
Filomat 34:7 (2020), 2387–2400
https://doi.org/10.2298/FIL2007387H

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. This paper continues the ongoing effort to study the compressed zero-divisor graph over non-
commutative rings. The purpose of our paper is to study the diameter of the compressed zero-divisor
graph of Ore extensions and give a complete characterization of the possible diameters of ΓE

(
R[x;α, δ]

)
,

where the base ring R is reversible and also have the (α, δ)-compatible property. Also, we give a complete
characterization of the diameter of ΓE

(
R[[x;α]]

)
, where R is a reversible, α-compatible and right Noetherian

ring. By some examples, we show that all of the assumptions “reversiblity”, “(α, δ)-compatiblity” and
“Noetherian” in our main results are crucial.

1. Introduction

In this paper, the term “ring” (unless explicitly stated otherwise) means “associative ring with nonzero
identity”. We denote the set of all left zero divisors of R, the set of all right zero-divisors of R and the set
Zl(R) ∪ Zr(R) by Zl(R),Zr(R) and Z(R), respectively. For a nonzero element a of R, lR(a) and rR(a) denote the
left annihilator and the right annihilator of a in R, respectively.

Let R be a ring, α an endomorphism of R and δ an α-derivation of R (so δ is an additive map satisfying
δ(ab) = δ(a)b + α(a)δ(b)), the general (left) Ore extension R[x;α, δ] is the ring of polynomials over R in
the variable x, with term-wise addition and with coefficients written on the left of x, subject to the skew-
multiplication rule xr = α(r)x+δ(r) for r ∈ R. If α is an identity map on R or δ = 0, then we denote R[x;α, δ] by
R[x; δ] and R[x;α], respectively. In [19], a ring R is called α-compatible if for each a, b ∈ R, ab = 0⇔ aα(b) = 0.
Moreover, R is said to be δ-compatible if for each a, b ∈ R, ab = 0 ⇒ aδ(b) = 0. If R is both α-compatible and
δ-compatible, we say that R is (α, δ)-compatible.

Following [13], a ring is reversible if ab = 0 implies that ba = 0 for each a, b ∈ R. Obviously, reduced rings
(i.e. rings with no nonzero nilpotent elements) and commutative rings are reversible. In [27], Kim and
Lee studied extensions of reversible rings and showed that polynomial rings over reversible rings need not
to be reversible in general. Note that if R is a reversible ring, then Zl(R) = Zr(R) = Z(R). Also, if R is a
reversible ring and a ∈ R, then lR(a) = rR(a) is an ideal of R. According to [27], a ring R is called symmetric if
abc = 0 implies acb = 0 for all a, b, c ∈ R.

For a graph G, V(G) denotes the set of vertices of graph G. All the graphs considered in this article are
undirected and connected. Recall that a graph is said to be connected if for each pair of distinct vertices u

2010 Mathematics Subject Classification. Primary 16S36, 16U80; Secondary 05C12
Keywords. Reversible rings, skew polynomial rings, zero-divisor graph, compressed zero-divisor graph.
Received: 15 July 2019; Accepted: 23 January 2020
Communicated by Paola Bonacini
Email addresses: eb−hashemi@yahoo.com (Ebrahim Hashemi), mona−abdi1368@yahoo.com (Mona Abdi)



E. Hashemi, M. Abdi / Filomat 34:7 (2020), 2387–2400 2388

and v, there is a finite sequence of distinct vertices v1 = u, v2, . . . , vn = v such that each pair {vi, vi+1} is an
edge. Such a sequence is said to be a path and for two distinct vertices a and b in the simple (undirected)
graph Γ, the distance between a and b, denoted by d(a, b), is the length of a shortest path connecting a and
b, if such a path exists; otherwise we put d(a, b) = ∞. Recall that the diameter of a connected graph is the
supremum of the distances between vertices. The diameter is 0 if the graph consists of a single vertex and
a connected graph with more than one vertex has diameter 1 if and only if it is complete; i.e., each pair of
distinct vertices forms an edge.

The study of zero-divisor graphs was initiated by Istvan Beck [12], in 1988. He let all elements of R be
vertices of the graph with vertices a and b joined by an edge when ab = 0 and was mainly interested in
coloring. In 1999, Anderson and Livingston [7], redefined and studied the (undirected) zero-divisor graph
Γ(R), whose vertices are the nonzero zero-divisors of a ring such that distinct vertices a and b are adjacent if
and only if ab = 0. Afterward, Redmond [34], defined a directed zero-divisor graph for non-commutative
ring in a similar way. A directed graph is connected if there exists a directed path connecting any two distinct
vertices. The distance and the diameter are defined in a similar way as well, having in mind that all paths
in question are directed. Redmond, also defined an undirected zero-divisor graph of a non-commutative
ring R, the graph Γ(R), with vertices in the set Z(R)∗ = Z(R) \ {0} and such that for distinct vertices a and
b there is an edge connecting them if and only if ab = 0 or ba = 0. We will be concerned with this type
of undirected zero-divisor graph of non-commutative rings. Several papers are devoted to studying the
relationship between the zero-divisor graph and algebraic properties of rings (cf. [1, 7, 25, 30–32, 34]).

As suggested by the vast literature, there is a considerable interest in studying if and how certain graph-
theoretic properties of rings are preserved under various ring-theoretic extensions. The first such extensions
that come to mind are those of polynomial and power series extensions. Axtell, Coykendall and Stickles
[10], examined the preservation of diameter and girth of zero-divisor graphs of commutative rings under
extensions to polynomial and power series rings. Also, Lucas [30], continued the study of the diameter of
zero-divisor graphs of polynomial and power series rings over commutative rings. Moreover, Anderson
and Mulay [8], studied the girth and diameter of zero-divisor graph of a commutative ring and investigated
the girth and diameter of zero-divisor graphs of polynomial and power series rings over commutative
rings.

For any elements a and b of R, define a ∼ b if and only if annR(a) = annR(b), where annR(a) = lR(a)∪ rR(a).
Simply observed that ∼ is an equivalence relation on R. For any a ∈ R, let [a]R = {b ∈ R | a ∼ b}. For example,
it is clear that [0]R = {0} and [1]R = R \ Z(R), and that [a]R ⊆ Z(R) \ {0} for every a ∈ R \

(
[0]R ∪ [1]R

)
.

The graph ΓE(R) is a condensed version of Γ(R), constructed in such a way as to reduce the “noise” pro-
duced by individual zero divisors (In [3], this is called the “compressed” zero-divisor graph). Accordingly,
ΓE(R) is smaller and simpler than Γ(R). The compressed zero-divisor graph ΓE(R) is the (undirected) graph
whose vertices are the elements of RE \ {[0]R, [1]R} such that distinct vertices [a]R and [b]R are adjacent if
and only if ab = 0 or ba = 0. Note that if a and b are distinct adjacent vertices in Γ(R), then [a]R and [b]R are
adjacent in ΓE(R) if and only if [a]R , [b]R. Clearly, diam

(
ΓE(R)

)
≤ diam

(
Γ(R)

)
. Spiroff and Wickham [35],

showed that ΓE(R) is connected with diam
(
ΓE(R)

)
≤ 3. They also studied relation between the associated

primes of R and the vertices of ΓE(R), where R is a Noetherian ring. Anderson and LaGrange [6], determined
the structure of ΓE(R) when it is a cyclic and the monoids RE when ΓE(R) is a star graph.

In [15], the authors studied the diameter of ΓE(R) and gave a complete characterization for ΓE(R), where
R is a commutative ring. They also characterized diam

(
ΓE(R[x])

)
and diam

(
ΓE(R[[x]])

)
, where the base

coefficient ring R is a commutative ring.
In line with [15], recently the authors extended the study of the diameter of the compressed zero-divisor

graph of R to skew Laurent polynomial rings. They investigated the relationship between properties of R
and Jordan extension A = A(R, α), and also characterized the diameter of ΓE

(
R[x, x−1;α]

)
(cf. [16]).

