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Abstract. An open question of Gruenhage asks if all strategically selectively separable spaces are Markov
selectively separable, a game-theoretic statement known to hold for countable spaces. As a corollary of a
result by Berner and Juhász, we note that the “strong” version of this statement, where the second player is
restricted to selecting single points rather than finite subsets, holds for all T3 spaces without isolated points.
Continuing this investigation, we also consider games related to selective sequential separability, and
demonstrate results analogous to those for selective separability. In particular, strong selective sequential
separability in the presence of the Ramsey property may be reduced to a weaker condition on a countable
sequentially dense subset. Additionally, γ- and ω-covering properties on X are shown to be equivalent to
corresponding sequential properties on Cp(X). A strengthening of the Ramsey property is also introduced,
which is still equivalent to α2 and α4 in the context of Cp(X).

1. Introduction

LetA and B be sets whose elements are families of subsets of an infinite set X. Then S1(A,B) denotes a
selection principle: for each sequence (An : n ∈ ω) of elements ofA there is a sequence (bn : n ∈ ω) such that
for each n, bn ∈ An, and {bn : n ∈ ω} is an element of B.

S f in(A,B) is another selection principle: for each sequence (An : n ∈ ω) of elements ofA there is a sequence
(Bn : n ∈ ω) of finite sets such that for each n, Bn ⊆ An, and

⋃
n∈ω Bn ∈ B.

In this paper, by a cover we mean a nontrivial one; that is,U is a cover of X if X =
⋃
U and X <U.

A coverU of a space X is:

• an ω-cover if every finite subset of X is contained in a member ofU.

• a γ-cover if it is infinite and each x ∈ X belongs to all but finitely many elements ofU.

Note that every infinite subset (in particular, every countably infinite subset) of a γ-cover is a γ-cover,
and every γ-cover is also an ω-cover.

For a topological space X we denote:

• Ω — the family of all open ω-covers of X;
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• Γ — the family of all open γ-covers of X.

Let X be a Hausdorff topological space, and x ∈ X. A subset A of X converges to a unique x = lim A if A
is infinite, x < A, and for each neighborhood U of x, A \U is finite; We also assume x = lim{x}. (That is, we
want x = lim A to mean that A is a set that unambiguously represents a sequence converging to x.) We may
then consider the following collections:

• Ωx = {A ⊆ X : x ∈ A \ A or A = {x}};

• Γx = {A ⊆ X : x = lim A}.

As was noted earlier, Γ ⊆ Ω; likewise, Γx ⊆ Ωx. Also as before, if A ∈ Γx, then every infinite subset of A
belongs to Γx.

Given these definitions, we may describe the following well-known selection principles.

• A space X has Arhangel’skii’s countable fan tightness if X satisfies S f in(Ωx,Ωx) for every x ∈ X [2].

• A space X has Sakai’s countable strong fan tightness if X satisfies S1(Ωx,Ωx) for every x ∈ X [26].

• A space X has Arhangel’skii’s property α4 if X satisfies S f in(Γx,Γx) for every x ∈ X [1].

• A space X has Arhangel’skii’s property α2 if X satisfies S1(Γx,Γx) for every x ∈ X [1].

• A space X is strictly Fréchet-Urysohn if X satisfies S1(Ωx,Γx) for every x ∈ X [28].

• A space X is strongly Fréchet-Urysohn if X satisfies S f in(Ωx,Γx) for every x ∈ X [19, 34].

Definition 1.1. ([21]) A space X has the Ramsey property if for any choices xi, j ∈ X for i, j ∈ ω such that
lim{lim{xi, j : j ∈ ω} : i ∈ ω} = x for some point x ∈ X, there exists an infinite set M ⊆ ω such that for every
open neighborhood U of x, xm,n ∈ U for sufficiently large m,n ∈M with m < n.

In particular, note that x = lim{xm,m+ : m ∈M} where m+ = min({k ∈M : k > M}), and thus Ramsey⇒ α4
(and furthermore α3; see [21]). But the relation between α2 and the Ramsey property remains open, even
for topological groups (Question 3.15 in [33]).

