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Abstract. Regarding the study of digital topological rough set structures, the present paper explores
some mathematical and systemical structures of the Marcus-Wyse (MW-, for brevity) topological rough set
structures induced by the locally finite covering approximation (LFC-, for brevity) space (R2,C) (see Proposition
3.4 in this paper), where R2 is the 2-dimensional Euclidean space. More precisely, given the LFC-space
(R2,C), based on the set of adhesions of points in R2 inducing certain LFC-rough concept approximations,
we systematically investigate various properties of the MW-topological rough concept approximations
(D−M,D

+
M) derived from this LFC-space (R2,C). These approaches can facilitate the study of an estimation of

roughness in terms of an MW-topological rough set. In the present paper each of a universe U and a target
set X(⊆ U) need not be finite and further, a covering C is locally finite. In addition, when regarding both an
M-rough set and an MW-topological rough set in Sections 3, 4, and 5, the universe U(⊂ R2) is assumed to
be the set R2 or a compact subset of R2 or a certain set containing the union of all adhesions of x ∈ X (see
Remark 3.6).

1. Introduction

Among several kinds of rough set structures induced by certain locally finite covering approximation
spaces in [4–6], the present paper mainly concerns the Marcus-Wyse (MW-, for short) topological rough
set structure [5, 6] which can facilitate the studies of object classifications and information geometry. To
make this work more effective, we need to use several kinds of tools involving digital topological rough
set structures. A recent paper [4] introduced the notion of locally finite covering approximation (LFC-, for
brevity) space (U,C) as a generalization of a (finite) covering approximation space. Further, for a subset X
of the universe R2, a neighborhood system M(X) [5] (or the so-called LFC-system) was established from a
locally finite covering C. Next, a paper [5] also established a quasi-discrete (or clopen) topology TM(X) on
U, generated by the system M(X) as a base. Then, a paper [5] further developed two types of LFC-rough
set structures such as an M-rough set operator (M∗,M∗) (see Definition 3.7 in this paper) and an MW-
topological rough set operator (D−M,D

+
M) (see Definition 3.10 in the paper). Besides, a paper [6] proposed

certain measures of roughness of the concept approximations (M∗,M∗) and (D−M,D
+
M). Additionally, it also

developed membership functions estimating roughness of these two concept approximations. Besides, it
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suggested several examples for explaining various properties of these operators and referred to certain
utilities of them which can be used in applied science including information geometry, computational
geometry, pattern recognition, finger print recognition, image processing, and so on.

In order to proceed with this work, we use various tools from rough set theory and topology, such as
typical Pawlak’s tools [13], granulations [14], neighborhood systems [10], related topologies, digitizations
[8, 9] associated with the MW-topology [3, 5, 11], and so on. By using these tools, the present paper continues
a series of studies of various properties associated with the concept approximations (M∗,M∗) and (D−M,D

+
M)

in [5]. The present paper concerns theoretical properties of an MW-topological rough set operator, such
as duality, limit conditions, comparability with union and intersection, increasingness w.r.t. set inclusion,
idempotency, and so on. Besides, the paper further studies some relationships between the two rough set
operators (M∗,M∗) and (D−M,D

+
M).

2. Preliminaries

Since the paper studies an M-rough set operator (M∗,M∗) and an MW-topological rough set operator
(D−M,D

+
M), let us recall some notions and terminology related to these tools. The MW-topological plane,

denoted by (Z2, γ), and the study of its properties includes the papers [3, 5, 8, 11]. In order to make the
present paper self-contained, we recall the MW-topology, as follows:

Definition 2.1. ([11]) The MW-topology on Z2, denoted by (Z2, γ), is induced by the set {Up | p ∈ Z2
} in

(2.1) as a base, where for each point p = (x, y) ∈ Z2

Up :=
{
{(x ± 1, y), p, (x, y ± 1)} if x + y is even, and
{p} : otherwise.

(2.1)

Regarding the further statement of a point in Z2, in this paper we call a point p = (x1, x2) double even
if x1 + x2 is an even number such that each xi is even, i ∈ {1, 2}; even if x1 + x2 is an even number such that
each xi is odd, i ∈ {1, 2}; and odd if x1 + x2 is an odd number. In addition, these points are shown like the
following symbols: The shape � means an even or a double even point, and • means an odd point in the
present paper (see Fig.1).