The present work aims to continue our study of the diameter of the compressed zero-divisor graph of
skew polynomial rings R[x;α, δ], where R is a reversible and (α, δ)-compatible ring. Also, we will give a
complete characterization of the possible diameters of ΓE

(
R[[x;α]]

)
in term of the diameter of ΓE(R), where

R is a reversible right Noetherian ring and has α-compatible property. By some examples, we show that
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the assumptions “reversibility”, “R is (α, δ)-compatibility” and “Noetherian” in main results are crucial.

2. On the diameter of compressed zero-divisor graph of skew polynomial rings

Following Huckaba and Keller [24], a commutative ring R has Property (A) if every finitely generated
ideal of R consisting entirely of zero-divisors, has a nonzero annihilator. Property (A) was originally studied
by Quentel [33], where he used the term Condition (C) for Property (A). Using Property (A), Hinkle and
Huckaba [22] extend the concept of Kronecker function rings from integral domains to rings with zero-
divisors. The class of commutative rings with Property (A) is quite large. For example, the polynomial ring
R[x], rings whose classical ring of quotients are von Neumann regular [21], Noetherian rings [26, p. 56]
and rings whose prime ideals are maximal [21], are examples of rings with Property (A). Kaplansky [26],
proved that there are non-Noetherian rings such that do not have Property (A). Several papers are devoted
to study the commutative rings with Property (A); see [11, 21, 24, 25, 30, 33].

Hong et al. [23], extended Property (A) to non-commutative setting as follows: A ring R has right (left)
Property (A) if every finitely generated two-sided ideal of R consisting entirely of left (right) zero-divisors
has a right (left) nonzero annihilator. A ring R is said to have Property (A) if R has right and left Property
(A).

In this section, we proceed to characterize the diameter of ΓE

(
R[x;α, δ]

)
, where R is reversible and (α, δ)-

compatible. Since polynomial rings over reversible rings need not to be reversible by [27, Example 2.1],
hence we can not use characterizations in [16, Theorem 2.2] for skew polynomial rings.

The following lemma, which is proved in [17, Theorem 2.6], will be helpful in our results.

Lemma 2.1. Let R be a reversible and (α, δ)-compatible ring. Then Z
(
R[x;α, δ]

)
is an ideal of R[x;α, δ] if and only

if Z(R) is an ideal of R and R has right Property (A).

Theorem 2.2. Let R be a symmetric and (α, δ)-compatible ring which is not reduced. If there is a pair of zero-divisors
f (x), 1(x) ∈ Z

(
R[x;α, δ]

)
such that lR[x;α,δ]

(
f (x)

)
∩ lR[x;α,δ]

(
1(x)

)
= {0}, then diam

(
ΓE(R[x;α, δ])

)
= 3.

Proof. By [17, Theorem 2.2], there exist nonzero elements β, ξ ∈ Z
(
R[x;α, δ]

)∗
such that βξ , 0 , ξβ and β, ξ

don’t have a nonzero mutual annihilator. Then diam
(
ΓE(R[x;α, δ])

)
= 3.

Recall that if R is a reduced ring, then each minimal prime ideal of R is completely prime. Also each minimal
prime ideal is a union of annihilators. Thus, if P is a minimal prime ideal of a reduced (α, δ)-compatible
ring R, then α(P) ⊆ P, δ(P) ⊆ P, and so P[x;α, δ] is an ideal of R[x;α, δ]. One can easily prove that P[x;α, δ]
is a minimal prime ideal of R[x;α, δ].

For any f ∈ R[x;α, δ], we denote by C f the set of all coefficients of f . Also, the set of all nonzero
coefficients of f is denoted by C∗f .

Theorem 2.3. Let R be a reversible and (α, δ)-compatible ring with Z(R) , 0. Then

(1) diam
(
ΓE(R[x;α, δ])

)
= 0 if and only if diam

(
ΓE(R)

)
= 0;

(2) diam
(
ΓE(R[x;α, δ])

)
= 1 if and only if diam

(
ΓE(R)

)
= 1;

(3) diam
(
ΓE(R[x;α, δ])

)
= 2 if and only if either (i) R has right Property (A), Z(R) is an ideal of R with (Z(R))2 , 0,

and Z(R) , annR(a), for each a ∈ Z(R)∗ or (ii) Z(R) = annR(a), for some a ∈ Z(R)∗ and there exist two elements
b, c ∈ Z(R)∗ such that bc , 0 and [b]R , [c]R;

(4) diam
(
ΓE(R[x;α, δ])

)
= 3 if and only if R is not a reduced ring with exactly two minimal primes and either R

has not right Property (A) or Z(R) is not an ideal of R.
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Proof. (1) For the forward direction, let diam
(
ΓE(R[x;α, δ])

)
= 0. Therefore diam

(
ΓE(R)

)
= 0, since

diam
(
ΓE(R)

)
≤ diam

(
ΓE(R[x;α, δ])

)
.

For the backward direction, let diam
(
ΓE(R)

)
= 0. Thus |ΓE(R)| = 1. Without loss of generality, we

can consider V
(
ΓE(R)

)
=

{
[a]

}
. Assume that f ∈ Z

(
R[x;α, δ]

)∗
. Since R is reversible and (α, δ)-compatible,

there exist r, s ∈ R such that r f = 0 = f s, by [17, Corollary 2.1], and so C f ⊆ Z(R). Hence [a]R = [ai]R for
each ai ∈ C∗f . Since R is a reversible and (α, δ)-compatible ring, by [19, Lemma 2.1], we can easily prove

[a]R[x;α,δ] = [ f ]R[x;α,δ]. Therefore diam
(
ΓE(R[x;α, δ])

)
= 0.

(2) For the forward direction, let diam
(
ΓE(R[x;α, δ])

)
= 1. Hence diam

(
ΓE(R)

)
= 1, by statement (1).

For backward direction, let diam
(
ΓE(R)

)
= 1. Then by [16, Theorem 2.2], either (i) R is a reduced ring

with exactly two minimal prime ideals, or (ii) |ΓE(R)| = 2 and Z(R) = annR(a) for some a ∈ Z(R)∗.
First, assume that R is a reduced ring with exactly two minimal prime ideals P and Q, then R[x;α, δ] is

a reduced ring with exactly two minimal prime ideals P[x;α, δ] and Q[x;α, δ]. Now, let f , 1 ∈ Z
(
R[x;α, δ]

)
.

If f , 1 ∈ P[x;α, δ], then [ f ]R[x;α,δ] = [1]R[x;α,δ], since f h = 0 = 1h for each h ∈ Q[x;α, δ] (since R is a reduced
and (α, δ)-compatible ring). Similarly, if f , 1 ∈ Q[x;α, δ], then [ f ]R[x;α,δ] = [1]R[x;α,δ]. Also, if f ∈ P[x;α, δ] and
1 ∈ Q[x;α, δ], then f1 = 0. Therefore diam

(
ΓE(R[x;α, δ])

)
= 1.

Now, assume that |ΓE(R)| = 2 and Z(R) = annR(a), for some a ∈ Z(R)∗. Also let V
(
ΓE(R)

)
=

{
[a]R, [b]R

}
.

Consider f ∈ Z
(
R[x;α, δ]

)∗
. Since R is reversible and (α, δ)-compatible, there exists 0 , r, s ∈ R such that

r f = 0 = f s, by [17, Corollary 2.1]. Hence C∗f ⊆ Z(R)∗. We claim that V
(
ΓE(R[x;α, δ])

)
=

{
[a]R[x;α,δ], [b]R[x;α,δ]

}
.