We also will use the following strengthening of Ramsey:

Definition 1.2. A space X has the Ω-Ramsey property if and only if for any choices Ti, j ∈ [X]<ω for i, j ∈ ω
such that lim{lim

⋃
j∈ω Ti, j : i ∈ ω} = x for some point x ∈ X, there exists an infinite set M ⊆ ω such that for

every open neighborhood U of x, Tm,n ⊆ U for sufficiently large m < n ∈M.

The following implications follow for any topological space X since Γx ⊆ Ωx:

S1(Γx,Γx)⇒ S f in(Γx,Γx)⇒ S f in(Γx,Ωx)⇐ S1(Γx,Ωx)
⇑ ⇑ ⇑ ⇑

S1(Ωx,Γx)⇒ S f in(Ωx,Γx)⇒ S f in(Ωx,Ωx)⇐ S1(Ωx,Ωx)

If X is a space and A ⊆ X, then the sequential closure of A, denoted by [A]seq, is the set of all limits of
sequences from A. A set D ⊆ X is said to be sequentially dense if X = [D]seq. A space X is called sequentially
separable if it has a countable sequentially dense set.

For a topological space X we denote:

• D is the family of all dense subsets of X;

• S is the family of all sequentially dense subsets of X.

Let Π represent S1 or S f in. When we write Π(A,Bx) without specifying x, we mean (∀x)Π(A,Bx).

As above, the following implications hold on any topological space X since S ⊆ D:
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S1(S,Γx)⇒ S f in(S,Γx)⇒ S f in(S,Ωx)⇐ S1(S,Ωx)
⇑ ⇑ ⇑ ⇑

S1(D,Γx)⇒ S f in(D,Γx)⇒ S f in(D,Ωx)⇐ S1(D,Ωx)

Some of these selection principles are known by name.

• A space X is R-separable, if X satisfies S1(D,D) (Def. 47, [6]).

• A space X is M-separable (or selectively separable), if X satisfies S f in(D,D) (Def 2.1, [7]).

• A space X is selectively sequentially separable, if X satisfies S f in(S,S) (Def. 1.2, [8]).

Proposition 1.3. ([8, Proposition 1.3]) Every sequentially dense subspace of a selectively sequentially separable
space is sequentially separable. In particular, every selectively sequentially separable space is sequentially separable.

And similarly the following implications hold on any topological space X:

S1(S,S)⇒ S f in(S,S)⇒ S f in(S,D)⇐ S1(S,D)
⇑ ⇑ ⇑ ⇑

S1(D,S)⇒ S f in(D,S)⇒ S f in(D,D)⇐ S1(D,D)

We now have three types of topological properties described as selection principles:

• local properties of the form S∗(Φx,Ψx);

• semi-local properties of the form S∗(Φ,Ψx).

• global properties of the form S∗(Φ,Ψ);

There is a game, denoted by G f in(A,B), corresponding to S f in(A,B). In this game two players, ONE
and TWO, play a round for each natural number n. In the n-th round ONE chooses a set An ∈ A and TWO
responds with a finite subset Bn of An. A play A1,B1; ...; An,Bn; ... is won by TWO if

⋃
n∈ω

Bn ∈ B; otherwise,

ONE wins. Similarly, one defines the game G1(A,B), associated with S1(A,B).
A strategy of a player is a function σ from the set of all finite sequences of moves of the opponent into

the set of (legal) moves of the strategy owner. Formally:

Definition 1.4. A strategy for TWO in the game G f in(A,B) is a function σ satisfying σ(〈A0, ...,An〉) ∈ [An]<ω

for 〈A0, ...,An〉 ∈ A
n+1. We say this strategy is winning if whenever ONE plays An ∈ A during each round

n < ω, TWO wins the game by playing σ(〈A0, ...,An〉) during each round n < ω. If a winning strategy exists,
then we write TWO ↑ G f in(A,B).