We say that a topological space (X,T) is locally finite if each point x(∈ X) has a finite neighborhood [12].
In addition, it turns out that (Z2, γ) is locally finite according to the property (2.1).

Let us now recall basic concepts in covering-based rough sets. Indeed, there are many types of covering-
based approximation spaces (U,C) with a finite cardinality of U [2, 15, 16]. The paper [1] introduced the
notion of covering approximation space, as follows: Let U be a nonempty universe of discourse and
C = {Ci |Ci , ∅,Ci ⊆ X, i ∈ M} a family of nonempty subsets of U. If

⋃
i∈M

Ci = U, then C is called a covering

of U. We say that an ordered pair (U,C) is a covering approximation space. In addition, let ∅ be the empty
set and for a set A ⊆ U, AC denotes the complement of A in U.

3. Adhesions of Eelements of an LFC-Space on R2

A recent paper [4] defined the notion of locally finite covering approximation (LFC-, for brevity) space
(U,C), where all related sets need not be finite, as follows:

Definition 3.1. ([4]) A covering C = {Ci |Ci ⊆ U,Ci , ∅, i ∈ M} of a set U is called locally finite if every point
x(∈ U) belongs only to a finite number of sets in C. We say that a covering approximation space (U,C) is
locally finite if C is locally finite, where U and M need not be finite.

As mentioned earlier, we note again that a “locally finite covering approximation space” is called an LFC-
space in the present paper. According to Definition 3.1, it is obvious that an LFC-space is a generalization
of a finite covering approximation space.

Motivated by these approaches, a recent paper [4] introduced the notion of neighborhood of x ∈ U and
an adhesion of x ∈ U for an LFC-space (U,C), as follows:
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Definition 3.2. ([4]) Let (U,C) be an LFC-space, where C = {Ci |Ci , ∅, i ∈ M} and M is the set of indices.
For any x ∈ U, the neighborhood of x is defined by

n(x) = ∩{Ci ∈ C | x ∈ Ci}, (3.1)

and the adhesion of x ∈ U is defined as

PCx = {y ∈ U | ∀Ci ∈ C(x ∈ Ci ⇔ y ∈ Ci)}. (3.2)

In (3.2), if there is no danger of confusion, we can omit the superscript C of PCx . In view of the above
neighborhood n(x) and the adhesion PCx in (3.1) and (3.2), it is obvious that whereas not every set {n(x) | x ∈ U}
is a partition of U [4], the set {Px | x ∈ U} clearly forms a partition of U. For each point x ∈ Z2(⊂ R2), we
obtain the sets n(x) and Px(⊂ R2) in (3.1) and (3.2) below according to the point x.

Let (U,C) be a covering approximation space and X(⊆ U) a nonempty set. Let us now propose a new
neighborhood system of U(⊆ R2) related to X(⊆ U), called M(X) (see Definition 3.7), derived from the
following LFC-space C of R2.

Definition 3.3. ([5]) For m,n ∈ Z, consider the sets Xi(⊆ R2), i ∈ {1, 2, 3, 4}, as follows (see Fig.3 of [6]):

X1 = (2m − 1.5, 2m + 1.5) × (2n − 1.5, 2n + 1.5);
X2 = [p1 − 0.5, p1 + 0.5] × [p2 − 0.5, p2 + 0.5],

where (p1, p2) ∈ {(2m ± 1, 2n ± 1)} ⊂ Z2;
X3 = (2m − 0.5, 2m + 2.5) × (2n − 0.5, 2n + 2.5); and
X4 := [p1 − 0.5, p1 + 0.5] × [p2 − 0.5, p2 + 0.5], where

(p1, p2) ∈ {(2m + 2, 2n + 2), (2m + 2, 2n), (2m, 2n + 2), (2m, 2n)} ⊂ Z2.

(Indeed, in Fig.1(2) of [5], the point with (2m + 1, 2n + 1) should be marked with (2m + 2, 2n + 1) instead.)
Further, consider the four points in R2, such as q1 = (2m − 0.5, 2n + 0.5), q2 = (2m − 0.5, 2n − 0.5), q3 =
(2m + 0.5, 2n + 0.5), q4 = (2m + 0.5, 2n − 0.5). Assume{

C1((2m, 2n)) = (X1 \ X2) ∪ {q1, q2, q3, q4}, and
C2((2m + 1, 2n + 1)) = X3 \ X4.

