

∣∣∣∣ = 1, where Λ(i1,...,in)
Kd

(Mdn) := (λi1 , . . . ,λin ). Any integer
(n ×m)-matrix satisfying the non-singular condition for Pn is also called a characteristic matrix on Pn.

Vice versa, we can construct a small cover and a quasitoric manifold over a polytope P, from the
characteristic pair (Pn,ΛKd ) as described in [20, Construction 5.12].

The cohomology ring of the Gn
d-manifold corresponding to the characteristic pair is known and could be

described in the following way. There are two ideals naturally assigned to Pn and the characteristic matrix
Λd. Let F1, . . . , Fm be the facets of Pn. LetKd[v1, . . . , vm] be the polynomial algebra overKd on m generators
with deg(vi) = d. The Stanley-Reisner idealSP is the ideal generated by all square-free monomials vi1 vi2 · · · vis
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such that Fi1 ∩ · · · ∩ Fis = ∅. Let Λd = (λi j) be a characteristic n ×m matrix over Pn. We define linear forms

θi :=
m∑

j=1

λi jv j

and define J to be the ideal in Kd[v1, . . . , vm] generated by θi for all i = 1, . . . ,n. Let Mdn be a Gn
d manifold

corresponding to the characteristic pair (Pn,Λd) and π : Mdn
→ Pn be the orbit map. From Definition 1.5 we

obtain that each π−1(Fi) is a closed submanifold of dimension d(n − 1) which is itself a Gn−1
d -manifold over

Fi. Let vi ∈ Hd(Mdn;Kd) denote its Poincaré dual. The ordinary cohomology of small covers and quasitoric
manifolds (see [29]) is given by

H∗(Mdn) ' Kd[v1, . . . , vm]/(SP +J). (4)

LetD denote the dodecahedron and denote by I the boundary of its dual, the icosahedron. Enumerate
the facets of D by numbers 1, 2, . . . , 12 using enumeration of the vertices of I, as shown in the Figure 1.
Divide all facets of D in four groups, denoted a, b, c and d of three facets, so that within each group all
facets are mutually disjoint, that is, there are no edges that they span. Fix the following division: {1, 8, 10},
{2, 9, 12}, {3, 5, 7} and {4, 6, 11}. We denote facets from the first set by a1, a2, a3, from the second set by b1, b2, b3,
etc. and order them as they are written.

Consider the matrix

Λ =

 1 1 1 0 0 0 0 0 0 −1 −1 −1
0 0 0 1 1 1 0 0 0 −1 −1 −1
0 0 0 0 0 0 1 1 1 −1 −1 −1

 (5)

which defines a map l from the facets of D to one-dimensional subgroups of T3. That map l satisfies the
condition from Definition 3.2, it is enough to check it at each vertex of D separately. Therefore, the pair
(D, l) (or (D,Λ)) is a characteristic pair. Denote by M6 the quasitoric manifold overD induced by this pair.

By [29, Theorem 3.1], the Betti numbers of M6 are equal to

β2 = β4 = 9, β0 = β6 = 1

while all other Betti numbers are zero.
By (4),

H∗(M6;Z) ' Z[a1, a2, a3, b1, . . . , d3]/(SD +J)

where SD is the Stanley-Reisner ideal of D and J is generated by θ1, θ2 and θ3 defined by rows of Λ. By
abuse of notation, we denote the generators by the facets they represent. More precisely,

θ1 = a1 + a2 + a3 − d1 − d2 − d3

θ2 = b1 + b2 + b3 − d1 − d2 − d3

θ3 = c1 + c2 + c3 − d1 − d2 − d3.

Using relations obtained from J , express three generators using other nine of them. For example, a3 =
d1 + d2 + d3 − a1 − a2, likewise b1 and c3.

