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Fractional Integral Inequalities of Hermite-Hadamard Type for Convex
Functions With Respect to a Monotone Function

Pshtiwan Othman Mohammed?

?Department of Mathematics, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq

Abstract. In the literature, the left-side of Hermite-Hadamard’s inequality is called a midpoint type
inequality. In this article, we obtain new integral inequalities of midpoint type for Riemann-Liouville
fractional integrals of convex functions with respect to increasing functions. The resulting inequalities gen-
eralize some recent integral inequalities and Riemann-Liouville fractional integral inequalities established
in earlier works. Finally, applications of our work are demonstrated via the known special functions.

1. Introduction

A function g : 7 € R — R is said to be convex on the interval 7, if the inequality
gx+ 1 —my) <ngl)+ 1 -ngy) M

holds for all x, y € 7 and n € [0, 1]. We say that g is concave, provided —g is convex.

For convex functions (I), many equalities and inequalities have been established, e.g., Ostrowski type
inequality [1]], Opial inequality [2], Hardy type inequality [3], Olsen type inequality [4], Gagliardo-Nirenberg
type inequality [5], midpoint and trapezoidal type inequalities [6}7] and the Hermite-Hadamard type (HH-
type) inequality [8] that will be used in our study, which is defined by:

1 U
1(57) < o2 [ e < TS, @

o—u

where g : 7 € R — Ris assumed to be a convex function on I where u,v € I withu < v.

A huge number of researchers in the field of applied and pure mathematics have devoted their efforts to
modify, generalize, refine, and extend the Hermite-Hadamard inequality (2) for convex and other classes
of convex functions; see for further details [8H12]].

In 2013, the HH-type inequality (2) has been generalised to fractional integrals of Riemann-Liouville

type by Sarikaya et al [13]. Their result is as follows, for an L! convex function fg : 7 — R, and for any
u > 0:

F(u+1
(u Z v) = 2((z;y—+u)?1 [15+9(U) + Ig_g(u)] < w’ .
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where I', and I'’ denote left-sided and right-sided Riemann-Liouville fractional integrals of order y > 0,
respectively, defined as [14]:

I g(x) = %[J) fx(x -t lgtdt, x> u,
4)
I g(x) = %{u) f (t—x)tg(tydt, x<o.

If we take y = 1 in (3) we obtain (@), it is clear that inequality (3) is a generalization of Hermite-Hadamard
inequality (). Many important results have been derived from the Riemann-Liouville fractional operators,
including in different types of fractional calculus, e.g. tempered fractional integrals [15], those of Hilfer
type [16], those models of fractional calculus involving Mittag-Leffler kernels [17], fractional integrals with
respect to functions [18], and many others can be found in [19H27]. But so far such inequalities have not been
investigated for fractional integrals of a twice differentiable convex function with respect to a monotone
function. For this reason, we recall the Riemann-Liouville fractional integrals of a function with respect to
a monotone function.

Definition 1.1 ([14, 28, 29]). Let g be an L' function, p > 0, and let I C (—o0,0) be a finite or infinite interval
of real numbers R such that u,v € I. Let 1 be an increasing and positive function on the interval I such that
Y’ € CY(T) with Y’ (x) # 0 for all x € I. Then, the left and right-sided \-Riemann—Liouville fractional integrals of
order u of a function g with respect to \ on I are defined by:

1Y () = %y) f YW - POy g,
o (5)
Y g(x) = %y) f YW - ) g(b)dt.

It is important to note that if we set Y(x) = x in (), then -Riemann—Liouville fractional integral reduces to
Riemann—Liouville fractional integral ().

As we said, in this study we investigate several inequalities of midpoint type for Riemann-Liouville
fractional integrals of twice differentiable convex functions with respect to increasing functions.