(3.3)

We then define the following LFC-space (R2,C), where

C = {C1((2m, 2n)),C2((2m + 1, 2n + 1)) |m,n ∈ Z}. (3.4)

Hereafter, (R2,C) means the LFC-space in (3.4).

Proposition 3.4. [5] Consider the LFC-space (R2,C). Then, for each point x := (x1, x2) ∈ Z2, Px is obtained, as
follows:

Px =



[x1 − 0.5, x1 + 0.5] × [x2 − 0.5, x2 + 0.5]
if x is a double even point;
[x1 − 0.5, x1 + 0.5] × [x2 − 0.5, x2 + 0.5] \ {(x1 ± 0.5, x2 ± 0.5)}
if x is an even point; and
(x1 − 0.5, x1 + 0.5) × (x2 − 0.5, x2 + 0.5)
if x is an odd point.

(3.5)

The shape of Px of (3.5) is shown in Fig 3 of [6]. For any element x(∈ R2), since both n(x) and Px
contains the element x, using these neighborhoods of x, we assume a reflexive neighborhood system of x.
For X ⊆ R2, this paper uses the neighborhood system (R2,M(X)) (see Definition 3.5 below in this paper)
inherited from the LFC-space (R2,C) [5]. Indeed, M(X) will contribute to the establishment of building
blocks as equivalence classes for the construction of the lower and upper approximations for an LFC-space.
Consequently, it is strongly used in establishing LFC-rough set structures (see Definition 3.7 below in the
present paper). Let us now define the following M(X) for the space X with finite or infinite cardinalities.
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Definition 3.5. ([5]) Given the LFC-space (R2,C) and a set X(⊆ R2), consider the set M1(X) = {Px | x ∈
U,Px ∩ X , ∅}. Then, a system (R2,M(X)) related to X is defined with

M(X) = {R2
\UX

} ∪M1(X), (3.6)

where UX =
⋃

Px∈M1(X)
Px. Hereafter, M(X) is said to be an LFC-system onR2, denoted by (R2,M(X)), inherited

from the given LFC-space (R2,C).

We observe that M1(X) is a neighborhood system of UX in which each point x(∈ UX) has only one
neighborhood of x [5].

Indeed, the LFC-system of Definition 3.5 is equivalent to a family of sets derived from the LFC-space
(U,C), where U = R2 or U is a compact plane or a big bounded subset of R2 containing the given target set
X. In this case we can represent (3.6) as M(X) = {U \UX

} ∪M1(X) [7]. Since each point x ∈ U belongs to one
of the element of M1(X), say Px, x ∈ UX or U \ UX, x ∈ U \ UX as in (3.6), we observe that the LFC-system
(U,M(X)) induces a topological neighborhood system of each point x ∈ U depending on the point x, as
follows (for the details, see Remark 3.1 of [7]);

N(x) := {Px} or {U \UX
}. (3.7)

Both the neighborhood system of (3.7) and the LFC-system (R2,M(X)) or (U,M(X)) play important roles in
developing the quasi-discrete (or clopen) topology on X(⊆ R2) derived from the topology generated by the
set M(X) as a base [5]. More precisely, given the LFC-space (R2,C), consider a set X(⊆ R2). Let TM(X) be
the topology on R2 generated by the set M(X) as a base. Then, (R2,TM(X)) is a clopen (or quasi-discrete)
topological space [5]. In view of the neighborhood system of (3.7), to sum up, we have the following:

Remark 3.6. (1) For a set X(⊆ R2) of Definition 3.5, as a further explanation of U mentioned above, we may
consider a universe U as R2 or a compact subset [l1, l′1] × [l2, l′2](! UX) or (l1, l′1) × (l2, l′2)(! UX), and so on,
where l1, l′1, l2, l

′

2 ∈ Z.
(2) Unlike the neighborhood system established in (3.7), in UX we may have another LFC-system of

x ∈ UX, denoted by (UX,M1(X)), and further, with the LFC-system (UX,M1(X)) we obtain a neighborhood
system of x ∈ UX in the following way:

N(x) := {Px}.

Based on the neighborhood system (U,M(X)), we introduce the following lower and upper approxima-
tions for the LFC-space (U,C).