Strategies for ONE may be defined similarly. It then follows that the selection principle S∗(A,B) is
equivalent to player ONE lacking a winning predetermined strategy for G∗(A,B) that is defined solely on the
current round number n (ignoring the moves of TWO) [12]. Even when ONE lacks such a predetermined
winning strategy, it is still possible for ONE to have a winning strategy that uses perfect information.

As such, we now have three types of topological games on a topological space X:

• local games of the form G∗(Φx,Ψx);

• semi-local games of the form G∗(Φ,Ψx).

• global games of the form G∗(Φ,Ψ);

We will also be interested in strategies that use limited information; specifically, those that only use the
current round number n and the most recent move of the opponent.
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Definition 1.5. A Markov strategy for TWO in the game G f in(A,B) is a function σ satisfying σ(A,n) ∈ [A]<ω

for A ∈ A and n ∈ ω. We say this Markov strategy is winning if whenever ONE plays An ∈ A during each
round n < ω, TWO wins the game by playing σ(An,n) during each round n < ω. If a winning Markov
strategy exists, then we write TWO ↑

mark
G f in(A,B).

Both definitions may be naturally modified for the game G1(A,B) instead. It is then easily seen that

TWO ↑
mark

G∗(A,B)⇒ TWO ↑ G∗(A,B)⇒ S∗(A,B)

where ∗ ∈ {1, f in}.

2. Main Results

Barman and Dow showed ([4], Theorem 2.9) that every separable Fréchet-Urysohn T2-space is selectively
separable. By definition of Fréchet-Urysohn, closure is equivalent to sequential closure in such spaces, so
we immediately have:

Proposition 2.1. ([8, Proposition 2.2]) Every Fréchet-Urysohn separable T2-space is selectively sequentially sepa-
rable.

Let Γ′x = {A ⊆ X : ∃B ∈ Γx(B ⊆ A)}, and note that S ⊆ Γ′x (while S * Γx). These may be considered the
sequences which cluster at x (although we do not restrict to countable sets).

In particular, we have that S∗(Φ,S) ⇒ S∗(Φ,Γ′x) (with similar game-theoretic results). We now turn to
the following theorem:

Theorem 2.2. Let ∗ ∈ {1, f in}; if ∗ = 1 assume X is Ramsey, and otherwise assume X is Ω-Ramsey. Then for any
non-empty set Φ, the following are equivalent:

1. X satisfies S∗(Φ,S) (resp. TWO ↑ G∗(Φ,S), TWO ↑
mark

G∗(Φ,S));

2. X is sequentially separable and satisfies S∗(Φ,Γ′x) (resp. TWO ↑ G∗(Φ,Γ′x), TWO ↑
mark

G∗(Φ,Γ′x));

3. X has a countable sequentially dense subset D where S∗(Φ,Γ′x) (resp. TWO ↑ G∗(Φ,Γ′x), TWO ↑
mark

G∗(Φ,Γ′x))

holds for all x ∈ D.

Proof. Let P ∈ Φ and Pn = P for n < ω. Then for the countable set {Pn : n < ω} = {P}, we may apply
(any variant of) the first condition to obtain Ti ∈ [P]<ω for i ∈ ω with

⋃
{Ti : i ∈ ω} ∈ S, demonstrating the

respective second condition, which trivially implies the third. As such, we only need prove that the final
condition implies the first; let D = {di : i ∈ ω}witness that final condition.

a) Assume S∗(Φ,Γ′x) for x ∈ D. Let Pi,m ∈ Φ for all i,m ∈ ω. For each i ∈ ω, S∗(Φ,Γ′di
) allows us to choose

Ti,m ∈ [Pi,m]∗ and mt ∈ ω for t ∈ ω such that di = lim
⋃
{Ti,mt : t ∈ ω}. We claim that

⋃
{Ti,m : i,m ∈ ω} is

sequentially dense. To see this, let x ∈ X, and choose is ∈ ω for s ∈ ω such that x = lim{dis : s ∈ ω}. We
then choose M ⊆ ω witnessing the appropriate Ramsey property for {Tis,mt : s, t ∈ ω} and x; it follows that
x = lim

