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Abstract. The main aim of this paper is to consider the proximal point method for solving multiobjective
optimization problem under the differentiability, locally Lipschitz and quasi-convex conditions of the
objective function. The control conditions to guarantee that the accumulation points of any generated
sequence, are Pareto critical points are provided.

1. Introduction

Let I := {1, ...,m}, Rm
+ = {x ∈ Rm : x j ≥ 0, j ∈ I}, and Rm

++ = {x ∈ Rm : x j > 0, j ∈ I}. For y, z ∈ Rm, (z � y
or y � z) means that z − y ∈ Rm

+ , and (z � y or y ≺ z) means that z − y ∈ Rm
++. By using these relations, we

consider the multiobjective minimization problem as

min
x∈Rn

F(x), (1)

where F : Rn
→ Rm with,

F(x) := ( f1(x), ..., fm(x)), for each x ∈ Rn.

Multiobjective optimization is the process of simultaneously optimizing two or more real-valued objec-
tive functions. It is usually hard to find an optimal solution that satisfies all objectives from the mathematical
point of view (i.e., there is no ideal minimizer), and so we consider the following concepts of the solution:
a point x∗ ∈ Rn is called

(i) Pareto optimal point of F, if there exists no x ∈ Rn such that F(x) � F(x∗) with F(x) , F(x∗).

(ii) weak Pareto optimal point of F, if there exists no x ∈ Rn such that F(x) ≺ F(x∗).
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It is clear that a Pareto optimal point is also a weak Pareto optimal point but the converse is not true. These
types of solution concepts have applications in the economy, industry, agriculture, and other fields, see [15].

Many authors introduced various algorithms for solving the problem (1). Bonnel et al. [7] proved the
convergence of the proximal point method of problem (1) for a weak Pareto solution of a multiobjective
optimization problem. Bello Cruz et al. [3], considered the projected gradient method for solving the prob-
lem of finding a Pareto optimal point of a quasiconvex multiobjective function. Da Cruz Neto et al. [11],
extended the classical subgradient method from real-valued minimization to multiobjective optimization
for solving quasiconvex nondifferentiable unconstrained multiobjective optimization problems. Chen et
al. [10] proposed a new proximal point algorithm by using auxiliary principle technique, based on decom-
position method for computing a weakly efficient solution of the constrained multiobjective optimization
problem without assuming the nonemptiness of its solution set.

It is well known that multiobjective optimization problems are also solved by using scalarization
technique [8, 12–14]. Scalarization means that the problem is converted into a single(scalar) or a family
of single objective optimization problems. In this direction, the adaptive problem becomes a real-valued
objective function, possibly depending on the chosen parameters. In 2010, Gregorio and Oliveira [16] proved
the convergence of the proximal point method by using a logarithmic quadratic proximal scalarization
method. Later, Apolinario et al. [1] developed an exact linear scalarization proximal point algorithm to
solve the problem (1). In 2014, Bento et al. [4] introduced the following nonlinear scalarized proximal
iteration (BCS) for solving the multiobjective optimization problem by

xk+1 ∈ arg minx∈Rn 1

(
F(x) + IΩk (x)e +

λk

2
‖x − xk‖

2e
)
, (2)

where Ωk := {x ∈ Rn : F(x) � F(xk)}, {λk} is a bounded sequence, IΩk denotes the indicator function of Ωk,
e := (1, ..., 1) ∈ Rm and 1 : Rm

→ R is defined as

1(y) := max
i∈I
〈y, ei〉, for each y ∈ Rm, (3)

where ei = (0, ..., i, ..., 0) is the canonical base of the space Rm. It is well known that the scalar function 1
equals to the following nonlinear scalarization function

1(y) = inf{t ∈ R : te ∈ y +Rm
+ }, for each y ∈ Rm,

(see [19]). It is also worth to point out that the function 1 fulfills the following properties:

1(x + αe) =1(x) + α, 1(tx) = t1(x), x ∈ Rm, α ∈ R, t ≥ 0.
x � y =⇒ 1(x) ≤ 1(y), x, y ∈ Rm.

(4)

By using these concepts, Bento et al. [4] proved that under the continuously differentiability of objective
functions, the sequence generated by the algorithm (BCS) converges to a Pareto critical point. Note that, in
the (BCS) algorithm, if xk = xk+1, then the algorithm stops to a Pareto critical point.