Definition 3.7. ([5]) Given an LFC-space (U,C), consider a set X(⊆ U). We define

M∗(X) =
⋃

Px⊆X

Px and M∗(X) = ∪{Px |Px ∩ X , ∅}. (3.8)

If M∗(X) ,M∗(X), then we say that the pair (M∗(X),M∗(X)) is an M-rough set w.r.t. the LFC-space (U,C).

With an LFC-space (U,C), for a set X(⊆ U), it is obvious that M∗(X) ⊆ X ⊆ M∗(X) [5]. Motivated by the
typical Pawlak’s rough set theory, we call M∗(X) (resp. M∗(X)) the lower approximation (resp. the upper
approximation) of the set X w.r.t. the LFC-space (U,C).

Definition 3.8. ([5]) With an LFC-space (U,C), for a set X(⊆ U), we define the set

D−M(X) = {x ∈ Z2
|Px ⊆ X} (3.9)

as a subspace induced by the clopen topological space (U,TM(X)).
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Definition 3.9. ([5]) With an LFC-space (U,C), for a set X(⊆ U), we define the set

D+
M(X) = {x ∈ Z2

|Px ∈M1(X)} (3.10)

as a subspace induced by the clopen topological space (U,TM(X)).

In view of Definitions 3.8 and 3.9, we observe that the subspaces D−M(X) and D+
M(X) of (3.9) and (3.10)

are obviously discrete topological spaces [5].

Definition 3.10. ([5]) Consider an LFC-space (U,C) and a set X(⊆ U). We say that the pair (D−M(X),D+
M(X))

is an MW-topological rough set w.r.t. the LFC-space if D−M(X) , D+
M(X).

For the LFC-space (U,C) of Proposition 3.4 and X ⊆ U, we have the following [5]:

D−M(X) ⊆ X ∩Z2
⊆ D+

M(X).

4. Characterizations of the MW-Topological Rough Approximation Operators

Let us now explore certain properties of the concept approximations (D−M,D
+
M).

Lemma 4.1. For an LFC-space (U,C) and subsets X,Y of U with X ⊆ Y,

D−M(X) ⊆ D−M(Y) and D+
M(X) ⊆ D+

M(Y). (4.1)

Proof. Due to the property (3.5) and Definition 3.7, for X ⊆ Y ⊆ U, we obtain

M∗(X) ⊆M∗(Y) and M∗(X) ⊆M∗(Y). (4.2)

Further, due to Definitions 3.7, 3.8, and 3.9, we obtain(1) M∗(X) ∩Z2 = D−M(X), and

(2) M∗(X) ∩Z2 = D+
M(X).

(4.3)

Due to the properties (4.2) and (4.3), the proof is completed.

In view of the property (4.1), we can represent the MW-topological rough set operators D−M,D
+
M, as

follows: The functions
D−M,D

+
M : P(U)→ P(Z2)

are defined as
D−M(X) = M∗(X) ∩Z2 and D+

M(X) = M∗(X) ∩Z2

w.r.t. the LFC-space (U,C).

Let us now investigate various properties characterizing the concept approximations (D−M,D
+
M). Accord-

ing to Definitions 3.7, 3.8 and 3.9, and Lemma 4.1, we now list the properties of the concept approximations
(D−M,D

+
M) which are of interest in the rough set theory for LFC-spaces. Indeed, the following properties play

essential roles in MW-topological rough set theory.

Proposition 4.2. For an LFC-space (U,C) and sets X,Y(⊆ U), the following hold:
(1) D−M(X) ⊆ X ∩Z2

⊆ D+
M(X).

(2) D−M(∅) = D+
M(∅) = ∅ and D−M(U) = D+

M(U) = Z2
∩U.

(3) D+
M(X ∪ Y) = D+

M(X) ∪D+
M(Y).

(4) D−M(X ∪ Y) ⊇ D−M(X) ∪D−M(Y).
(5) D−M(X ∩ Y) = D−M(X) ∩D−M(Y).
(6) D−M(X) ⊆ D−M(Y) and D+

M(X) ⊆ D+
M(Y) whenever X ⊆ Y.

(7) D+
M(X ∩ Y) ⊆ D+

M(X) ∩D+
M(Y).

(8) D−M(XC) = (D+
M(X))C (duality) and D+

M(XC) = (D−M(X))C.
(9) D−M(D−M(X)) , D−M(X) and D+

M(D−M(X)) = D−M(X).
(10) D+

M(D+
M(X)) = D+

M(X) , D−M(D+
M(X)).
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Proof. In view of Definitions 3.5, 3.8, 3.9, and Lemma 4.1, the proofs of (1), (2), and (6) are straightforward.
Thus it suffices to prove the properties (3), (4), (5), (7), (8), (9), and (10).