We consider the following three cases:
Case 1. If for each ai ∈ C∗f , [ai]R = [a]R, then annR(ai) = annR(a). Therefore annR[x;α,δ]( f ) = annR[x;α,δ](a) and

so [a]R[x;α,δ] = [ f ]R[x;α,δ].
Case 2. If for each ai ∈ C∗f , [ai]R = [b]R, then annR(ai) = annR(b). Therefore annR[x;α,δ]( f ) = annR[x;α,δ](b) and

so [b]R[x;α,δ] = [ f ]R[x;α,δ].
Case 3. If f = f1 + f1, where f1 , 0 , f2 and for each ai ∈ C∗f1 , [ai]R = [a]R and for each b j ∈ C∗f2 , [b j]R = [b]R,

then since annR(b) ⊆ annR(a), one can easily show that annR[x;α,δ]( f ) = annR[x;α,δ](b), and so [b]R[x;α,δ] = [ f ]R[x;α,δ].
Therefore V

(
ΓE(R[x;α, δ])

)
=

{
[a]R[x;α,δ], [b]R[x;α,δ]

}
, which implies that diam

(
ΓE(R[x;α, δ])

)
= 1.

(3) For the forward direction, let diam
(
ΓE(R[x;α, δ])

)
= 2. Then diam

(
Γ(R[x;α, δ])

)
= 2 or 3, since

diam
(
ΓE(R[x;α, δ])

)
≤ diam

(
Γ(R[x;α, δ])

)
.

Case 1. Assume that diam
(
Γ(R[x;α, δ])

)
= 2. Then R has right Property (A) and Z(R) is an ideal of

R with Z(R)2 , 0, by [17, Theorem 2.7]. This leads to either (i) Z(R) , annR(a) for each a ∈ Z(R)∗ or (ii)
Z(R) = annR(a) for some a ∈ Z(R)∗.

(i) If Z(R) , annR(a) for each a ∈ Z(R)∗, the result follows.
(ii) Assume that Z(R) = annR(a) for some a ∈ Z(R)∗. Since diam

(
ΓE(R[x;α, δ])

)
= 2, diam

(
ΓE(R)

)
= 2, by

statements (1), (2). Hence by [16, Theorem 2.2(3)], there exist b, c ∈ Z(R)∗ such that bc , 0 and [b]R , [c]R, as
desired.

Case 2. Assume that diam
(
Γ(R[x;α, δ])

)
= 3. Then by [17, Theorem 2.7], R is not a reduced ring with

exactly two minimal primes and either R does not has right Property (A) or Z(R) is not an ideal of R. By
Theorem 2.2, diam

(
ΓE(R[x;α, δ])

)
= 3, which is a contradiction.

For the backward direction, assume that R has right Property (A), Z(R) is an ideal of R with
(
Z(R)

)2
, 0.

Then Z
(
R[x;α, δ]

)
is an ideal of R[x;α, δ], by Lemma 2.1, and so each pair of distinct zero-divisors of R[x;α, δ]

has a nonzero annihilator. Thus diam
(
Γ(R[x;α, δ])

)
≤ 2. Since

(
Z(R)

)2
, 0, diam

(
Γ(R[x;α, δ])

)
≥ 2. Hence

diam
(
Γ(R[x;α, δ])

)
= 2. Since diam

(
ΓE(R[x;α, δ])

)
≤ diam

(
Γ(R[x;α, δ])

)
, diam

(
ΓE(R[x;α, δ])

)
= 2, by using

statements (1) and (2).
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Now let Z(R) = annR(a) and there exist b, c ∈ Z(R)∗ such that bc , 0 and [b]R , [c]R. Thus Z
(
R[x;α, δ]

)
=

annR[x;α,δ](a) and also [b]R[x;α,δ] , [c]R[x;α,δ]. Therefore diam
(
ΓE(R[x;α, δ])

)
= 2.

(4) For the forward direction, let diam
(
ΓE(R[x;α, δ])

)
= 3. We claim that

(
Z(R)

)2
, 0. To see this, let(

Z(R)
)2

= 0. Then R is nonreduced. Thus by statement (1), diam
(
ΓE(R[x;α, δ])

)
= 0, which is a contradiction.

Hence
(
Z(R)

)2
, 0. By statement (2), R is not a reduced ring with exactly two minimal primes and by

statement (3), R has not right Property (A) or Z(R) is not an ideal of R.
The backward direction follows from statements (2) and (3).

Theorem 2.4. Let R be a reversible and (α, δ)-compatible ring. The following cases describe all possibilities for the
pair diam

(
ΓE(R)

)
and diam

(
ΓE(R[x;α, δ])

)
. Then

(1) diam
(
ΓE(R)

)
= 0 if and only if diam

(
ΓE(R[x;α, δ])

)
= 0;

(2) diam
(
ΓE(R)

)
= 1 if and only if diam

(
ΓE(R[x;α, δ])

)
= 1;

(3) diam
(
ΓE(R)

)
= diam

(
ΓE(R[x;α, δ])

)
= 2 if and only if either (i) R has property (A), Z(R) is an ideal of R and

Z(R) , annR(a), for each a ∈ Z(R) or (ii) Z(R) = annR(a), for some a ∈ Z(R) and there exist two elements
b, c ∈ Z(R)∗ such that bc , 0 and [b]R , [c]R;

(4) diam
(
ΓE(R)

)
= 2 and diam

(
ΓE(R[x;α, δ])

)
= 3 if and only if Z(R) is an ideal and each pair of distinct zero

divisors has a nonzero annihilator, and R does not have property (A);
(5) diam

(
ΓE(R)

)
= diam

(
ΓE(R[x;α, δ])

)
= 3 if and only if R is not a reduced ring with exactly two minimal

primes and Z(R) is not an ideal of R.

Proof. These follow from [16, Theorem 2.2] and Theorem 2.3.

Taking α = IdR and δ = 0, so we have the following results.

Corollary 2.5. Let R be a reversible ring. Then

(1) diam
(
ΓE(R[x])

)
= 0 if and only if diam

(
ΓE(R)

)
= 0;

(2) diam
(
ΓE(R[x])

)
= 1 if and only if diam

(
ΓE(R)

)
= 1;

(3) diam
(
ΓE(R[x])

)
= 2 if and only if either (i) R has right Property (A), Z(R) is an ideal of R with

(
Z(R)

)2
, 0,

and Z(R) , annR(a), for each a ∈ Z(R)∗ or (ii) Z(R) = annR(a), for some a ∈ Z(R)∗ and there exist two elements
b, c ∈ Z(R)∗ such that bc , 0 and [b]R , [c]R;

(4) diam
(
ΓE(R[x])

)
= 3 if and only if R is not a reduced ring with exactly two minimal primes and either R has

not right Property (A) or Z(R) is not an ideal of R.

Corollary 2.6. Let R be a reversible ring. The following cases describe all possibilities for the pair diam
(
ΓE(R)

)
,

diam
(
ΓE(R[x])

)
. Then

(1) diam
(
ΓE(R)

)
= diam

(
ΓE(R[x])

)
= 2 if and only if either (i) R has right Property (A), Z(R) is an ideal of R

with Z(R)2 , 0, and Z(R) , annR(a), for each a ∈ Z(R) or (ii) Z(R) = annR(a), for some a ∈ Z(R) and there
exist two elements b, c ∈ Z(R)∗ such that bc , 0 and [b]R , [c]R;

(2) diam
(
ΓE(R)

)
= 2 and diam

(
ΓE(R[x])

)
= 3 if and only if Z(R) is an ideal whose square is not (0) and each pair

of distinct zero divisors has a nonzero annihilator, Z(R) , annR(a) for each a ∈ Z(R) and R have not Property
(A);

(3) diam
(
ΓE(R)

)
= diam

(
ΓE(R[x])

)
= 3 if and only if R is not a reduced ring with exactly two minimal primes

and Z(R) is not an ideal of R.