In the present paper, we will continue the study the (BCS) algorithm but under the weaker assumptions
of differentiable and locally Lipschitz properties of the considered objective function instead of continuously
differentiable assumptions. We show that under these assumptions, the method is still well defined and that
the accumulation points of any generated sequence, if any, are Pareto critical point for the multiobjective
function. Full convergence of the sequence generated by the algorithm (BCS) is also considered.

2. Preliminaries

In this section, we present some basic results and definitions. We say that a real valued function
f : Rn

→ R∪ {+∞} is lower semicontinuous function at a point x̂ ∈ Rn if for all sequence {xk} ⊂ R
n such that

lim
k→+∞

xk = x̂, we obtain that

f (x̂) ≤ lim infk→+∞ f (xk).
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For a closed set C ⊂ Rn, it is well known that the indicator function of C, IC : Rn
→ R ∪ {+∞} is a lower

semicontinuous function.
The domain of f , denoted by dom f , is the subset of Rn on which f has a finite values. A function f is

said to be proper when dom f , ∅. For a proper function f , we say that f is locally Lipschitz at x ∈ dom f if
there exist positive real numbers εx and Lx such that

‖ f (z) − f (y)‖ ≤ Lx‖z − y‖, ∀z, y ∈ B(x, εx) ∩ dom f ,

where B(x, εx) := {y ∈ Rn : ‖x − y‖ < εx}. We say that f is locally Lipschitz if f is locally Lipschitz for all
x ∈ dom f .

Next, we remind Fréchet and Mordukovich subdifferential concepts.

Definition 2.1. Let f be a lower semicontinuous function. The Fréchet subdifferential of f at x ∈ Rn is defined by

∂̂ f (x) =


{
x∗ ∈ Rn : lim inf

y→x,y,x

f (y) − f (x) − 〈x∗, y − x〉
‖y − x‖

≥ 0
}
, i f x ∈ dom f ,

∅, i f x < dom f .

It was pointed out that the Fréchet subdifferential is not completely satisfactory in optimization, since ∂̂ f (x)
might be empty-valued at points of particular interest (see [6] for more information), and this justifies the
choice of the following subdifferential:

Definition 2.2. Let f be a lower semicontinuous function. The Mordukovich-subdifferential of f at x ∈ Rn is defined
by

∂ f (x) :=
{
v ∈ Rn : ∃(xk, vk) ∈ Graph(∂̂ f ) with (xk, vk)→ (x, v), f (xk)→ f (x)

}
,

where Graph(∂̂ f ) :=
{
(y,u) ∈ Rn

×Rn : u ∈ ∂̂ f (y)
}
.

We can see that ∂̂ f (x) ⊂ ∂ f (x). In the particular case, when f is differentiable at x ∈ Rn, we have
∂̂ f (x) = ∂ f (x) = {∇ f (x)}. If f is convex, then both subdifferentials ∂̂ f (x) and ∂ f (x) coincide with the
usual subdifferential for each x ∈ dom f . Note also that the necessary (but not sufficient) condition for
x ∈ intdom f to be a minimizer of f is

0 ∈ ∂ f (x). (5)

A point x ∈ Rn satisfying the above inclusion (5) is called limiting-critical or simply critical point.

Next, we recall the concept of normal cone on a convex set for a function f .

Definition 2.3. Let C ⊂ Rn be a nonempty convex set. Then for each x ∈ C, the normal cone is defined by

NC(x) := {v ∈ Rn : 〈v, y − x〉 ≤ 0, y ∈ C}. (6)

Remark 2.4. (i) For nonempty closed and convex set C ⊂ Rn, we have ∂IC(x) = NC(x).
(ii) For a given lower semicontinuous function h : Rn

→ R and a nonempty, closed and convex subset C ⊂ Rn, if
f = h + IC, it follows that f is a proper lower semicontinuous function with dom f = C. Then the first order
optimality condition takes the following form:

0 ∈ ∂h(x) + NC(x), (7)

see ([22], Theorem 8.5).
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Now, we consider a multiobjective mapping F : Rn
→ Rm. We say that F has a directional derivative at

x ∈ Rn in the direction of v ∈ Rn if

DvF(x) = lim
t→0

F(x + tv) − F(x)
t

.