To summarize, we get

H∗(M6;Z) = Z[a1, a2, b2, b3, c1, c2, d1, d2, d3]/SD

where all generators are of degree 2.
By direct calculation we obtained the following:
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a) the generators of H2 are a1, a2, b2, b3, c1, c2, d1, d2, d3;

b) the generators of H4 are all the squares of generators of H2: a2
1, . . . , d

2
3;

c) the generator of H6 is the fundamental class of ZD and can be represented by a3
1;

d) multiplication of 2-dimensional generators is given in the Table 2. Numbers in brackets after genera-
tors represent the number of the facet corresponding to that generator. For example, b2(9) means that
generator b2 corresponds to the facet number 9 of the dodecahedron, or equivalently, to the vertex
number 9 of the icosahedron in the Figure 1. Since all generators are of even degree, the multiplication
is commutative.

e) multiplication of 2-dimensional and 4-dimensional generators is given in Table 3, where X represents
the fundamental class [M6] ∈ H6(M6;Z).

For the small cover M3 over dodecahedron D induced by the characteristic pair (D,Λ), there is the
same calculation. The difference is in dimensions of the generators and here we use Z/2 instead of Z as
coefficients. More precisely,

H∗(M3;Z/2) = Z/2[a1, a2, b2, b3, c1, c2, d1, d2, d3]/SD

where all generators are of degree 1.
All other conclusions including multiplication tables are the same, as for quasitoric manifold. One

should notice that since we are dealing with Z/2 coefficients, there are no signs in the Table 2.
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a1(1) a2(8) b2(9) b3(12) c1(3) c2(5) d1(4) d2(6) d3(11)
a1 a2

1 0 0 0 c2
1 a2

1 − c2
1 d2

1 − a2
2 a2

1 + a2
2 − d2

1 0
a2 0 a2

2 a2
2 − b2

3 b2
3 0 c2

1 + c2
2 − a2

1 a2
2 0 0

b2 0 a2
2 − b2

3 b2
2 0 0 c2

2 0 b2
2 0

b3 0 b2
3 0 b2

3 ∗ 0 d2
1 0 b2

3 − d2
1

c1 c2
1 0 0 ∗ c2

1 0 d2
1 + d2

2 − c2
2 0 c2

1 + c2
2 − d2

1 − d2
2

c2 a2
1 − c2

1 c2
1 + c2

2 − a2
1 c2

2 0 0 c2
2 c2

2 − d2
2 d2

2 0
d1 d2

1 − a2
2 a2

2 0 d2
1 d2

1 + d2
2 − c2

2 c2
2 − d2

2 d2
1 0 0

d2 a2
1 + a2

2 − d2
1 0 b2

2 0 0 d2
2 0 d2

2 0
d3 0 0 0 b2

3 − d2
1 c2

1 + c2
2 − d2

1 − d2
2 0 0 0 d2

3

Table 2: Multiplication in H2(M6;Z)

where ∗ = b3c1 = c1b3 = b2
2 + b2

3 + c2
1 − d2

1 − d2
2 − d2

3.

a2
1 a2

2 b2
2 b2

3 c2
1 c2

2 d2
1 d2

2 d2
3

a1 X 0 0 0 X 0 0 X 0
a2 0 X 0 X 0 X X 0 0
b2 0 0 X 0 0 X 0 X 0
b3 0 X 0 X 0 0 X 0 0
c1 X 0 0 0 X 0 X 0 0
c2 0 X X 0 0 X 0 X 0
d1 0 X 0 X X 0 X 0 0
d2 X 0 X 0 0 X 0 X 0
d3 0 0 0 0 0 0 0 0 X

Table 3: H2(M6;Z) ∪H4(M6;Z)
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4. Massey Products in H∗(ZI ) and Poincaré Series for k[I ]

We start this section with a definition of a Massey product in the cohomology of a differential graded
algebra. First, we need the notion of a defining system for an ordered set of cohomology classes. Our
presentation follows that in [45], [21, Appendix Γ] and [17].