The following example shows that the assumption “R is reversible” in Theorems 2.3 and 2.4 is crucial.
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Example 2.7. Assume that R = M2(Z2). Clearly R is not reversible. In Example 2.8, we will show that
diam

(
ΓE(R)

)
= 2. Consider α = IdR and δ = 0. Since diam

(
ΓE(R)

)
≤ diam

(
ΓE(R[x])

)
, diam

(
ΓE(R[x])

)
= 2

or 3. We claim that diam
(
ΓE(R[x])

)
= 3. It is enough to show that there are two elements f , 1 ∈ Z

(
R[x]

)
such that

f1 , 0 , 1 f and f , 1 have not common nonzero annihilator. Consider elements f (x) = A0 + A1x, 1(x) = B0 + B1x ∈

Z
(
R[x]

)
, where A0 =

(
1 0
0 0

)
,A1 =

(
1 1
0 0

)
,B0 =

(
0 0
1 0

)
and B1 =

(
1 1
1 1

)
. Obviously, f1 , 0 , 1 f .

First assume that h(x) = C is a nonzero common annihilator of f (x) and 1(x). If h(x) f (x) = 0 = h(x)1(x), then
C ∈ l(A0) ∩ l(A1) ∩ l(B0) ∩ l(B1). Hence C = 0, which is a contradiction. Now, if h(x) f (x) = 0 = 1(x)h(x), then
C ∈ l(A0) ∩ l(A1) ∩ r(B0) ∩ r(B1), and so C = 0, which is also a contradiction. Similarly, if h(x)1(x) = 0 = f (x)h(x)
or f (x)h(x) = 0 = 1(x)h(x), then C = 0. Therefore h(x) can not be in forms h(x) = C or h(x) = Cxk.

Now assume that h(x) =
∑n

i=0 Cixi, where C0 , 0 , Cn and n > 0. Also let f h = 0 = 1h. Then we have
A0C0 = 0,A0C1 + A1C0 = 0, . . . ,A0Cn + A1Cn−1 = 0, A1Cn = 0, B0C0 = 0,B0C1 + B1C0 = 0, . . . ,B0Cn +

B1Cn−1 = 0 and B1Cn = 0. Hence C0 ∈ r(A0) ∩ r(B0) and Cn ∈ r(A1) ∩ r(B1), and so C0 =

(
0 0
1 0

)
and

Cn ∈

{(
1 1
1 1

)
,

(
1 0
1 0

)
,

(
0 1
0 1

)}
. One can easily show that A0C1 + A1C0 , 0, for each C1 ∈ R, which is a

contradiction. By a similar method, we can show that the cases f h = 0 = h1, h f = 0 = h1 or h f = 0 = 1h can not
occur. Thus f and 1 have not nonzero common annihilator, and so diam

(
ΓE(R[x])

)
= 3. Therefore, assumption “R is

reversible” in Theorem 2.4 can not be eliminated.

The next example shows that the assumption “R is δ-compatible” in Theorems 2.3 and 2.4 is not
superfluous.

Example 2.8. Let R = Z2[t]/(t2) with the derivation δ such that δ(t̄) = 1, where t̄ = t + (t2) in R and Z2[t] is
the polynomial ring over the field Z2 of two elements. Since t̄2 = 0 but t̄δ(t̄) , 0, then R is not δ-compatible.
It is obvious that Z(R) =

{
0, t̄

}
, hence diam

(
ΓE(R)

)
= 0. Now, consider the Ore extension R[x; δ]. In [19,

Example 2.10], was shown that R[x; δ] � M2(Z2)[y]. We put R′ = M2(Z2). It is easy to check that V
(
ΓE(R′)

)
={

[E11]R′ , [E12]R′ , [E21]R′ , [E22]R′ , [E11 + E12 + E21 + E22]R′ , [E11 + E12]R′ , [E11 + E21]R′ , [E21 + E22]R′ , [E12 + E22]R′
}
,

where Ei j denote the matrix units. Also, it can be seen that the multiplication of each pair of distinct zero divisors
equal zero or has a nonzero annihilator. Hence diam

(
ΓE(R′)

)
= 2 (see Figure 1). Thus diam

(
ΓE(R′[y])

)
≥ 2, and

hence diam
(
ΓE(R[x;α])

)
≥ 2. Therefore, the assumption “R is δ-compatible” in Theorem 2.3 is crucial.
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Figure 1:

The following example also shows that the assumption “R is α-compatible” in Theorems 2.3 and 2.4 is
crucial.

Example 2.9. Let S = Z6 and R = S[y]. Consider the endomorphism α : R → R given by α( f (y)) = f (0). In [14,
Example 3.8], it is shown that R is a reduced ring which is not α-compatible. One can see that V

(
ΓE(R)

)
=

{
[2]R, [3]R

}
,

and hence diam
(
ΓE(R)

)
= 1. Consider the ring R[x;α]. Now, we compute Z(R[x;α]). Let f (x)1(x) = 0, where

f (x) =
∑n

i=0 fi(y)xi and 1(x) =
∑m

j=0 1 j(y)x j are nonzero elements of R[x;α]. We consider the following cases:
Case (I): Let f0(y) , 0 and 1t(y) be the first nonzero coefficient of 1(x). Since f (x)1(x) = 0, thus f0(y)1t(y) =

0, f1(y)α(1t(y))+ f0(y)1t+1(y) = 0, f2(y)α2(1t(y))+ f1(y)α(1t+1(y))+ f0(y)1t+2(y) = 0, . . . , fn(y)αn(1m(y)) = 0. Since
R is McCoy, so we have either f0(y) ∈ 2Z6[y], 1t(y) ∈ 3Z6[y] or f0(y) ∈ 3Z6[y], 1t(y) ∈ 2Z6[y]. Without loss of
generality, we may assume that f0(y) ∈ 2Z6[y] and 1t(y) ∈ 3Z6[y]. Now, we consider the following subcases:

Subcase (I-I): If α(1 j(y)) = 0 for each t ≤ j ≤ m, then 1 j(y) ∈ 3Z6[y] (since f0(y) ∈ 2Z6(y)), and fi(y) are
arbitrary, for each 1 ≤ i ≤ n.

Subcase (I-II): Let α(1 j(y)) , 0 for some t ≤ j ≤ m, also let s be the smallest index such that α(1s(y)) , 0.
Then f0(y)1t(y) = 0, f0(y)1t+1(y) = 0, . . . , f0(y)1s(y) = 0, f0(y)1s+1(y) + f1(y)α(1s(y)) = 0, . . . , fn(y)αn(1m(y)) = 0.
Since f0(y) ∈ 2Z6[y], it is easy to see that 1 j(y) ∈ 3Z6[y], for each t ≤ j ≤ s. Now, by multiplying 3 to
f0(y)1s+1(y) + f1(y)α(1s(y)) = 0, we have 3 f1(y)α(1s(y)) = 0. Hence f1(y) ∈ 2Z6(y), since 1s(y) ∈ 3Z6[y]. By
continuing this process, we deduce that fi(y) ∈ 2Z6(y) for each 0 ≤ i ≤ n, and 1 j(y) ∈ 3Z6[y] for each t ≤ j ≤ m.

Now, if f0(y) ∈ 3Z6[y] and 1t(y) ∈ 2Z6[y], then by a similar way as used in Subcase (I-I) and Subcase (I-II), we
conclude that:

If α(1 j(y)) = 0 for each t ≤ j ≤ m, then 1 j(y) ∈ 2Z6[y] (since f0(y) ∈ 3Z6(y)), and fi(y) are arbitrary, for every
1 ≤ i ≤ n.

If α(1 j(y)) , 0, for some t ≤ j ≤ m and s is the smallest index such that α(1s(y)) , 0, then fi(y) ∈ 3Z6(y) for
every i ≥ 0, and 1 j(y) ∈ 2Z6[y] for every t ≤ j ≤ m.