For a differentiable function F, we denote the jacobian of F at x ∈ Rn by

JF(x) := (∇ f1(x), ...,∇ fm(x)),

and the image of the jacobian of F at a point x ∈ Rn by

Im(JF(x)) := {JF(x)v = (〈∇ f1(x), v〉, ..., 〈∇ fm(x), v〉), v ∈ Rn
}. (8)

If F is differentiable then DvF(x) = JF(x)v.
The first order optimality condition for problem (1) is given by

x ∈ Rn, Im(JF(x)) ∩ (−Rm
++) = ∅. (9)

In general, (9) is necessary, but not sufficient condition, for optimality. A point x ∈ Rn satisfying (9) is called
a Pareto critical point (see, for instance, [19]).

The following propositions are important in this paper.

Proposition 2.5. Let fi : Rn
→ R be locally Lipschitz continuous at x ∈ Rn for all i ∈ {1, ...,m}. If h : Rn

→ R is
defined by:

h(x) = max
1≤i≤m

fi(x), for each x ∈ Rn,

then, h is locally Lipschitz continuous function and

∂h(x) = conv{∂ fi(x) : i ∈ I(x)}, for each x ∈ Rn (10)

where “conv” denotes the convex hull of a set and

I(x) := {i ∈ I : fi(x) = h(x)}.

Proof. See ([20], Theorem 3.46(ii)).

Proposition 2.6. Let f1, f2 : Rn
→ R be functions such that f1 is locally Lipschitz continuous at x̄ ∈ Rn while f2 is

proper lower semicontinuous with f2(x̄) finite. Then,

∂( f1 + f2)(x̄) ⊂ ∂ f1(x̄) + ∂ f2(x̄).

Proof. See([22], page 431).

Proposition 2.7. Let f : Rn
→ R ∪ {+∞} be a proper locally Lipschitz function and {yk

} ⊂ dom f a bounded
sequence. If {zk

} is a sequence such that zk
∈ ∂ f (yk), then {zk

} is bounded.

Proof. The proof follows by combining ([22], Theorem 9.13 and Proposition 5.15) for S = ∂ f and B = {yk
}.

Remark 2.8. In Proposition 2.7, if we take {yk =: x̂ ∈ Rn
} and {zk

∈ ∂ f (yk)}, then {zk
} ⊂ Rn is bounded. So it has a

convergent subsequence and consequently ∂ f (x̂) is relatively compact.

We need the following in the sequel:

Definition 2.9. [19] Let F : Rn
→ Rm be a multiobjective mapping.



F. Amir et al. / Filomat 34:7 (2020), 2367–2376 2371

• F is called convex iff for every x, y ∈ Rn, the following holds:

F((1 − t)x + ty) � (1 − t)F(x) + tF(y), t ∈ [0, 1].

• F is called quasi-convex iff for every x, y ∈ Rn, the following holds:

F((1 − t)x + ty) � sup{F(x),F(y)}, t ∈ [0, 1],

where the supremum is considered coordinatewise.

• F is called pseudo-convex iff F is differentiable and, for every x, y ∈ Rn, the following holds:

F(y) ≺ F(x) =⇒ JF(x)(y − x) ≺ 0.

Remark 2.10. Note that F is convex (resp. quasi-convex) iff F is componentwise convex (resp. quasi-convex), see
Definition 6.2 and Corollary 6.6 of ([19], pages 29 and 31), respectively. It is easy to see that if F is convex, it is also
quasi-convex, and the reciprocal is clearly false. On the other hand, if F is componentwise pseudo-convex, then F is
pseudo convex, although the reciprocal is false.

We need the following propositions in our proofs.

Proposition 2.11. (see [5]) Assume that F : Rn
→ Rm is differentiable. Then F is convex function if, only if, for

every x, y ∈ Rn,

JF(x)(y − x) � F(y) − F(x). (11)

Proposition 2.12. (see [5]) Let F : Rn
→ Rm be differentiable. Then F is quasi-convex function if, only if, for every

x, y ∈ Rn,

F(y) ≺ F(x) =⇒ JF(x)(y − x) � 0. (12)

Remark 2.13. If F is differentiable, then from the characterization (11), it follows that convexity is a sufficient
condition for pseudo-convexity. On the other hand, from the characterization (12), we obtain that pseudo-convex
functions are quasi-convex. Note that the reciprocal, in both the cases, is false, (see, [4], Remark 3.3).

The next proposition shows that under pseudo-convexity, criticality is equivalent to weak optimality.