2. Main Results

Throughout this article, we assume that u, v and 5* belong to the image of 1. Now, we state our main
lemma:

Lemma 2.1. Let g : 7 € R — R be a twice differentiable function on I such that u,v € I with0 <u <v. Ifpisan
increasing and positive function on I and its derivative 1’ (x) is continuous on I. Then, for any u € (0,1), we have

-1 Y(0)
ouy(g;u,0) = (L[ f V()0 — PO (g o P)(t)dt
v ()

v—uH NG

—1( ut+ov

+ f N Y (W) — ) (g” o IP)(f)df}, (6)
Y1(u)
where

lel,l!)(g; " U) - (U — u).u 1/)*1(”7”)* (g o IP) (ll)_l(v)) + I;’}f

nylr(tu + 2) [ iy
()

won(uw)| - e o (57)
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Proof. From Definition[1.1, we have

24T (i +2)
1=

et o () = D2 T
@0 9) (47 ) ﬁ

| V(D@ = ) (g o P)(b)dt

(@—u () (v —u)t (e
_(uen2et vl o
N L B (%)(g DIGICEST ()

Integrating by parts twice, we have

1 Lzet (9@
m= () E [ -y s o
4

2 2 (U - u)“ —1(11;1})
g+l (u+ovy 1 ,(u+v 201 Vi) / prl n
- - - o d
5 g( > )+ 57 ( > )+ R fwl(";v)l’b ()@ =P (g" o P)(B)dt @)
Analogously

-1
_ 24 r(lu + 2) Iy:lp

SNCETIEAC

u+1 (u+o\y 1 ,(u+v el pv() -
= - = EEPRNTES W7 dt.
2 9( 2 ) 29( 2 )+<v_u)p fwu) Y (W) — u) (g o )bt ®)

ygew(vw)

It follows from (7) and (§) that

-1 P (v)
=09 (50) = | [ O Or I o i

= [ Jy e

v (152)
+ f P (B(E) — w1 (g” o )byt |.

P (u)
This completes the proof of Lemma O

Corollary 2.2. With similar assumptions of Lemma [2.1)if

1. P(x) = x, we have

2871 (i + 2) o
W [Iguﬁv))fg(v) * IH»«;v)g(u)] —(u+ 1)9( > )

_(U—M)2 fl u+l1 //(E 2_t) fl u+l //(Z_t E)
=5 Ot g 2u+—2vdt+0t 7\ u+20dt,

which is obtained by Tomar et al. [30].

2. Y(x) = xand u =1, we have

1 ¢ _ (utv\_ (0-uw? flz,,(t 2—t) flz,,(Z—t t)
Z)_ufu‘g(x)dx g( > )— 16 [Otg FUt = v|dt + Otg 5 u+zvdt,

which is obtained by Sarikaya and Kiris [31]].
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Theorem 2.3. Letg: I C R — R bea twice differentiable function on I such that u,v € I with0 < u < v. Suppose
that |g” |7 is convex on I, Y(x) is an increasing and positive function on 1 and ’(x) is continuous on I. Then, for
any u € (0,1), we have

. (U _ M)2 1 1_% 1 7" 1 1 " %
[o0(gm,0) < 5 (m) {[201 3l 0r + (m Il (v)W]

1 1 . 1 ” '
i [(m T 3)) 90 2+ 3) (v)'q} } ©)

forg>1.

Proof. Suppose that g = 1. By means of Lemma [2.1]and Definition[I.1} we get

-1 V(o)
oup(g;u,0) = g [f;p Y () = P(0) (9" o )(t)dh

© = Ly e)

v (452) )
+ fw V' (L) (W(t2) — u)*(g” o w)(tz)dtz]. (10)

~Hw)

2(v—y(h))

v—-u

2(¢(t2)—u)

and xp = ==

Making the change of variables x; =
equality, we get

. _(U_u)z fl u+1 u(t Z_t) fl u+l //(Z_t t )
oup(g;u,0) = 5 Ot 7' (5u+ = v)dt + 0t g'(=u+ 50 dt|,

thatis

_2l
e R A
8 0
By using the convexity of |g”|, then inequality gives
—-u)?[ (* Lt 2-—t
stz < =5 [l (504 =52)
2 1 1
- 1 2t
< (U u) |g//(u)| f _t/,1+2dt + |g//(v)| f t;ﬁ—ldt
8 ) 2 . 2

1 t2-t
+ |g;/(v)|f Et‘LH—zdt-i- |gu(u)|f 5 f“”dt)
0 0

2
- S (7 @+l O,

and then setting t = x1 = x; into the resulting

)dt]. (11)

+

"(ﬁu + Ev)
F\727""3

) dt]

This gives (9) for g = 1.
Now, suppose that g > 1. Using inequality of (II), convexity of |¢”’|7 and the power-mean’s inequality
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1 + 1+
dt=f I [t% g”(£u+2—v)
0
1 -1, 4 :
2t 1\
< (f tf’“) (f e g”(£u+ —tv) dt)