(3) Due to the properties (4.1), (4.2) and (4.3), we clearly have the inclusion D+
M(X)∪D+

M(Y) ⊆ D+
M(X∪Y).

Next, we now prove D+
M(X ∪ Y) ⊆ D+

M(X) ∪ D+
M(Y). Assume an arbitrary element t ∈ D+

M(X ∪ Y) =

M∗(X ∪ Y) ∩Z2. Then, there is Pt ∈M1(X ∪ Y) with t ∈ Z2 so that

Pt ∩ (X ∪ Y) , ∅
⇔ (Pt ∩ X) ∪ (Pt ∩ Y) , ∅
⇔ (Pt ∩ X) , ∅ or (Pt ∩ Y) , ∅
⇔ t ∈M∗(X) or t ∈M∗(Y)

⇔ t ∈M∗(X) ∩Z2 or t ∈M∗(Y) ∩Z2

⇔ t ∈ D+
M(X) ∪D+

M(Y),

which completes the proof.
(4) Due to the property (4.1), we obviously have the inclusion

D−M(X ∪ Y) ⊇ D−M(X) ∪D−M(Y).

Next, we prove that D−M(X ∪ Y) need not be a subset of D−M(X) ∪ D−M(Y). For instance, with an LFC-space
(U,C), where UV,UW

⊂ U(see Remark 3.6), letV = {(x, y) ∈ R2 : |x| + |y| � 1}, and

W = {(x, y) ∈ R2 : |x| + |y| = 1} ∪ {(x, y) ∈ R2 : |x − 1| + |y − 1| ≤ 1}.

Whereas
D−M(V ∪W) = {(0, 0), (1, 1)}

we obtain
D−M(V) = ∅ and D−M(W) = {(1, 1)},

which completes the proof.
(5) Let us firstly prove the inclusion D−M(X) ∩ D−M(Y) ⊆ D−M(X ∩ Y). Namely, take any element t ∈

D−M(X) ∩D−M(Y). Then, we obtain
t ∈ D−M(X) = M∗(X) ∩Z2 and t ∈ D−M(Y)

⇒ t ∈ (X ∩ Y) ∩Z2 such that t ∈ Pt ⊆ X ∩ Y

⇒ t ∈M∗(X ∩ Y) ∩Z2

⇒ t ∈ D−M(X ∩ Y),

which completes the proof.
The proof of the converse is straightforward.
(7) Due to the property (4.1), it suffices to prove that D+

M(X)∩D+
M(Y) need not be a subset of D+

M(X ∩ Y).
To be precise, we prove that not every t ∈ D+

M(X) ∩ D+
M(Y) satisfies t ∈ D+

M(X ∩ Y). For instance, with an
LFC-space (U,C), let X = {(x, y) ∈ R2 : |x| + |y| ≤ 2} and

Y = {(x, y) ∈ R2 : |x − 2| + |y − 2| � 2}.

According to the property (3.10), we obtainD+
M(X) = [−1, 1]2

Z ∪ {(±2, 0), (0,±2)} and

D+
M(Y) = [1, 3]2

Z ∪ {(0, 2), (4, 2), (2, 0), (2, 4)}.
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Since X ∩ Y = ∅, whereas D+
M(X ∩ Y) = ∅, we have

D+
M(X) ∩D+

M(Y) = {(0, 2), (1, 1), (2, 0)} , ∅,

which completes the proof.
(8) Based on an LFC-space (U,C) and any set X(⊆ U), take an arbitrary element t ∈ D−M(XC) = M∗(XC)∩Z2.

Then, consider the following partition of U (see the property (3.6)),
in the case UX , U, {Px,U \UX

|Px ∈M1(X),UX =
⋃

Px∈M1(X)

Px}, and

in the case UX = U, {Px | Px ∈M1(X)}.

According to Definition 3.5 and the above partition of U (see the property (3.6)), we observe U \ UX =⋃
Px⊂(UX)C

Px. Therefore, by Definitions 3.5 and 3.7, we have the following:

(Case 1) in the case UX , U,

∀x ∈M∗(XC)⇔ x <
⋃

Px∈M1(X)

Px ⇔ ∀x ∈ [M∗(X)]C.