Definition 4.1. Suppose (A, d) is a differential graded algebra, αi = [ai] ∈ H∗[A, d] and ai ∈ Ani for 1 ≤ i ≤ k.
Then a defining system for (α1, . . . , αk) is a (k + 1) × (k + 1)-matrix C satisfying the following conditions:

(1) ci, j = 0 if i ≥ j,

(2) ci,i+1 = ai,

(3) a ·E1,k+1 = dC−C̄ ·C for some a = a(C) ∈ A, where c̄i, j = (−1)de1(ci, j) ·ci, j and E1,k+1 is a (k+1)×(k+1)-matrix
with ’1’ in the position (1, k + 1) and all other entries equal to zero.

One readily checks that the above conditions imply that d(a) = 0 and a ∈ Am, m = n1 + . . . + nk − k + 2.
Therefore, the cohomology class α = [a(C)] ∈ Hm[A, d] of a = a(C) is defined.

Definition 4.2. A Massey product 〈α1, . . . , αk〉 is the set of all cohomology classes of the type α = [a(C)],
where C is a defining system for (α1, . . . , αk). The k-fold Massey product 〈α1, . . . , αk〉 is said to be defined if
〈α1, . . . , αk〉 , ∅, that is, if there exists a defining system C for it. A defined Massey product is called:

(i) trivial if [a(C)] = 0 for some C;

(ii) decomposable if [a(C)] ∈ H+(A) ·H+(A) for some C;

(iii) strictly defined if 〈α1, . . . , αk〉 = {[a(C])} for some C.

It can also be verified that a Massey product 〈α1, . . . , αk〉 is determined by the cohomology classes
{αi, 1 ≤ i ≤ k} of particularly chosen representing cocycles {ai, 1 ≤ i ≤ k}, which we used in the above
definition, see [45].

In what follows we call a k-fold Massey product for k = 3 a triple Massey product and we refer to a k-fold
Massey product for k > 3 as a higher Massey product.

Example 4.3. Suppose in the above definition k = 4. If 〈α1, α2, α3, α4〉 is defined, then we have:

a = d(c1,5) − ā1 · c2,5 − c̄1,3 · c3,5 − c̄1,4 · a4,

d(c1,3) = ā1 · a2, d(c1,4) = ā1 · c2,4 + c̄1,3 · a3, d(c2,4) = ā2 · a3, d(c2,5) = ā2 · c3,5 + c̄2,4 · a4, d(c3,5) = ā3 · a4.

These identities show that for a higher Massey product 〈α1, . . . , αk〉 to be defined it is necessary that
all the lower order Massey products of consecutive elements are defined and trivial simultaneously. If all
the lower order Massey products of consecutive elements vanish, but not simultaneously, then the whole
product may not exist, see [54, Example I].

May [52] introduced a generalization of the ordinary Massey product, the matric Massey product, and
studied its basic properties. He also showed that differentials in the Eilenberg–Moore spectral sequence of
the path loop fibration for any path connected simply connected space can be described in terms of (matric)
Massey products. However, Massey products are not completely determined by those differentials, see [54,
Example II]. For the discussion of ordinary and matric Massey products and their applications in rational
homotopy theory and symplectic geometry see [3, 52].

From now on let I denote the boundary of icosahedron, see Figure 1.

Proposition 4.4. Suppose ai = viui+6 for i = 2, . . . , 6 are 3-dimensional cocycles in R−1,4(I) representing the classes
αi−1 = [ai]. Then the 5-fold Massey product 〈α1, α2, α3, α4, α5〉 ⊂ H∗(ZI) is defined and trivial.
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Proof. Consider the following defining system C:

c1,2 = v2u8, c2,3 = −v9u3, c3,4 = v4u10, c4,5 = −v11u5, c5,6 = v6u12,

and all other ci, j being zero. Then 0 ∈ 〈α1, . . . , α5〉 and this Massey product is defined and vanishes.