⋃
{Tis,ms+

: s ∈ M}. Thus for any countable collection of sets Pi,m ∈ Φ, we have Ti,m ∈ [Pi,m]∗ with⋃
{Ti,m : i,m ∈ ω} sequentially dense, witnessing S1(Φ,S).

b) Now assume TWO ↑ G∗(Φ,Γ′di
) is witnessed by the strategy σi for each i ∈ ω. Let p : ω → ω be a

function such that p←(i) is infinite for all i ∈ ω. For a nonempty finite sequence t, let t′ be its subsequence
removing all terms of index n such that p(n) , p(|t| − 1). We define the strategy σ for the game G∗(Φ,S) by
σ(t) = σp(|t|−1)(t′); that is, σ partitions any counterplay by ONE into countably many subplays according to
p, and uses a different σi for each subplay.

Let α ∈ Φω, and let αi be its subsequence removing all terms of index n such that p(n) , i. Then⋃
{σi(αi � (n + 1)) : n ∈ ω} ∈ Γ′di

since σi is a winning strategy for TWO, so choose ni,t ∈ ω for t ∈ ω where
di = lim

⋃
{σi(αi � (ni,t + 1)) : t ∈ ω}.



S. Clontz, A.V. Osipov / Filomat 34:7 (2020), 2377–2386 2381

We claim that
⋃
{σ(α � (n + 1)) : n ∈ ω} ∈ S, so let x ∈ X. Then there exists {dis : s ∈ ω} such that

x = lim{dis : s ∈ ω}. We then apply the appropriate Ramsey property to {σis (αis � (nis,t + 1)) : s, t ∈ ω} to
obtain an M ⊆ ω with x = lim{σis (αis � (nis,s+ + 1)) : s ∈M}. Since each σis (αis � (nis,s+ + 1)) = σ(α � (n + 1)) for
some n ∈ ω, the result follows.

c) Finally let TWO ↑
mark

G1(S,Γdi ) for each i ∈ ω be witnessed by σi. Let p : ω→ ω be a function such that

p←(i) is infinite for all i ∈ ω. We then define the Markov strategy σ by

σ(P,n) = σp(n)(P, |{m < n : p(m) = p(n)}|)

so that as in the previous case, σpartitions any counterplay by ONE into countably many subplays according
to p, and uses a different σi for each subplay.

Let α ∈ Φω, and let αi be its subsequence removing all terms of index n such that p(n) , i. Then
{σi(αi(n),n) : n ∈ ω} ∈ Γ′di

since σi is a winning strategy for TWO, so choose ni,t ∈ ω for t ∈ ω where
di = lim{σi(αi(ni,t),ni,t) : t ∈ ω}.

We claim that {σ(α(n),n) : n ∈ ω} ∈ S, so let x ∈ X. Then there exists {dis : s ∈ ω} such that x = lim{dis :
s ∈ ω}. We then apply the appropriate Ramsey property to {σis (αis (nis,t),nis,t) : s, t ∈ ω} to obtain an M ⊆ ω
with x = lim{σis (αis (nis,s+ ),nis,s+ ) : s ∈ M}. Since each σis (αis (nis,s+ ),nis,s+ ) = σ(α(n),n) for some n ∈ ω, the result
follows.

The previous result mirrors the following slight generalization of Theorems 16 and 41 of [10].

Theorem 2.3. ([10]) For a topological space X, nonempty set Φ, and ∗ ∈ {1, f in}, the following are equivalent:
1. X satisfies S∗(Φ,D) (resp. TWO ↑ G∗(Φ,D), TWO ↑

mark
G∗(Φ,D));

2. X is separable and satisfies S∗(Φ,Ωx) (resp. TWO ↑ G∗(Φ,Ωx), TWO ↑
mark

G∗(Φ,Ωx));

3. X has a countable dense subset D where S∗(Φ,Ωx) (resp. TWO ↑ G∗(Φ,Ωx), TWO ↑
mark

G∗(Φ,Ωx)) holds for all

x ∈ D.