(Case 2) in the case UX = U, according to Definition 3.7,

M∗(XC) = ∅ and M∗(X) = U.

Thus, we have
M∗(XC) = [M∗(X)]C. (4.4)

Hence, according to the property (4.4), we obtain the following:

t ∈M∗(XC) ∩Z2
⇔ t <M∗(X) ∩Z2

⇔ t ∈ [M∗(X) ∩Z2]C. (4.5)

We can represent the property (4.5), as follows:

t ∈ D−M(XC)⇔ t < D+
M(X)⇔ t ∈ (D+

M(X))C,

which completes the proof.
(9) According to the property (4.3), although D−M(X) need not be an empty set, D−M(D−M(X)) is an empty

set. Next, according to Definition 3.9, we always have D+
M(D−M(X)) = D−M(X).

(10) According to Definition 3.9, we obtain D+
M(D+

M(X)) = D+
M(X). However, according to Definition 3.8,

D−M(D+
M(X)) is always an empty set.

Owing to the properties (1), (2), (9), and (10) of Proposition 4.2, we obtain the following:

Corollary 4.3. (1) D−M is not an interior operator.
(2) D+

M is not a closure operator.

5. Further Properties of an M-Rough Set and an MW-Topological Rough Set

For the LFC-space (U,C) (see Remark 3.6), it is obvious that for two sets X,Y ⊂ U the two identities
M∗(X) = M∗(Y),M∗(X) = M∗(Y) need not imply X′ = Y′, where X′ = X ∩Z2 and Y′ = Y ∩Z2.

Further, the nonidentity X , Y need not imply

M∗(X) ,M∗(Y),M∗(X) ,M∗(Y).

According to Definition 3.7, we obtain the following:
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Theorem 5.1. Consider the LFC-space (R2,C) and sets X and Y of R2 such that X ∩ Z2 = Y ∩ Z2. Then M∗(X)
(resp. M∗(X)) need not be equal to M∗(Y) (resp. M∗(Y)).

Proof. As an example, with the LFC-space (R2,C) in (3.4), consider two sets X := [−2.3, 2.8] × [0.1, 2.4] and
Y := [−2.7, 2.3] × [0.2, 2.3] in Fig.1. Whereas X ∩Z2 = Y ∩Z2 = [−2, 2]Z × [1, 2]Z, we obtain

M∗(X) = [−1.5, 2.5) × [0.5, 1.5] \ X1,

where X1 := [(−0.5, 0.5) ∪ (1.5, 2.5)] × {0.5, 1.5} (see (a) of Fig.1),
M∗(X) = [−2.5, 3.5] × [−0.5, 2.5] \ X2

where X2 := [[(−1.5,−0.5) ∪ (0.5, 1.5) ∪ (2.5, 3.5)] × {−0.5, 2.5}]
∪ [{−2.5} × (0.5, 1.5)] ∪ [{3.5} × (−0.5, 0.5) ∪ (1.5, 2.5)] (see (b) of Fig.1),
M∗(Y) = (−2.5, 1.5] × [0.5, 1.5] \ Y1,

where Y1 := [(−2.5,−1.5) ∪ (−0.5, 0.5)] × {0.5, 1.5} (see (c) of Fig.1), and,
M∗(Y) = [−3.5, 2.5] × [−0.5, 2.5] \ Y2, where
where Y2 := ([(−3.5,−2.5) ∪ (−1.5,−0.5) ∪ (0.5, 1.5)] × {−0.5, 2.5})
∪ ({−3.5} × [(−0.5, 0.5) ∪ (1.5, 2.5)]) ∪ [{2.5} × (0.5, 1.5)] (see (d) of Fig.1),

which completes the proof.
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Figure 1: Configuration of the concept approximations of X and Y: (a) M∗(X), (b) M∗(X), (c) M∗(Y), and (d) M∗(Y).

In view of the property (4.3), based on Remark 3.6, we obtain the following:

Corollary 5.2. Consider an LFC-space (U,C) and sets X and Y of U such that X∩Z2 = Y∩Z2. Then D−M(X) (resp.
D+

M(X)) need not be equal to D−M(Y) (resp. D+
M(Y)).