Case (II): Let fs(y) and 1t(y) be the first nonzero coefficient of f (x) and 1(x) (for s > 0), respectively. Thus
fs(y)αs(1t(y)) = 0, fs(y)αs(1t+1(y)) + fs+1(y)αs+1(1t(y)) = 0, . . . , fn(y)αn(1m(y)) = 0, since f (x)1(x) = 0. Then the
following subcases occur:

Subcase (II-I): Let α(1 j(y)) = 0, for each t ≤ j ≤ m. Then fi(y) is arbitrary, for each s ≤ i ≤ n.
Subcase (II-II): Let α(1t(y)) , 0. Then either fs(y) ∈ 2Z6[y], α(1t(y)) = 3 or fs(y) ∈ 3Z6[y], α(1t(y)) ∈ 2Z6[y]

(since fs(y)αs(1t(y)) = 0 and α(1t(y)) , 0). First assume that fs(y) ∈ 2Z6[y] and α(1t(y)) = 3. By a similar way as
used to Subcase (I-II), we have fi(y) ∈ 2Z6[y] for each s ≤ i ≤ n, α(1t(y)) = 3. Now assume that fs(y) ∈ 3Z6[y] and
α(1t(y)) ∈ 2Z6[y]. Similarly, we conclude that fi(y) ∈ 3Z6[y] for each s ≤ i ≤ n, and α(1t(y)) ∈ 2Z6[y].
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Hence Zl

(
R[x;α]

)
= A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5, where

A1 =
{∑n

i=0 fi(y)xi
| fi(y) ∈ 2Z6[y] for each i

}
,

A2 =
{∑n

i=0 fi(y)xi
| fi(y) ∈ 3Z6[y] for each i

}
,

A3 =
{∑n

i=0 fi(y)xi
| f0(y) , 0, f0(y) ∈ 2Z6[y] and f j(y) < 2Z6[y] for some j

}
,

A4 =
{∑n

i=0 fi(y)xi
| f0(y) , 0, f0(y) ∈ 3Z6[y] and f j(y) < 3Z6[y] for some j

}
and A5 =

{∑n
i=s fi(y)xi

| s > 0, { fi(y)}ni=s * 2Z6[y] and { fi(y)}ni=s * 3Z6[y]
}
, and also Zr

(
R[x;α]

)
= B1∪B2∪B3∪B4,

where
B1 =

{∑n
i=0 fi(y)xi

| fi(y) ∈ 2Z6[y] for each i
}
,

B2 =
{∑n

i=0 fi(y)xi
| fi(y) ∈ 3Z6[y] for each i

}
,

B3 =
{∑n

i=0 fi(y)xi
| α( fi(y)) ∈ 2Z6 for each i

}
and B4 =

{∑n
i=0 fi(y)xi

| α( fi(y)) ∈ 3Z6 for each i
}
. Therefore Z

(
R[x;α]

)
= A1 ∪A2 ∪A3 ∪A4 ∪A5 ∪A6 ∪A7, where

A6 = B3 and A7 = B4.
Now, we determine annR[x;α](β(x)), for each β(x) =

∑n
i=0 fi(y)xi

∈ Z(R[x;α]). If β(x) ∈ A1, then we have the
following cases:

Case 1.1 Let α( fi(y)) = 0 for each 0 ≤ i ≤ n. Then we consider the following subcases:

Subcase 1.1.1 Let f0(y) , 0. Then l(β(x)) =
{∑m

i=0 1i(y)xi
| 10(y) ∈ 3Z6[y]

}
and r(β(x)) =

{∑m
i=0 hi(y)xi

| hi(y) ∈

3Z6[y] for each i
}
. Thus annR[x;α](β(x)) =

{∑m
i=0 1i(y)xi

| 10(y) ∈ 3Z6[y]
}
∪

{∑m
i=0 hi(y)xi

| hi(y) ∈ 3Z6[y] for each i
}
.

Subcase 1.1.2 Let f0(y) = 0 and fs(y) be the first nonzero coefficient of β(x). Then l(β(x)) =
{∑m

i=0 1i(y)xi
| 10(y)

∈ 3Z6[y]
}

and r(β(x)) =
{∑m

i=0 hi(y)xi
| α(hi(y)) ∈ 3Z6 for each i

}
. Thus annR[x;α](β(x)) =

{∑n
i=0 1i(y)xi

| 10(y) ∈

3Z6[y]
}
∪

{∑m
i=0 hi(y)xi

| α(hi(y)) ∈ 3Z6 for each i
}
.

Case 1.2 Let α( fi(y)) , 0 for some 0 ≤ i ≤ n. Then we consider the following subcases:

Subcase 1.2.1 Let f0(y) , 0. Then l(β(x)) = r(β(x)) =
{∑m

i=0 1i(y)xi
| 1i(y) ∈ 3Z6[y] for each i

}
. Thus

annR[x;α](β(x)) =
{∑m

i=0 1i(y)xi
| 1i(y) ∈ 3Z6[y] for each i

}
.

Subcase 1.2.2 Let f0(y) = 0 and fs(y) be the first nonzero coefficient of β(x). Then l(β(x)) =
{∑m

i=0 1i(y)xi
|

1i(y) ∈ 3Z6[y] for each i
}

and r(β(x)) =
{∑m

i=0 hi(y)xi
| α(hi(y)) ∈ 3Z6 for each i

}
. Thus annR[x;α](β(x)) ={∑m

i=0 1i(y)xi
| 1i(y) ∈ 3Z6[y] for each i

}
∪

{∑m
i=0 hi(y)xi

| α(hi(y)) ∈ 3Z6 for each i
}
.

Therefore A1 = [2y] ∪ [2yx] ∪ [2] ∪ [2x].
If β(x) ∈ A2, then by a similar argument as used in Cases 1.1 and 1.2, one can easily show that A2 = [3y] ∪

[3yx] ∪ [3] ∪ [3x].
If β(x) ∈ A3, then we can write β(x) = β1(x) + β2(x), where β1(x) =

∑t
i=0 f1i(y)xmi and β2(x) =

∑l
j=0 f2 j(y)xk j

such that f1i(y) ∈ 2Z6[y] and f2 j(y) < 2Z6[y], for each 0 ≤ i ≤ t and 0 ≤ j ≤ l. Hence we have the following cases:

Case 3.1 Let α( f1i(y)) = 0 = α( f2 j(y)) for each 0 ≤ i ≤ t and 0 ≤ j ≤ l. Then l(β(x)) =
{∑m

i=1 1i(y)xi
| 1i(y) ∈

Z6[y] for each i
}

and r(β(x)) =
{∑m

i=0 hi(y)xi
| hi(y) ∈ 3Z6[y] and α(hi(y)) = 0 for each i

}
. Thus annR[x;α](β(x)) ={∑m

i=1 1i(y)xi
| 1i(y) ∈ Z6[y] for each i

}
∪

{∑m
i=0 hi(y)xi

| hi(y) ∈ 3Z6[y] and α(hi(y)) = 0 for each i
}
.

Case 3.2 Let α( f1i(y)) = 0 for each 0 ≤ i ≤ t, α( f2 j(y)) , 0 for some 0 ≤ j ≤ l. We consider the following
subcases:

Subcase 3.2.1 Assumeα( f2 j(y)) ∈ {1, 5}, for some 0 ≤ j ≤ l. Then l(β(x)) = 0 and r(β(x)) =
{∑m

i=0 1i(y)xi
| 1i(y) ∈

3Z6[y] and α(1i(y)) = 0 for each i
}
. Thus annR[x;α](β(x)) =

{∑m
i=0 1i(y)xi

| 1i(y) ∈ 3Z6[y] and α(1i(y)) = 0 for each i
}
.