Proof. In [10], Φ = D was an additional assumption, but was never required in the proofs, since S∗(Φ,D)
implies separability for any non-empty Φ.

Recall that a π-base for a space X is a family U of nonempty open subsets of X such that for each
nonempty open set V ⊆ X there is a U ∈ U with U ⊆ V. Then the π-weight of a space X, denoted π(X), is
the minimal cardinality of a π-base for X.

Corollary 2.4. Let X be a T3-space with no isolated points. Then the following are equivalent:
1. π(X) = ℵ0;
2. TWO ↑ G1(D,D);
3. TWO ↑

mark
G1(D,D);

4. X is separable and TWO ↑ G1(D,Ωx);
5. X is separable and TWO ↑

mark
G1(D,Ωx);

6. X has a countable dense subset D where TWO ↑ G1(D,Ωx) for all x ∈ D.
7. X has a countable dense subset D where TWO ↑

mark
G1(D,Ωx) for all x ∈ D.

Proof. The equivalence of (1) and (2) is [9, Theorem 2.1].
Assuming (1), let {Pn : n ∈ ω} be a countable π-base. We may then define σ(D,n) ∈ D ∩ Pn arbitrarily,

and it’s easy to see that this is winning for TWO, implying (3) and therefore (2).
All other equivalences follow from Theorem 2.3.

The equivalence (2)⇔ (3) is similar to the following open question of Gruenhage, first shown to be true
when X is countable by Barman and Dow in [5, Theorem 2.11]; see [10, Lemma 37] for a general sufficient
condition which guarantees that a winning strategy may be improved to a Markov winning strategy.

Question 2.5. When does TWO ↑ G f in(D,D) imply TWO ↑
mark

G f in(D,D)?
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3. Ω-Ramsey in Topological Groups

We now adapt techniques of Sakai [27] to obtain the following lemma giving a useful recharacterization
of the Ω-Ramsey property for topological groups, which we require in the following section.

Lemma 3.1. Let 〈G, ·〉 be a topological group with unit e. Then the Ω-Ramsey property is equivalent to the following:
if Tn,m ∈ [G]<ω and e = lim

⋃
{Tn,m : m ∈ ω} for each n ∈ ω, then there exists an infinite M ⊆ ω such that

e = lim
⋃
{Tn,m : n,m ∈M,n < m}.

Proof. The forward direction follows by noting that e = lim{e} and thus applying the Ω-Ramsey property
to {Tn,m : n,m ∈ ω}.

For the converse, let xn = lim
⋃
{Tn,m : m ∈ ω} for each n ∈ ω, and e = lim{xn : n ∈ ω} (since G is

homogeneous). If Sn,m = x−1
n · Tn,m, it follows that lim

⋃
{Sn,m : m ∈ ω} = x−1

n · xn = e. We apply the
assumption to obtain an infinite M ⊆ ωwhere e = lim

⋃
{Sn,m : n,m ∈M,n < m}, and claim that M witnesses

Ω-Ramsey.
Let U be a neighborhood of e, which must contain {xn : n ≥ k′} for some k′ ∈ ω. By applying [27, Lemma

2.3], we may choose an open neighborhood V of e where {xn : n ≥ k′} · V ⊆ U. Since e = lim
⋃
{Sn,m : n,m ∈

M,n < m}, we may choose k ≥ k′ where
⋃
{Sn,m : n,m ∈M, k ≤ n < m} ⊆ V. So for k ≤ n < m,

Sn,m ⊆ V ⇒ Tn,m = xn · Sn,m ⊆ xn · V ⊆ U.

4. Applications in Cp-Theory

For a Tychonoff space X, we denote by Cp(X) the topological additive group of all real-valued continuous
functions on X with the topology of pointwise convergence. The symbol 0 stands for the constant function
to 0.

Basic open sets of Cp(X) are of the form [x1, ..., xk; U1, ...,Uk] = { f ∈ Cp(X) : f (xi) ∈ Ui, i = 1, ..., k}, where
each xi ∈ X and each Ui is a non-empty open subset of R. When Ui = U for all i ≤ k, we simply write
[x1, . . . , xk; U].