Proposition 2.14. (see [5]) Let F : Rn
→ Rm be a pseudo-convex function and x ∈ Rn. Then x is a weak Pareto

optimal point of F if and only if

Im(JF(x)) ∩ (−Rm
++) = ∅.

In the next section, we consider the proximal point algorithm for multiobjective optimization, which
was introduced by Bento et al. [4]. We show that under some weaker assumptions, which were assumed
in [4], the sequence generated by the proximal iteration (BCS) terminates at a Pareto critical point.

3. Main Results

In order to provide the convergence of the algorithm (BCS), we consider the following assumptions.

Assumption 1. There exists i0 ∈ I such that fi0 : Rn
→ R is bounded below.

Assumption 2. For all i ∈ I, fi is locally Lipschitz.

Assumption 3. F is differentiable.
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Assumption 4. lim inf
k→+∞

λk > 0.

Remark 3.1. (i) By following the proof as presented in [4], under Assumption 1, we obtain that the Algorithm
defined by the iterative step (BCS) is well-defined.

(ii) The main improvement of the presented work and [4], is that we consider the differentiability and locally Lipschitz
properties of the objective function F instead of a continuously differentiable property, (see Assumptions (2) and
(3)).

We start with the following lemmas.

Lemma 3.2. Assume that Assumptions 1 and 4 hold. Then the sequence {xk} generated by Algorithm (BCS) is
bounded.

Proof. For each k ∈N ∪ {0}, define φk : Rn
→ R ∪ {+∞} by

φk(x) := 1
(
F(x) + IΩk (x)e +

λk

2
‖x − xk‖

2e
)
, for each x ∈ Rn. (13)

It follows that xk+1 ∈ arg minx∈Rn φk(x). Then, from the definition of φk, we get

1(F(xk+1)) + IΩk (xk+1) +
λk

2
‖xk+1 − xk‖

2
≤ 1(F(xk)) + IΩk (xk) +

λk

2
‖xk − xk‖

2.

Thus, by the definition of IΩk (.), it follows that

λk

2
‖xk+1 − xk‖

2
≤ 1

(
F(xk)

)
− 1

(
F(xk+1)

)
, k ∈N ∪ {0} (14)

Hence, by xk , xk+1, k ∈N, we deduce
λk

2
‖xk+1 − xk‖

2 > 0 and so

1
(
F(xk+1)

)
< 1

(
F(xk)

)
,

thus by Assumption 1, we can assert that {1(F(xk))} is a convergent sequence.
Also, by taking the sum of inequality (14), we obtain

l∑
k=0

λk

2
‖xk+1 − xk‖

2
≤

l∑
k=0

(
1
(
F(xk)

)
− 1

(
F(xk+1)

))
,

= 1
(
F(x0)

)
− 1

(
F(xl+1)

)
.

This implies that the series
∑ λk

2
‖xk+1 − xk‖

2 is convergent. Using this one, in view of Assumption 4, we

have
∑+∞

k=0 ‖xk+1 − xk‖
2 < +∞. Subsequently, it follows that {xk} is a bounded sequence. This completes the

proof.

Lemma 3.3. Assume that the Assumptions 1, 2, 3 and 4 are true. If x̄ is a cluster point of {xk} then x̄ is a Pareto
critical point, provided that Ωk is a convex set for each k ∈N ∪ {0}.

Proof. Observe that, by Assumption 2, we have Ωk is a closed subset ofRn, for each k ∈N∪ {0}. Next, since
Ωk+1 ⊂ Ωk, for each k ∈N ∪ {0} and x̄ is a cluster point of {xk}, we can show that

x̄ ∈ ∩+∞
k=0Ωk =: Ω. (15)

This shows that Ω is a nonempty, closed and convex subset of Rn.
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Now, we will conclude the lemma by contradiction. That is we will assume that x̄ is not a Pareto critical
point. It would follow that there exists v ∈ Rn such that

JF(x̄)v ≺ 0. (16)

Subsequently, there is δ > 0 such that

F(x̄ + sv) ≺ F(x̄), for each s ∈ (0, δ).

This implies x̄ + sv ∈ Ωk, for k ∈N ∪ {0} and s ∈ (0, δ).
On the other hand, since xk+1 ∈ arg minx∈Rn φk(x), then by (4) and (5), we obtain

0 ∈ ∂
(
1(F(·)) + IΩk (·) +

λk

2
‖ · −xk‖

2
)(

xk+1

)
, for each k ∈N ∪ {0}.