Subcase 3.2.2 Assume
{
α( f2 j(y))

}l

j=0
= {2, 3}. Then l(β(x)) = 0 and r(β(x)) =

{∑m
i=0 1i(y)xi

| 1i(y) ∈

3Z6[y] and α(1i(y)) = 0 for each i
}
. Thus annR[x;α](β(x)) =

{∑m
i=0 1i(y)xi

| 1i(y) ∈ 3Z6[y] and α(1i(y)) = 0 for each i
}
.
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Subcase 3.2.3 Assume
{
α( f2 j(y))

}l

j=0
= {3}. Then l(β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈ 2Z6[y] for each i
}

and

r(β(x)) =
{∑m

i=0 hi(y)xi
| hi(y) ∈ 3Z6[y] and α(hi(y)) = 0 for each i

}
. Thus annR[x;α](β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈

2Z6[y] for each i
}
∪

{∑m
i=0 hi(y)xi

| hi(y) ∈ 3Z6[y] and α(hi(y)) = 0 for each i
}
.

Subcase 3.2.4 Assume
{
α( f2 j(y))

}l

j=0
= {2, 4}. Then l(β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈ 3Z6[y] for each i
}

and

r(β(x)) =
{∑m

i=0 hi(y)xi
| hi(y) ∈ 3Z6[y] and α(hi(y)) = 0 for each i

}
. Thus annR[x;α](β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈

3Z6[y] for each i
}
∪

{∑m
i=0 hi(y)xi

| hi(y) ∈ 3Z6[y] and α(hi(y)) = 0 for each i
}
.

Case 3.3 Let α( f1i(y)) , 0 for some 0 ≤ i ≤ t. Then we have the following subcases:
Subcase 3.3.1 Assume α( f2 j(y)) = 0 for each 0 ≤ j ≤ l. Then l(β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈ 3Z6[y] for each i
}

and r(β(x)) =
{∑m

i=0 hi(y)xi
| hi(y) ∈ 3Z6[y] and α(hi(y)) = 0 for each i

}
. Hence annR[x;α](β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y)

∈ 3Z6[y] for each i
}
∪

{∑m
i=0 hi(y)xi

| hi(y) ∈ 3Z6[y] and α(hi(y)) = 0 for each i
}
.

Subcase 3.3.2 Assume α( f2 j(y)) , 0 for some 0 ≤ j ≤ l, and α( f2 j(y)) < 2Z6. Then l(β(x)) = 0 and
r(β(x)) =

{∑m
i=0 1i(y)xi

| 1i(y) ∈ 3Z6[y] and α(1i(y)) = 0 for each i
}
. Hence annR[x;α](β(x)) =

{∑m
i=0 1i(y)xi

| 1i(y) ∈

3Z6[y] and α(1i(y)) = 0 for each i
}
.

Subcase 3.3.3 Let α( f2 j(y)) , 0 for some 0 ≤ j ≤ l, and
{
α( f2 j(y))

}l

j=0
= 2Z6. Then l(β(x)) =

{∑m
i=1 1i(y)xi

|

1i(y) ∈ 3Z6[y] for each i
}

and r(β(x)) =
{∑m

i=0 hi(y)xi
| hi(y) ∈ 3Z6[y] and α(hi(y)) = 0 for each i

}
. Hence

annR[x;α](β(x)) =
{∑m

i=1 1i(y)xi
| 1i(y) ∈ 3Z6[y] for each i

}
∪

{∑m
i=0 hi(y)xi

| hi(y) ∈ 3Z6[y] andα(hi(y)) = 0 for each i
}
.

Therefore A3 = [2y + yx] ∪ [2y + x] ∪ [2y + 3x] ∪ [2y + (2 + 3y)x].
If β(x) ∈ A4, then by a similar way as used in Cases 3.1-3.3, one can show that A4 = [3y + yx]∪ [3y + x]∪ [3y +

2x] ∪ [3y + (3 + 2y)x].
If β(x) ∈ A5 , then we have the following cases:
Case 5.1 Let α( fi(y)) , 0 for some s ≤ i ≤ n. Also let α( fi(y)) , 3 and α( fi(y)) < 2Z6 for some s ≤ i ≤ n. Then

l(β(x)) = 0 and r(β(x)) =
{∑m

i=0 1i(y)xi
| α(1i(y)) = 0 for each i

}
. Hence annR[x;α](β(x)) =

{∑m
i=0 1i(y)xi

|

α(1i(y)) = 0 for each i
}
.

Case 5.2 Let α( fi(y)) = 0 for each s ≤ i ≤ n. Then l(β(x)) =
{∑m

i=1 1i(y)xi
| 1i(y) ∈ Z6[y] for each i

}
and

r(β(x)) =
{∑m

i=0 hi(y)xi
| α(hi(y)) = 0 for each i

}
. Hence annR[x;α](β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈ Z6[y] for each i
}
∪{∑m

i=0 hi(y)xi
| α(hi(y)) = 0 for each i

}
.

Therefore A5 = [x] ∪ [yx].
If β(x) ∈ A6, then we have the following cases:
Case 6.1 Let α( fi(y)) = 0 for each 0 ≤ i ≤ n. Thus we consider the following subcases:
Subcase 6.1.1 Let fi(y) ∈ 2Z6[y] for each 0 ≤ i ≤ n. Then we have the following subcases:
Subcase 6.1.1.1 If f0(y) , 0, then annR[x;α](β(x)) =

{∑m
i=0 1i(y)xi

| 10(y) ∈ 3Z6[y]
}
∪

{∑m
i=0 hi(y)xi

| hi(y) ∈

3Z6[y] for each i
}
, by Subcase 1.1.1.

Subcase 6.1.1.2 If f0(y) = 0, then annR[x;α](β(x)) =
{∑n

i=0 1i(y)xi
| 10(y) ∈ 3Z6[y]

}
∪

{∑m
i=0 hi(y)xi

| α(hi(y)) ∈

3Z6 for each i
}
, by Subcase 1.1.2.

Subcase 6.1.2 Let fi(y) < 2Z6[y] for some 0 ≤ i ≤ n. Then we consider the following subcases:
Subcase 6.1.2.1 If fi(y) ∈ 3Z6[y] for each 0 ≤ i ≤ n, then we have the following subcases:
Subcase 6.1.2.1.1 Let f0(y) = 0. Then by a similar way as used in Subcase 1.1.2, we have annR[x;α](β(x)) ={∑m
i=0 1i(y)xi

| 1i(y) ∈ 2Z6[y] for each i
}
∪

{∑m
i=0 hi(y)xi

| α(hi(y)) ∈ 2Z6 for each i
}
.

Subcase 6.1.2.1.2 Let f0(y) , 0. Then by a similar way as used in Subcase 1.1.1, we have annR[x;α](β(x)) ={∑m
i=0 1i(y)xi

| 10(y) ∈ 2Z6[y]
}
∪

{∑m
i=0 hi(y)xi

| hi(y) ∈ 2Z6[y] for each i
}
.

Subcase 6.1.2.2 If f j(y) < 3Z6[y] for some 0 ≤ j ≤ n, then we have the following subcases:
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Subcase 6.1.2.2.1 Let f0(y) = 0. Then l(β(x)) =
{∑m

i=1 1i(y)xi
| 1i(y) ∈ Z6[y] for each i

}
and r(β(x)) ={∑m

i=0 hi(y)xi
| α(hi(y)) = 0 for each i

}
. Thus annR[x;α](β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈ Z6[y] for each i
}
∪{∑m

i=0 hi(y)xi
| α(hi(y)) = 0 for each i

}
.

Subcase 6.1.2.2.2 Let f0(y) , 0. Then we have the following subcases:
Subcase 6.1.2.2.2.1 If i = j = 0, then l(β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈ Z6[y] for each i
}

and r(β(x)) = 0. Thus

annR[x;α](β(x)) =
{∑m

i=1 1i(y)xi
| 1i(y) ∈ Z6[y] for each i

}
.