Consider the following result of Sakai.

Theorem 4.1. ([27, Theorem 2.5]) The Ramsey property is equivalent to α2 and α4 for Cp(X).

By using the previous Lemma 3.1, we may show the following.

Theorem 4.2. The Ω-Ramsey property is equivalent to the Ramsey, α2, and α4 properties for Cp(X).

Proof. Let Tn,m ∈ [Cp(X)]<ω and 0 = lim
⋃
{Tn,m : m ∈ ω} for each n ∈ ω. We let 1n,m(x) = max{| f (x)| : f ∈⋃

i≤n Ti,m}, noting 0 = lim{1n,m : m ∈ ω} for each n ∈ ω. We apply α2, that is, S1(Γ0,Γ0) to {1n,m : n < m ∈ ω} to
obtain an increasing mapping φ : ω→ ω with 0 = lim{1m,φ(m) : m ∈ ω}.

Now let φ0(n) = n and φi+1(n) = φ(φi(n)) and set M = {φi(0) : i ∈ ω}. We will demonstrate that
0 = lim{Tn,m : n,m ∈M,n < m}. For x ∈ X and ε > 0, pick k ∈ ω where |1m,φ(m)(x)| < ε for k < m,m ∈M.

Let f ∈ Tn,m for k < n < m and n,m ∈ M. We may choose m′ ∈ M such that n ≤ m′ and m = φ(m′). Then
| f (x)| ≤ |1n,m(x)| ≤ |1m′,m(x)| = |1m′,φ(m′)(x)| < ε. Thus Cp(X) is Ω-Ramsey.

Since Ω-Ramsey implies Ramsey, the result follows from the previous theorem.

Recall that the i-weight iw(X) of a space X is the smallest infinite cardinal number τ such that X can be
mapped by a one-to-one continuous mapping onto a Tychonoff space of weight not greater than τ.

Theorem 4.3. ([20]) Let X be a space. A space Cp(X) is separable if and only if iw(X) = ℵ0.
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Note that if X is itself Tychonoff and iw(X) = ℵ0, then the image of X under a witnessing one-to-
one continuous mapping yields a coarser topology for X which is separable and metrizable; this is the
characterization given in [18].

In the papers [2, 3, 6, 16, 22–26, 32] various selection principles for a Tychonoff space X were related to
the selection principles for Cp(X). Likewise, in [10, 17, 26, 30, 31] various selection games for X and Cp(X)
and a bitopological space (C(X), τk, τp) were related.

So we have the following applications in Cp-theory.

Theorem 4.4. ([10, Theorems 22 and 43]) For a Tychonoff space X and ∗ ∈ {1, f in}, the following are equivalent:

1. TWO ↑ (resp. ↑
mark

) G∗(Ω,Ω) on X;

2. TWO ↑ (resp. ↑
mark

) G∗(Ω0,Ω0) on Cp(X);

3. TWO ↑ (resp. ↑
mark

) G∗(D,Ω0) on Cp(X).

Corollary 4.5. Let X be a Tychonoff space with a coarser second-countable topology (that is, iw(X) = ℵ0) and
∗ ∈ {1, f in}. The following assertions are equivalent:

1. TWO ↑ (resp. ↑
mark

) G∗(Ω,Ω) on X;

2. TWO ↑ (resp. ↑
mark

) G∗(Ω0,Ω0) on Cp(X);

3. TWO ↑ (resp. ↑
mark

) G∗(D,Ω0) on Cp(X).

4. TWO ↑ (resp. ↑
mark

) G∗(D,D) on Cp(X);

Proof. By Theorems 2.3, 4.3 and 4.4, items (1-4) are equivalent.