Motivated by Theorem 5.1, we may pose the following query. Under what conditions are the rough
approximations with respect to X and Y equal in Theorem 5.1?
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Theorem 5.3. Let us consider two subsets X,Y in an LFC-space (U,C) such that X ∩Z2 = Y ∩Z2 and M∗(X) ,
∅ , M∗(Y). If there are no elements t1, t2 ∈ Z2 such that Pt1 ⊆ X and Pt1 * Y, and Pt2 ⊆ Y and Pt2 * X, then
M∗(X) = M∗(Y), i.e. D−M(X) is equal to D−M(Y). The converse holds.

Before proving this theorem, we need to mention the condition M∗(X) , ∅ ,M∗(Y). In the case M∗(X) = ∅
or M∗(Y) = ∅, the assertion is trivial.

Proof. (⇒) With the hypothesis, in case Pt1 ⊆ X, we should have Pt1 ⊆ Y and further, in the case Pt1 ⊆ Y, we
are required to have Pt1 ⊆ X. Hence, it is obvious that if Pt1 ⊆ X, then Pt1 ⊆ X ∩ Y and further, if Pt2 ⊆ Y,
then Pt2 ⊆ X ∩ Y, which implies that M∗(X) = M∗(Y). In addition, by the property (4.3), D−M(X) is prove to
be equal to D−M(Y).

(⇐) With the hypothesis, consider an arbitrary element t′ ∈ M∗(X)(= M∗(Y)). Then, there are elements t
in X ∩Z2 and Y ∩Z2 such that t′ ∈ Pt ⊆ M∗(X ∩ Y). Therefore, there are no elements t1, t2 ∈ Z2 such that
Pt1 ⊆ X and Pt1 * Y, and Pt2 ⊆ Y and Pt2 * X.

As referred to in Theorem 5.1, using a method similar to Theorem 5.3, we observe the following:

Remark 5.4. Consider the sets X and Y in the LFC-space (R2,C) in Fig.1. Whereas X ∩ Z2 = Y ∩ Z2,
comparing M∗(X)(see Fig.1(b)) and M∗(Y)(see Fig.1(d)), we obtain

D+
M(X) , D+

M(Y).

Motivated by Remark 5.4, let us now explore the condition making the rough approximations M∗(X)
and M∗(Y) with respect to X and Y equal in Theorem 5.1.

Theorem 5.5. Let us consider two subsets X,Y in an LFC-space (U,C) such that X ∩Z2 = Y ∩Z2. Let B = {t ∈
Z2
|Pt ∩ X , ∅} , ∅ and C = {t ∈ Z2

|Pt ∩ Y , ∅} , ∅. Then we obtain the following:
B = C if and only if M∗(X) = M∗(Y), i.e. D+

M(X) is equal to D+
M(Y)

Before proving this theorem, we strongly need to recall that the universe U of this theorem is the set R2

or a compact subset of R2 containing the sets UX and UY of Definition 3.5 (see Remark 3.6). In particular,
in case B = ∅ = C, the assertion is trivially proved.

Proof. If B = C, we obviously obtain the identity M∗(X) = M∗(Y).
Conversely, with the hypothesis, consider any element z ∈ M∗(X)(= M∗(Y)). Then, since each of M∗(X)

and M∗(Y) is not empty, there is an element w ∈ Z2 such that Pw ∩ X , ∅ and Pw ∩ Y , ∅. Further, for
any element w ∈ B we obtain w ∈ C and further, for any element w ∈ C we obtain w ∈ B, which implies
B = C.

6. Conclusions and a Further Work

We have explored theoretical properties of MW-digital topological rough set structures (or MW-rough
topological concept approximations). We can use these results in the fields of pattern recognition, image
classifications, and so on. Particularly, it turns out that the function D−M is not an interior operator and
D+

M is not a closure operator either, which can characterize the MW-digital topological rough concept
approximations. Based on this approach, we can try to establish certain new LFC-rough set structures in
Rn,n ∈N with the following issues.
• Accuracies of various types of LFC-rough sets.
• Extensions of the utilities of LFC-rough sets.
• Developing new topologies on Zn or Rn with a locally finite topology.
• After developing efficient rough set structures, we can apply them to the field of object classifications

from the viewpoint mathematical morphology.
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In addition, based on the MW-rough topological concept approximations, various types of rough mem-
bership functions can be considered. As a further work, based on the obtained results in this paper, we
can further study some of the following: Topological data analysis, geographical modeling, finger-print
recognition, establishments of new types of rough set structures, and so forth.
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