Thus, from (7), it follows that

0 ∈ ∂
(
1(F(·)) +

λk

2
‖ · −xk‖

2)
)
(xk+1) + NΩk (xk+1), for each k ∈N ∪ {0}.

Note that, from Assumption 2 together with Proposition 2.5, we know that the function 1 ◦ F is locally

Lipschitz. Thus, by applying Proposition 2.6 with f1(·) = 1(F(·)) and f2(·) =
λk

2
‖· − xk‖

2, the last inlusion
becomes:

0 ∈ ∂(1 ◦ F)(xk+1) + λk(xk+1 − xk) + NΩk (xk+1), for each k ∈N ∪ {0}.

Subsequently, there exist sequences {wk}, {vk}, with wk+1 ∈ ∂(1 ◦ F)(xk+1) and vk+1 ∈ NΩk (xk+1) such that

0 = wk+1 + λk

(
xk+1 − xk

)
+ vk+1, for each k ∈N ∪ {0}. (17)

As 1 ◦ F is locally Lipschitz, then by applying Proposition 2.7 with yk = xk, f = 1 ◦ F and zk = wk, for
each k ∈N∪ {0}, obey the fact that {xk} is a bounded sequence we obtain that the sequence {wk} is bounded.
Subsequently, by (17), {vk} is also a bounded sequence.

Next, let {xk j } be a subsequence of {xk}, which converges to x̄. Moreover, let w̄ (resp. v̄) be a cluster point
of {wk} (resp. of {vk}). We can assume without loss of generality that the subsequences {wk j } of {wk} and {vk j }

of {vk} converge, respectively, to w̄ and v̄ as j goes to infinity. By replacing k by k j in (17), letting j goes to
infinity and taking into account that lim j→+∞ λk j

(
xk j+1 − xk j

)
= 0, we obtain:

w̄ = −v̄. (18)

Now, since vk j+1 ∈ NΩkj
(xk j+1) and Ω ⊂ Ωk j , for each j ∈N ∪ {0}, from Remark 2.4, we have

〈vk j , x − xk j〉 ≤ 0, for each x ∈ Ω. (19)

Since vk j converges to v̄, thus by letting j goes to infinity in the last inequality, one can conclude that

〈v̄, x − x̄〉 ≤ 0, for each x ∈ Ω. (20)

So, in view of equality (18), this leads to

〈w̄, x − x̄〉 ≥ 0, for each x ∈ Ω. (21)

On the other hand, since {1(F(xk j ))} converges to 1(F(x̄)) as j goes to infinity, it follows from the definition
of ∂(1 ◦ F) that w̄ ∈ ∂(1 ◦ F). Moreover, since F is differentiable, we have ∂ fi(x) = {∇ fi(x)}. Using the
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characterization (10) with h = 1 ◦ F and x = x̄, there exists a vector α = (α1, ..., αm) ∈ Rm
+ , with

∑m
i=1 αi = 1

such that

w̄ =
∑
i∈I(x̄)

αi∇ fi(x̄) = JF(x̄)tα. (22)

For given s > 0, combining (21) and (22) one has

〈JF(x̄)tα, x̄ + sv − x̄〉 = s〈JF(x̄)tα, v〉 = s〈α, JF(x̄)v〉 ≥ 0. (23)

In contrast, by combining the definition of α with (16), we infer

〈α, JF(x̄)v〉 < 0,

which contradicts (23). This completes the proof.

Next, we will show the full convergence of the considered algorithm, provided that the objective mapping
is quasiconvex. To do this, we need the following concept and its properties.

Definition 3.4. [9] A sequence {zk} ⊂ R
n is said to be Fejér monotone with respect to a nonempty set U if, for all

z ∈ U,

‖zk+1 − z‖ ≤ ‖zk − z‖ , for each k ∈N ∪ {0}.

The following result on Fejér monotone is well known.

Lemma 3.5. Let U ⊂ Rn be a nonempty set and {zk} ⊂ R
n be a Fejér monotone sequence with respect to a nonempty

set U, then:

(i) The sequence {zk
} is bounded.

(ii) If a cluster point z̄ of {zk
} belongs to U, the whole sequence {zk

} converges to z̄ as k goes to +∞.