1-1 1 1

1 q tp+2 Zt;u—l _ ty+2 q

) ([ (5w 2 oo
0

17% ’” 1 1 /"’ !
2) [2(u+3)|g Gl + (u+2 2(u+3))|g (v)w] ’ (2

for g > 1, we have

1
f ph+l
0

]dt

" (Eu + gv)
F\2" "

N

In the same manner, we get

1 + ’” 2t t 1 1_5 1 1 " " 1
fo g (Tu+ v) dt<(#+2) [(wz —2(#+3))I9 W) + 21 +3)Ig (v )W] (13)

Using ([12) and (13) in (IT) we obtain (9) for g > 1. Thus the proof of theorem [2.3is completed. [

Corollary 2.4. With similar assumptions of Theorem |2.3|if
1. Y(x) = x, we have

2671 (i + 2)
NCET [Ifu;vyg(v) + Ifm) 9(u)] ( + 1)g(

@-w?( 1\, 1 (AW L
=78 (m) {[2(u+3)'9()'q (u+2 2(y+3))|9 (v)w]

1 1, 1T
* [(u+2 - 2(u+3))|g WP+ 2(u+3) 4 (U)W] }

M+U)

which is obtained by Tomar et al. [30].
2. Y(x) = xand p =1, we have

1 ¢ u+v
’v_ufu‘g(x)dx—g( 2 )S

(0—u)’ (3lg"(u)|" + 5lg"(v)l‘7)5 N (5lg"(u)|" + 3Ig”(v)l‘7)5
48 8 8

— )2
C= 19l + 19" @),

<

which is obtained by Sarikaya et al. [32]].
3. Y(x) =xand g = 1, we have

20-11 2
e [ ey IO+ T g(u)] -G+ g ("5 ”)‘ <5 (i eor+197@),

which is obtained by Tomar et al. [30].
4. Y(x) =x,u=1and q =1, we have

‘%jjg(x)dx—g(u;v) <

(v —u)? (19"’ (Wl +lg” @)
24 2 ’
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which is obtained by Sarikaya et al. [32]].

Theorem 2.5. Let g: 7 € R — R bea twice differentiable function on I such that u,v € I with 0 < u < v. Suppose
that |g”' 7 is convex on I, Y(x) is an increasing and positive function on I and ¢’ (x) is continuous on I. Then, for
any u € (0,1), we have

1 )3 [(Ig"(u)lq + 3|g"(v>|q)5 . (3lg”(u)|‘7 + |g"(v)|q)3]

) (v —u)
o g0, 0)] < 5 (W+1W+1 z 1

==

(0 —u)

8 &u+1w+1)

(Il + 19" @)I),  (14)

such that q > Land 5 + ¢ = 1.

Proof. By using Holder’s inequality, we have

1 i
fot““ g"(%u+¥0) dt<(f t<#+1>f’) (f +—tv) dt)
( ) ( g @l + ‘tlg"@)w)dt)q
(u+1p+1
lg” )" + 3lg”(v)|‘7
(et | X &
Similarly, we have
L2t 1V (3@l + g @\
Jy el (g go)fars (<y+1)p+1) ( 3 ) | (1

Thus, the inequalities (1)), and complete the proof of the first inequality of (14).
To prove the second inequality of (14), we apply the formula

n n n
Z(ci+d,-)m SZCT+Z+CI§”, 0<m<1
i=1 i=1 i=1

for ¢y = 3|lg” W), ca = lg” W), d1 = 1g” (@)|7,d2 = 3|g”’ (v)|" and m = . Then, inequality gives

1 ); [(Igu(u)lq + 3|gu(v)|q)37 N (3|gu(u)|q + Ig”(v)w);]

|ow(g:u,0)| < (-
I OLE T e p + 1 4 4

(v —u)? (3% + 1) 4
<
B 32 ((y+1)p+l

<(v—u)2 4
- 8 (u+Lp+1

)p (7601 +19” @]

;
) (lg” @)l + 19" ©)])-
Hence the proof of Theorem [2.5is completed. [

Corollary 2.6. With the assumptions of Theorem [2.5] if
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1. P(x) = x, we have

2407

20711 (4 + 2) [

’ [
o [y O

(uzw)g(u)] —(u+ 1)9(“ er U)

(v — u)? L V[l + 3" @I\ (3" W)l +1g"@)F
- 8 (u+p+1

4 )|

(U _ u)Z 4 " "
<5 \@rmpea) lrwi+we)
which is obtained by Tomar et al. [30].
2. Y(x) = xand p =1, we have

= =

1

v—u fuvg(x)dx_g(u;v)

L oW [( 9"l + 3|g~(z,)|q)5 R (3|g"<u>|ff + |g"<v>|q)% }
T 16Q2p + 1) 4

4
(0 —u?