Corollary 4.6. Let X be a Tychonoff space with a coarser second-countable topology. The following assertions are
equivalent:

1. π(Cp(X)) = ℵ0;
2. TWO ↑ G1(D,D) for Cp(X);
3. TWO ↑ G1(D,Ω0) for Cp(X);
4. TWO ↑ G1(Ω,Ω) for X;
5. TWO ↑

mark
G1(D,D) for Cp(X);

6. TWO ↑
mark

G1(D,Ω0) for Cp(X);

7. TWO ↑
mark

G1(Ω,Ω) for X;

8. X is countable.

Proof. Items (1-7) follow from Corollary 2.4 and Corollary 4.5. The fact that (8) is equivalent to (6) and (7)
doesn’t require iw(X) = ℵ0 and may be found in [13, Theorem 17] along with several other equivalences.

We now turn to the case where TWO may choose finite sets each round.

Corollary 4.7. Let X be a separable metrizable space. Then the following are equivalent:

1. TWO ↑ G f in(D,D) for Cp(X);
2. TWO ↑ G f in(D,Ω0) for Cp(X);
3. TWO ↑ G f in(Ω,Ω) for X;
4. TWO ↑

mark
G f in(D,D) for Cp(X);

5. TWO ↑
mark

G f in(D,Ω0) for Cp(X);

6. TWO ↑
mark

G f in(Ω,Ω) for X;
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7. X is σ-compact.

Proof. Second-countability allows us to apply Corollary 4.5 to show (1-3) are mutually equivalent, as are
(4-6). By [10, Corollary 39], (3) is equivalent to (6), and by [10, Lemma 24], (6) equivalent to (7).

We now demonstrate analogous results, replacingD and Ω0 with S and Γ0.

We recall that a subset of X that is the complete preimage of zero for a certain function from C(X) is
called a zero-set. A subset O ⊆ X is called a cozero-set (or functionally open) of X if X \O is a zero-set.

A γ-coverU of co-zero sets of X is γF-shrinkable if there exists a γ-cover {F(U) : U ∈ U} of zero-sets of X
such that F(U) ⊆ U for some U ∈ U ([23]).

For a topological space X we let ΓF ⊆ Γ denote the family of γF-shrinkable covers of X.

Theorem 4.8. For a Tychonoff space X with ∗ ∈ {1, f in}, the following are equivalent:

1. TWO ↑ (resp. ↑
mark

) G∗(ΓF,Ω) on X;

2. TWO ↑ (resp. ↑
mark

) G∗(Γ0,Ω0) on Cp(X);

3. TWO ↑ (resp. ↑
mark

) G∗(S,Ω0) on Cp(X).

Proof. (1)⇒ (2). For each B ∈ Γ0 we defineUn(B) = { f←[(− 1
2n , 1

2n )] : f ∈ B}. To see thatUn(B) ∈ ΓF, let x ∈ X.
Since B ∈ Γ0, B \ [x; (− 1

2n+1 ,
1

2n+1 )] is finite. It follows that for f ∈ B ∩ [x; (− 1
2n+1 ,

1
2n+1 )],

x ∈ f←
[
(−

1
2n+1 ,

1
2n+1 )

]
⊆ f←

[
[−

1
2n+1 ,

1
2n+1 ]

]
⊆ f←

[
(−

1
2n ,

1
2n )

]
and we have shown that { f←[[− 1

2n+1 ,
1

2n+1 ]] : f ∈ B} is a γ-cover by zero sets; thereforeUn(B) ∈ ΓF.
For convenience in the rest of this proof, whenever Bn ∈ Γ0 is known for some n < ω, fix fU,n ∈ Bn for

each U ∈ Un(Bn) such that U = f←U,n[(− 1
2n , 1

2n )].
If TWO ↑ G∗(ΓF,Ω) holds, then we may find a winning strategy σ that not only produces ω covers,

but produces covers such that every cofinite subset is an ω cover. To see this, partition any play by ONE
into infinitely many subplays and consider the strategy that applies the known winning strategy to each
subplay (the beginnings of which are cofinal in ω).