Note, that any of the triple products of consecutive elements in 〈α1, . . . , α5〉 is trivial by [31, Theorem
6.1.1], see Figure 13. Furthermore, observe that a nonzero cohomology class is contained in such a product
alongside with zero, for example

[v4v8u2u3u9u10] ∈ 〈α1, α2, α3〉.

Remark 4.5. It follows from the proof of [31, Theorem 6.1.1] that a nontrivial triple Massey product of
3-dimensional classes in H∗(ZK) is given by a unique and decomposable cohomology class.

Theorem 4.6. (a) There are no nontrivial Massey products 〈α1, . . . , αk〉 ⊂ H∗(ZI) with dimα1 = . . . = dimαk =
3 for k = 3, or k ≥ 6;

(b) Consider the following classes in H3(ZI) (see Figure 14)

α1 = [v2u9], α2 = [v3u10], α3 = [v4u11], α4 = [v5u12].

Then the Massey product 〈α1, α2, α3, α4〉 is strictly defined and nontrivial.

Proof. Recall that for an element α ∈ 〈α1, . . . , αk〉 ⊂ H∗(ZI), dimα = 2k + 2. The moment-angle manifold
ZI is 2-connected, thus Hp(ZI) = 0 for all p ≥ m + n − 2 = 13, p , 15. Observe that all the defined k-fold
Massey products of 3-dimensional classes in H∗(ZI) for k ≥ 6 vanish for dimensional reasons.

Figure 13: Five obstruction graphs for nonexistence of a triple Massey product of 3-dimensional classes in H∗(ZK)

To prove the rest of statement (a) assume the converse is true. Then, by [31, Theorem 6.1.1], there
exists an induced subgraph in sk1(I) of one of the five types shown in Figure 13. This implies that among
the flagizations of those five obstruction graphs there exists at least one which is isomorphic to a full
subcomplex in I on 6 vertices. Furthermore, each of these flagizations is easily seen to be homotopy
nontrivial. However, none of these five flagizations appears in Figure 6 above. We get a contradiction
which finishes the proof of the first statement.

To prove statement (b), let us denote

I1 = {2, 9}, I2 = {3, 10}, I3 = {4, 11}, I4 = {5, 12}.

Figure 14 shows that
H̃0(II1tI2 ) = H̃0(II2tI3 ) = H̃0(II3tI4 ) = 0

and
H̃1(II1tI2 ) = H̃1(II2tI3 ) = H̃1(II3tI4 ) = 0.
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Figure 14: Classes α1, α2, α3, and α4 in H∗(ZI)

Furthermore, Figure 14 shows that

H̃0(II1tI2tI3 ) = H̃0(II2tI3tI4 ) = 0

and
H̃1(II1tI2tI3 ) = H̃1(II2tI3tI4 ) = 0.

Due to [46, Lemma 3.3], the 4-fold Massey product 〈α1, α2, α3, α4〉 is strictly defined. A straightforward
calculation shows that (up to sign)

〈α1, α2, α3, α4〉 = {[v5v9u2u3u4u10u11u12]}.

The cocycle
v5v9u2u3u4u10u11u12 ∈ R−6,2(0,1,1,1,1,0,0,0,1,1,1,1)(I)

is not a coboundary, since if in its multigraded component

v5v9u2u3u4u10u11u12 = d(
12∑
j=2

a jv ju2 . . . û j . . . u12)

then
a2 = a4 = a11 = a9 = −a3 = −a10 = −a12 = −a5

and −a5 − a9 = 1, which is a contradiction.
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Let P = P4 be the 120-cell, that is, a convex regular simple polytope all of whose 120 facets are dodeca-
hedraD, see [37, §3,4].

Proposition 4.7. (a) There exists a strictly defined nontrivial Massey product of order 4 in H∗(ZP). In particular,
ZP is a nonformal manifold.