Subcase 6.1.2.2.2.2 If i = j , 0, then we consider the following subcases:
Subcase 6.1.2.2.2.2.1 Let f0(y) ∈ 2Z6[y]. Then l(β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈ Z6[y] for each i
}

and

r(β(x)) =
{∑m

i=0 hi(y)xi
| hi(y) ∈ 3Z6[y] and α(hi(y)) = 0 for each i

}
. Thus annR[x;α](β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈

Z6[y] for each i
}
∪

{∑m
i=0 hi(y)xi

| hi(y) ∈ 3Z6[y] and α(hi(y)) = 0 for each i
}
.

Subcase 6.1.2.2.2.2.2 Let f0(y) ∈ 3Z6[y]. Then l(β(x)) =
{∑m

i=1 1i(y)xi
| 1i(y) ∈ Z6[y] for each i

}
and

r(β(x)) =
{∑m

i=0 hi(y)xi
| hi(y) ∈ 2Z6[y] and α(hi(y)) = 0 for each i

}
. Thus annR[x;α](β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈

Z6[y] for each i
}
∪

{∑m
i=0 hi(y)xi

| hi(y) ∈ 2Z6[y] and α(hi(y)) = 0 for each i
}
.

Subcase 6.1.2.2.2.2.3 Let neither f0(y) ∈ 2Z6[y] nor f0(y) ∈ 3Z6[y]. Then l(β(x)) =
{∑m

i=1 1i(y)xi
| 1i(y) ∈

Z6[y] for each i
}

and r(β(x)) = 0. Thus annR[x;α](β(x)) =
{∑m

i=1 1i(y)xi
| 1i(y) ∈ Z6[y] for each i

}
.

Subcase 6.1.2.2.2.3 If i = 0, j , 0, i , 0, j = 0 or i , j , 0, then one of the Subcases 6.1.2.2.2.2.1-6.1.2.2.2.2.3
appears.

Case 6.2 Let α( fi(y)) , 0 for some 0 ≤ i ≤ n. Thus we consider the following subcases:
Subcase 6.2.1 Let fi(y) ∈ 2Z6[y] for each 0 ≤ i ≤ n. Then we have the following subcases:
Subcase 6.2.1.1 Let f0(y) = 0. Then annR[x;α](β(x)) =

{∑m
i=0 1i(y)xi

|1i(y) ∈ 3Z6[y] for each i
}
∪

{∑m
i=0 hi(y)xi

|α(hi(y)) ∈

3Z6 for each i
}
, by Subcase 1.2.2.

Subcase 6.2.1.2 Let f0(y) , 0. Then annR[x;α](β(x)) =
{∑m

i=0 1i(y)xi
| 1i(y) ∈ 3Z6[y] for each i

}
, by Subcase

1.2.1.
Subcase 6.2.2 Let f j(y) < 2Z6[y] for some 0 ≤ j ≤ n. Then we have the following subcases:
Subcase 6.2.2.1 Let f0(y) = 0. Then l(β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈ 3Z6[y] for each i
}

and r(β(x)) ={∑m
i=0 hi(y)xi

| α(hi(y)) = 0 for each i
}
. Hence annR[x;α](β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈ 3Z6[y] for each i
}
∪{∑m

i=0 hi(y)xi
| α(hi(y)) = 0 for each i

}
.

Subcase 6.2.2.2 Let f0(y) , 0. Then we consider the following subcases:
Subcase 6.2.2.2.1 If i = j = 0, then l(β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈ 3Z6[y] for each i
}

and r(β(x)) = 0. Thus

annR[x;α](β(x)) =
{∑m

i=1 1i(y)xi
| 1i(y) ∈ 3Z6[y] for each i

}
.

Subcase 6.2.2.2.2 If i = j , 0, then we consider following subcases:
Subcase 6.2.2.2.2.1 Let f0(y) ∈ 2Z6[y]. Then l(β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈ 3Z6[y] for each i
}

and

r(β(x)) =
{∑m

i=0 hi(y)xi
| hi(y) ∈ 3Z6[y] and α(hi(y)) = 0 for each i

}
. Thus annR[x;α](β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈

3Z6[y] for each i
}
∪

{∑m
i=0 hi(y)xi

| hi(y) ∈ 3Z6[y] and α(hi(y)) = 0 for each i
}
.

Subcase 6.2.2.2.2.2 Let f0(y) ∈ 3Z6[y]. Then l(β(x)) =
{∑m

i=1 1i(y)xi
| 1i(y) ∈ 3Z6[y] for each i

}
and

r(β(x)) =
{∑m

i=0 hi(y)xi
| hi(y) ∈ 2Z6[y] and α(hi(y)) = 0 for each i

}
. Thus annR[x;α](β(x)) =

{∑m
i=1 1i(y)xi

| 1i(y) ∈

3Z6[y] for each i
}
∪

{∑m
i=0 hi(y)xi

| hi(y) ∈ 2Z6[y] and α(hi(y)) = 0 for each i
}
.

Subcase 6.2.2.2.2.3 Let neither f0(y) ∈ 2Z6[y] nor f0(y) ∈ 3Z6[y]. Then l(β(x)) =
{∑m

i=1 1i(y)xi
| 1i(y) ∈

3Z6[y] for each i
}

and r(β(x)) = 0. Thus annR[x;α](β(x)) =
{∑m

i=1 1i(y)xi
| 1i(y) ∈ 3Z6[y] for each i

}
.

Subcase 6.2.2.2.3 If i = 0, j , 0, i , 0, j = 0 or i , j , 0, then one of the Subcases 6.2.2.2.2.1-6.2.2.2.2.3 appears.
Therefore A6 = [2y]∪ [2yx]∪ [3yx]∪ [3y]∪ [yx]∪ [y]∪ [2y + (2 + 3y)x]∪ [2y + yx]∪ [3y + yx]∪ [2x]∪ [2]∪

[(2 + y)x] ∪ [2 + y] ∪ [3y + 2x].
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If β(x) ∈ A7, then by a similar way as used in Cases 6.1 and 6.2, one can show that A7 = [2y] ∪ [2yx] ∪ [3yx] ∪
[3y]∪ [yx]∪ [y]∪ [3y + (3 + 2y)x]∪ [2y + yx]∪ [3y + yx]∪ [3x]∪ [3]∪ [(3 + y)x]∪ [3 + y]∪ [2y + 3x]. Therefore

V
(
ΓE(R[x;α])

)
=
{
[2y], [2], [3y + yx], [2x], [3y], [3], [3yx], [3x], [2y + yx], [2y + x],

[2y + (2 + 3y)x], [2yx], [3y + x], [3y + 2x], [3y + (3 + 2y)x],

[x], [yx], [y], [2y + 3x], [2 + y], [3 + y], [(2 + y)x], [(3 + y)x]
}
.

One can easily check that the distinct vetices [3] and [2y + x] have not nonzero common annihilator, and also
[3][2y + x] , 0 , [2y + x][3]. Hence diam

(
ΓE(R[x;α])

)
= 3 (see Figure 2). Therefore, assumption α-compatiblity

Figure 2:

in Theorem 2.3 can not be eliminated.

3. On the diameter of compressed zero-divisor graph of skew power series rings

Yang, Song and Liu in [36], introduced the concept of power-serieswise McCoy. A ring R is said to be
right power-serieswise McCoy if whenever power series f (x), 1(x) ∈ R[[x]] \ {0} satisfy f (x)1(x) = 0, then there
exists 0 , r ∈ R such that f (x)r = 0. Left power-serieswise McCoy can be defined similarly. If ring R is both
right and left power-serieswise McCoy, we say that R is power-serieswise McCoy.

Let α be an endomorphism of a ring R. According to [2], a ring R is called right α-power-serieswise
McCoy, if whenever power series f (x), 1(x) ∈ R[[x;α]] \ {0} satisfy f (x)1(x) = 0, then there exists 0 , c ∈ R
such that f (x)c = 0. Left α-power-serieswise McCoy can be defined similarly. If ring R is both right and left
α-power-serieswise McCoy, we say that R is α-power-serieswise McCoy.