Now let τ(〈B0, . . . ,Bn〉) = { fU,n : U ∈ σ(〈U0(B0), . . . ,Un(Bn)〉)}. (Note here that the cardinalities of moves
made by τ are no greater than the cardinalities produced by σ, so this proof applies to both G1 and G f in.)
We claim that 0 ∈

⋃
n<ω

τ(〈B0, ...,Bn〉).

To see this, let G ∈ [X]<ω and ε > 0. Then choose n < ω such that 1
2n < ε and G ⊆ U for some

U ∈ σ(〈U0(B0), . . . ,Un(Bn)〉). Then

G ⊆ f←U,n
[
(−

1
2n ,

1
2n )

]
⊆ f←U,n[(−ε, ε)]

demonstrates that fU,n ∈ τ(〈B0, . . . ,Bn〉) ∩ [G; (−ε, ε)], verifying our claim.
If TWO ↑

mark
G∗(ΓF,Ω) holds, then we may again assume we have a witnessing strategy σ producing

omega covers such that every cofinite subset is an ω-cover, for the same reason as above.
Now let τ(Bn,n) = { fU,n : U ∈ σ(Un(Bn),n)}. (Note again here that the cardinality of σ matches the

cardinality of τ, so this proof applies to both G1 and G f in.) We claim that 0 ∈
⋃

n<ω
τ(Bn,n).

To see this, let G ∈ [X]<ω and ε > 0. Then choose n < ω such that 1
2n < ε and G ⊆ U for some

U ∈ σ(Un(Bn),n). Then

G ⊆ f←U,n
[
(−

1
2n ,

1
2n )

]
⊆ f←U,n[(−ε, ε)]
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demonstrates that fU,n ∈ τ(Bn,n) ∩ [G; (−ε, ε)], verifying our claim.
(2) ⇒ (3). For each S ∈ S, select GS ⊆ S such that lim G = 0. Given a strategy for TWO in G∗(Γ0,Ω0),

TWO’s strategy for G∗(S,Ω0) simply substitutes each S ∈ Swith GS.
(3) ⇒ (1). For eachU ∈ ΓF define S(U) = { f ∈ C(X) : f � (X \ U) ≡ 1 for some U ∈ U}. By [23, Lemma

6.5], S(U) is sequentially dense in Cp(X). Whenever Un ∈ ΓF is known for some n < ω, choose U f ,n ∈ Un
for each f ∈ S(Un) such that f � (X \U f ,n) ≡ 1.

So let σ witness TWO ↑ G∗(S,Ω0), so 0 ∈
⋃

n<ω
σ(〈S(U0), ...,S(Un)〉). We then define τ(〈U0, ...,Un〉) =

{U f ,n : f ∈ σ(〈S(U0), ...,S(Un)〉)}. Let F ∈ [X]<ω, so we may choose n ∈ ω such that there exists f ∈
σ(〈S(U0), . . . ,S(Un)〉) ∩ [F; (−1/2, 1/2)]. Then as f � F cannot map to 1, F ⊆ U f ,n. Therefore τ produces
ω-covers.

Finally, let σ witness TWO ↑
mark

G∗(S,Ω0), so 0 ∈
⋃

n<ω
σ(S(Un),n). We then define τ(Un,n) = {U f ,n : f ∈

σ(S(Un),n)}. Let F ∈ [X]<ω, so we may choose n ∈ ω such that there exists f ∈ σ(S(Un),n) ∩ [F; (−1/2, 1/2)].
Then as f � F cannot map to 1, F ⊆ U f ,n. Therefore τ produces ω-covers.

Corollary 4.9. Let X be a Tychonoff space with a coarser second countable topology and ∗ ∈ {1, f in}. The following
assertions are equivalent:

1. TWO ↑ (resp. ↑
mark

) G∗(ΓF,Ω) on X;

2. TWO ↑ (resp. ↑
mark

) G∗(Γ0,Ω0) on Cp(X);

3. TWO ↑ (resp. ↑
mark

) G∗(S,Ω0) on Cp(X).

4. TWO ↑ (resp. ↑
mark

) G∗(S,D) on Cp(X);

Proof. By Theorems 2.3 and 4.3, items (3) and (4) are equivalent.
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