(b) The hyperbolic 3-manifold RD is a submanifold and a retract of the hyperbolic 4-manifold RP. In particular,
π1(RP) is a semi-direct product of [RCD,RCD] with Ker r∗, where r : RP → RD is the retraction. There is a
short exact sequence

1→ Ker r∗ → π1(RP)→ [RCD,RCD]→ 1.

Proof. Since P has no 3- or 4-belts of facets, it is a flag polytope. Due to [15, Theorem 2.16],ZD ↪→ ZP is a
submanifold and a retract ofZP. Statement (a) now follows by applying Theorem 4.6 (b).

For statement (b), RD is a submanifold of RP, since D ⊂ P is a face, and the existence of a retraction
follows from [56, Proposition 2.2] and [15, Lemma 2.13]. By Proposition 2.19 (a), fundamental group of RD
equals [RCD,RCD], which finishes the proof.

Remark 4.8. (1) For more on the combinatorics ofD and P4, and the hyperbolic structures on small covers
and real moment-angle manifolds over dodecahedron and 120-cell, see [6, 14, 37]. (2) Zhuravleva [59]
constructed a nontrivial triple Massey product in H∗(ZK) when K = KP is a nerve complex of an arbitrary
Pogorelov polytope P. The latter class includes all fullerenes and, in particular, the dodecahedron.

Now we turn to a discussion of Poincaré series of face rings and related topics.
In homological theory of local rings nontrivial Massey products in Tor-algebras TorS

∗ (R,k) play an
important role. Here, S is a polynomial ring, R = S/I is a monomial ring, and TorS

∗ (R,k) is the so called
Koszul homology of the local ring R, see [42].

Definition 4.9. Suppose k is a field. A face ring k[K] is called Golod (over k) if multiplication and all (triple
and higher) Massey products in Tor+

k[v1,...,vm]

(
k[K],k

)
vanish. If this holds over every field k, the complex K

is also called Golod.

This area of homological algebra dates back to the pioneering work of Golod [39], in which it was proved
that a local Noetherian commutative ring R is Golod, that is, the product and all Massey products in its
Koszul homology are trivial (k = R/I, I is the unique maximal ideal in R), if and only if the Poincaré series of
R is given by a rational function of a certain type. For a face ringk[K] and its Tor-algebra Tor∗,∗

k[v1,...,vm](k[K],k),
an analogous result was proved by Grbić and Theriault [41, Theorem 11.1].

Namely, the previous definition is equivalent to the following property of a Poincaré series of a face
ring.

Definition 4.10. A face ring k[K] is called Golod (over k) if the following identity for the Poincaré series of
its Yoneda algebra holds

P(Extk[K](k,k); t) =
(1 + t)m

1 −
∑

i, j>0 β−i,2 j(k[K])t−i+2 j−1
.

We denote the left hand side by P(k[K]; t), or simply, P(K; t), and call it the Poincaré series of k[K], or simply,
of K.

Remark 4.11. Note that the Poincaré series of the Yoneda algebra above (or, equivalently, the Poincaré series
of a face ring) acquires a topological interpretation in toric topology. Namely, there is an isomorphism of
graded (noncommutative) algebras if k is a field, see [18, Theorem 5.3.4]

Extk[K](k,k) � H∗(Ω(CP∞, ∗)K;k)

and thus
P(k[K]; t) = P(H∗(Ω(CP∞, ∗)K;k); t).
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Moreover, the following inequality holds.

Theorem 4.12. ([41, Theorem 11.1]) For any simplicial complex K there is an inequality

P(k[K]; t) ≤
t(1 + t)m

t − P(H̃∗(ZK;k); t)
.

The equality is obtained if and only if k[K] is Golod.

As a counterexample to an earlier claim by Berglund and Jöllenbeck, Katthän [44] constructed a simplicial
complex K such that all products of elements of positive degrees are trivial in Tor∗,∗

k[v1,...,vm](k[K],k), but
k[K] is not Golod having a nontrivial triple Massey product in its Koszul homology Tor∗,∗

k[v1,...,vm](k[K],k).
Furthermore, it was also shown in [44, Theorem 4.1] that a monomial ring R is Golod if all r-fold Massey
products vanish for all r ≤ max(2, reg(R) − 2).