Proof. See Schott [23], (Theorem 2.7).

Theorem 3.6. Assume that Assumptions 1, 2, 3 and 4 hold. If F is a quasi-convex function, then the sequence {xk}

converges to a Pareto critical point of F.

Proof. Remind that from (15) in the proof of Lemma 3.3, we know that Ω := ∩+∞
k=0Ωk is a nonempty closed

and convex set. Let x∗ ∈ Ω be given, consider

‖xk − x∗‖2 = ‖xk+1 − x∗‖2 + ‖xk − xk+1‖
2 + 2〈xk − xk+1, xk+1 − x∗〉, for each k ∈N ∪ {0}. (24)

By following the line of the proof of Lemma 3.3, we know that there exist sequences {wk} and {vk}, with
wk+1 ∈ ∂(1 ◦ F)(xk+1) and vk+1 ∈ NΩk (xk+1) such that satisfying (17), this implies

xk − xk+1 =
1
λk

(
wk+1 + vk+1

)
, for each k ∈N ∪ {0}.

Using this equality together with (24), we have

‖xk − x∗‖2 = ‖xk+1 − x∗‖2 + ‖xk − xk+1‖
2
−

2
λk
〈wk+1 + vk+1, x∗ − xk+1〉, for each k ∈N ∪ {0}. (25)

Next, taking into account that wk+1 ∈ ∂(1 ◦ F)(xk+1) and using the Proposition 2.5 with h = 1 ◦ F and x = x̄,
we see that there exists a vector αk+1 =

(
αk+1

1 , ..., αk+1
m

)
∈ Rm

+ , with
∑m

i=1 α
k+1
i = 1 such that

wk+1 =
∑

i∈I(xk+1)

αk+1
i ∇ fi(xk+1), for each k ∈N ∪ {0}. (26)
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On the other hand, since x∗ ∈ Ω, we see that F(x∗) � F(xk+1). Subsequently, it follows from the quasi-
convexity of F and Proposition 2.12, that for each k = 0, 1, ...,

〈∇ fi(xk+1), x∗ − xk+1〉 ≤ 0, for each i ∈ {1, ...,m}, and k ∈N ∪ {0}.

Thus, by using (26), we get:

〈wk+1, x∗ − xk+1〉 ≤ 0, for each k ∈N ∪ {0}. (27)

From another stand point, since vk+1 ∈ NΩk (xk+1) and Ωk is a convex set(because F is quasi convex), for each
k ∈N ∪ {0}, it follows that, we have

〈vk+1, x∗ − xk+1〉 ≤ 0, for each k ∈N ∪ {0}. (28)

As ‖xk − xk+1‖
2
≥ 0, for each k ∈N ∪ {0}, the inequality (25) becomes

‖xk − x∗‖2 ≥ ‖xk+1 − x∗‖2 −
2
λk
〈wk+1, x∗ − xk+1〉 −

2
λk
〈vk+1, x∗ − xk+1〉, for each k ∈N ∪ {0}. (29)

Combining last inequality with (27) and (28), we conclude that

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖, for each k ∈N ∪ {0}. (30)

This means {xk} is a Fejér monotone to Ω. Thus, in view of Lemma 3.5, we conclude that the sequence {xk}

converges to x̄ as k goes to +∞. Finally, by Lemma 3.3, we have x̄ is a Pareto critical point of problem (1).
This completes the proof.

Corollary 3.7. Under Assumption 3, if F is pseudo-convex or convex, then the sequence {xk} converges to a weak
Pareto optimal point of F.

Proof. If F is pseudo-convex or convex, in particular, F is quasi-convex (see Remark 2.13) and the corollary
is a consequence of the previous theorem, then the sequence {xk} converges to x̄ as k goes to +∞ and x̄
is a Pareto critial point. By Proposition 2.14, under pseudo-convexity criticality is equivalent to weak
optimality, which implies that x̄ is a weak Pareto optimal point.

4. Conclusion

This paper considered the proximal point algorithm for multiobjective optimization, which was intro-
duced by Bento et al. [4]. The main aim of this paper is to relax the conditions on the considered objective
function. Indeed, the work presented in this article extends the class of functions from continuously differ-
entiable to differentiable and locally Lipschitz. We do think that this work is extendable for the problems
involving non-differentiable functions by defining the Pareto critical points using directional derivatives.
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