In this section, we proceed to characterize the diameter of ΓE(R[[x;α]]), where R is a reversible, α-
compatible and right Noetherian ring.

Remark 3.1. If R is a reversible, α-compatible and right Noetherian ring, then R is α-power-serieswise McCoy by
[20, Corollary 2.7].

Remark 3.2. Let R be a reduced and α-compatible ring. Then R[[x;α]] is reduced by [19].

Theorem 3.3. Let R be a reversible and α-compatible ring. Then diam
(
ΓE(R[[x;α]])

)
= 0 if and only if R is not

reduced with Z(R)2 = 0.
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Proof. For forward direction, suppose that diam
(
ΓE(R[[x;α]])

)
= 0. Hence diam

(
ΓE(R)

)
= 0, since

diam
(
ΓE(R)

)
≤ diam

(
ΓE(R[[x;α]])

)
. Therefore R is not a reduced with Z(R)2 = 0, by [16, Theorem 2.2].

For backward direction, let R don’t be a reduced ring with Z(R)2 = 0. By [20, Theorem 2.21],
diam

(
Γ(R[[x;α]])

)
= 1. Thus diam

(
ΓE(R[[x;α]])

)
= 0 or 1. We claim that diam

(
ΓE(R[[x;α]])

)
= 0. Oth-

erwise, there exist f , 1 ∈ Z
(
R[[x;α]]

)∗
such that f1 = 0 but [ f ] , [1]. Hence there is h ∈ annR[[x;α]]( f ) with

h1 , 0. This is a contradiction.

In [20, Theorem 2.17], the authors showed that if R is a reversible, α-compatible and right Noetherian
ring, then Z

(
R[[x;α]]

)
is an ideal of R[[x;α]] if and only if Z(R) is an ideal of R. This will be useful in the

following results.

Theorem 3.4. Let R be a reversible, α-compatible and right Noetherian ring with Z(R)2 , 0. Then

(1) diam
(
ΓE(R[[x;α]])

)
= 1 if and only if diam

(
ΓE(R)

)
= 1;

(2) diam
(
ΓE(R[[x;α]])

)
= 2 if and only if diam

(
ΓE(R)

)
= 2;

(3) diam
(
ΓE(R[[x;α]])

)
= 3 if and only if diam

(
ΓE(R)

)
= 3.

Proof. (1) For forward direction, suppose that diam
(
ΓE(R[[x;α]])

)
= 1. By Theorem 3.3, diam

(
ΓE(R)

)
= 1,

Since diam
(
ΓE(R)

)
≤ diam

(
ΓE(R[[x;α]])

)
.

For backward direction, let diam
(
ΓE(R)

)
= 1. By [16, Theorem 2.2], either (i) R is reduced with exactly

two minimal prime ideals P and Q with |Z(R)| ≥ 3 or (ii) |ΓE(R)| = 2 and there exists a ∈ Z(R)∗ such that
Z(R) = annR(a).

If (i) holds, by Remark 3.2, R[[x;α]] is a reduced ring, and also P[[x;α]] and Q[[x;α]] are the exactly
two minimal primes of R[[x;α]]. Assume that f , 1 ∈ Z

(
R[[x;α]]

)
. If both f and 1 belong to P[[x;α]], then

[ f ]R[[x;α]] = [1]R[[x;α]], since f h = 0 = 1h for each h ∈ Q[[x;α]] (since R is an α-compatible and R is reduced
ring). Similarly, if f , 1 ∈ Q[[x;α]], then [ f ]R[[x;α]] = [1]R[[x;α]]. Now if f ∈ P[[x;α]] and 1 ∈ Q[[x;α]], then
f1 = 0. Therefore diam

(
ΓE(R[[x;α]])

)
= 1.

If (ii) holds, by Remark 3.1, one can show that Z
(
R[[x;α]]

)
= annR[[x;α]](a). Hence diam

(
ΓE(R[[x;α]])

)
= 1.

(2) For forward direction, assume that diam
(
ΓE(R[[x;α]])

)
= 2. Since diam

(
ΓE(R)

)
≤ diam

(
ΓE(R[[x;α]])

)
and by statement (1), diam

(
ΓE(R)

)
= 2.

For backward direction, let diam
(
ΓE(R)

)
= 2. By [16, Theorem 2.2], either (i) Z(R) is an ideal of R whose

square is not (0) and each pair of distinct zero divisors has a nonzero annihilator and Z(R) , annR(a) for
every a ∈ Z(R) or (ii) Z(R) = annR(a) for some a ∈ Z(R)∗ and there exist b, c ∈ Z(R)∗ such that bc , 0 and
[b]R , [c]R.

If (i) holds, since R is a reversible, α-compatible right Noetherian ring and Z(R) is ideal, then Z(R[[x;α]])
is an ideal of R[[x;α]] (by [20, Theorem 2.17]). Hence each pair of distinct zero divisors of Z(R[[x;α]]) has
a nonzero annihilator, and so diam

(
Γ(R[[x;α]])

)
= 2. Since diam

(
ΓE(R)

)
≤ diam

(
ΓE(R[[x;α]])

)
, therefore

diam
(
ΓE(R[[x;α]])

)
= 2.

If (ii) holds, we can easily show that Z
(
R[[x;α]]

)
= annR[[x;α]](a) and [b]R[[x;α]] , [c]R[[x;α]]. Then the result

follows.
(3) It follows from statements (1) and (2).

We have the following corollary, if α = IdR.

Corollary 3.5. Let R be a reversible and right Noetherian ring. Then

(1) diam
(
ΓE(R[[x]])

)
= 0 if and only if diam

(
ΓE(R)

)
= 0;



E. Hashemi, M. Abdi / Filomat 34:7 (2020), 2387–2400 2399

(2) diam
(
ΓE(R[[x]])

)
= 1 if and only if diam

(
ΓE(R)

)
= 1;

(3) diam
(
ΓE(R[[x]])

)
= 2 if and only if diam

(
ΓE(R)

)
= 2;

(4) diam
(
ΓE(R[[x]])

)
= 3 if and only if diam

(
ΓE(R)

)
= 3.

The following example shows that the assumption “R is Noetherian” in Theorem 3.4 is not superfluous.

Example 3.6. Let K be a field and D = K[w, y, z]M, where w, y and z are algebraically independent indeterminates.
Clearly D is a domain. Let P denote the height two primes of D and Q be the maximal ideal of D. Also let
B =

∑
Fγ where Fγ = q f (D/Pγ) for each Pγ ∈ P. Let R = D(+)B be the idealization of B over D, and α = IdR.

Clearly, R is not Noetherian. Lucas [30, Example 5.2] showed that each two generated ideal contained in Z(R) has a
nonzero annihilator but R have not Property (A), and diam

(
Γ(R)

)
= 2 but diam

(
Γ(R[x])

)
= diam

(
Γ(R[[x]])

)
= 3.

Therefore diam
(
ΓE(R[[x]])

)
= 3, by [16, Theorem 2.2]. Since R have not Property (A) and diam

(
Γ(R)

)
= 2, hence

diam
(
ΓE(R)

)
= 2, by [16, Theorem 2.2]. Thus assumption “R is Noetherian” in Theorem 3.4 is not superfluous.

Example 2.9 also shows that the assumption “R is α-compatible” in Theorem 3.4 is crucial.
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[33] Y. Quentel, Sur la compacité du spectre minimal d’un anneau, Bull. Soc. Math. France, 99 (1971), 265-272.
[34] S. P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commut. Rings, 1 (2002), 203-211.
[35] S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra, 39 (2011),

2338-2348.
[36] S. Yang, X. Song and Z. Liu, Power-serieswise McCoy rings, Algebra Colloq., 18 (2011), 301-310.