On the other hand, finding a widest possible class of simplicial complexes K for which Golodness ofk[K]
is equivalent to vanishing of the cup product in H∗(ZK;k) remains a good question to look at. It follows
from [40, Theorem 4.6] that this property holds for all flag simplicial complexes K. Frankhuizen [34] has
recently proved that for a monomial ring R whose minimal free resolution is rooted, R is Golod if and only
if the product in TorS

∗ (R,k) is trivial.
We finish this section with a discussion on the Poincaré series of the Stanley-Reisner ring k[I] of

the boundary of icosahedron I. Here, we also compute the Poincaré series of the Pontryagin algebra
H∗(ΩZI;k). In what follows k denotes either a field, or the ring of integers Z.

Proposition 4.13. For the Poincaré series of k[I],

P(I; t) =
(1 + t)3

1 − 9t + 9t2 − t3 <
t(1 + t)m

t − P(H̃∗(ZI;k); t)
=

(1 + t)12

1 −Q(t)

where Q(t) = 36t2 + 160t3 + 315t4 + 300t5 + 124t6 + 124t7 + 300t8 + 315t9 + 160t10 + 36t11 + t14. Moreover, the
Pontryagin algebra H∗(ΩZI;Z) is torsion free and the following equality holds for its Poincaré series

P(H∗(ΩZI;k); t) =
1

(1 + t)9(1 − 9t + 9t2 − t3)
.

Proof. SinceD is a simple 3-dimensional polytope, using the Euler formula, one gets

f(D) = ( f0(D), 3 f0(D) − 6, 2 f0(D) − 4) = (12, 30, 20)

By definition,
h0t3 + h1t2 + h2t + h3 = (t − 1)3 + f0(t − 1)2 + f1(t − 1) + f2

which implies that h(D) = (1, 9, 9, 1). Applying [55, Proposition 9.5], the Poincaré series P(H∗(ΩZI;k); t) is
given by

1
(1 + t)m−n(1 − h1t + . . . + (−1)nhntn)

=
1

(1 + t)9(1 − 9t + 9t2 − t3)

since I = ∂D∗ is a flag simplicial complex.
Furthermore, by [55, (8.2)] there is an exact sequence of noncommutative algebras

1→ H∗(ΩZK;k)→ H∗(Ω(CP∞, ∗)K;k)→ Λ[u1, . . . ,um]→ 1

for any simplicial complex K, where k is a field or the ring of integers Z, and Λ[u1, . . . ,um] is the exterior
algebra on m generators of degree one. It follows that

P(I; t) = P(H∗(Ω(CP∞, ∗)I;k)) = P(H∗(Tm;k); t) · P(H∗(ΩZI;k); t)



Dj. Baralić et al. / Filomat 34:7 (2020), 2329–2356 2355

which gives the desired value of the Poincaré series of I.
The strong inequality in the statement follows from Theorem 4.12, since k[I] is not a Golod ring by

Theorem 4.6 (b). Explicit calculation shows that the Betti numbers vector ofZI is given by

β(ZI) = (1, 0, 0, 36, 160, 315, 300, 124, 124, 300, 315, 160, 36, 0, 0, 1).

It follows that P(H̃∗(ZI;k); t) = tQ(t) which implies the right hand side of the inequality in the statement.
Finally, the Pontryagin algebra H∗(ΩZI;Z) is torsion free by [40, Corollary 5.2]. This finishes the

proof.
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[5] Dj. Baralić, R. Živaljević, Colorful versions of the Lebesgue and KKM theorem, J. Comb. Theory A, 146 (2017) 295–311.
[6] E. Bartolo, S. Lopez de Medrano, M. T. Lozano, The dodecahedron: from intersections of quadrics to Borromean rings In: López,
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