= |9”(”)| |gﬁ(l)| 7
21+%(2 1)% ( )
which is obtained by Sarikaya et al. [32]

1

L ]:]g(x)dx—g(u-i-v)

2

Corollary 2.7. From Corollaries[2.4](2) and[2.6|(2), we obtain the following inequality for g > 1:

where &, = —L+ and 6, =
687

< (0 — u)? min{6y, 5)(1g” ()| + 19" (©)]),
1 - 1
R p— such that p =g

3. Applications

In this section some applications are presented to demonstrate usefulness of our obtained results in the
previous sections.

3.1. Applications to special means
(i) The arithmetic mean:

Let u and v be two arbitrary positive real numbers, then consider the following special means:

A= Adu,) = ”;”.

(ii) The inverse arithmetic mean:

H =H(u,v) =

, u,v#0.

==

+

Q=

(iif) The geometric mean:

G = G(u,v) = Vuv.



P. O. Mohammed / Filomat 34:7 (2020), 2401-2411

(iv) The logarithmic mean:

L(u,v) = -

log(v) — log(u)’ u#o

(v) The generalized logarithmic mean:

vn+1 _ M"+1 n
Ln(u, Z)) = [m] , ne Z \ {—1, 0}

Proposition 3.1. Lef [n| > 3 and u,v € 7 C Rwith 0 < u < v, then we have

|A”(u,v) _ Lﬁ(u,v)) < w

1o [A% (3|u|(n—2)q,5|v|(n_2)q) + A% <5|u|(n—2)q’ 3|0|(n—2)q)] )
4q

forg>1.

Proof. Apply Corollary2.4] part (2) for g(x) = x", where n as specified above. [

Proposition 3.2. Let u,v € 7 C Rwith 0 < u < v, then we have
Y
|A_1(u, v) - L7Y(u, v)| < u
3.
forg>1.
Proof. Apply Corollarypart (2) for g(x) = 1

;,xiO. O

Proposition 3.3. Lef [n| > 3 and u,v € I C R with 0 < u < v, then we have

|H_”(v, u)— L} (0_1, u_l)’

(- u) o~ 1) [ 4

H7 (1|u|(n72)q 1|v|(n72)q) + H_?l (1|u|("’2)‘7, 1|U|(n72)q)]
3. 4%"’2 3 "5 5 3 !
and
2
(U_1 - u_l) -1 (1 1 a1 1
-1t ) o (B Do) (s )
forg>1.

Proof. Observe that A~ (u‘l, U_l) = H(v,u) = t27. So, making the change of variables u — v™! and v — u~
in the inequalities and (T8), we can deduce the desired inequalities and (20), respectively. O

Proposition 3.4. Let u,v € I € Rwith 0 < u < v, then we have

®

|G2(u,0) — A2, v)| <

forg>1.

Proof. Apply Corollarypart (2) for g(x) =x2. O

g [A7 (307 S1ol) AT (51, 31017)],
49

- flzj [A% (3|u|‘4‘¥,5|v|—4q) + AT <5|u|‘4q/ 3|U|—4q)] )
244

2408

(17)

(18)

(19)

(20)

1

(21)
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Now, we give an application to a midpoint formula. Letd be a partitionu = xp <x1 <+ <Xy—1 <Xy =0
of the interval [u, v] and consider the quadrature formula

[ iz =100+ £,

where
m—1
Xj+ Xj
79,0 = Y 9(L52 ) i =)
j=0

is the midpoint version and E(g,d) denotes the associated approximation error. Here, we present some
error estimates for the midpoint formula.

Proposition 3.5. Let g : I — IR be a twice differentiable mapping on I such that u,v € I with u < v. Suppose that
l9”’17, g = 1 be a convex function, then for every partition of I the midpoint error satisfies

m—1

|E(g, )| < min{o1, 60} Y (xj1 = 2)X(I9” Gl + 19" (o)), (22)
j=0

Proof. From Corollary[2.7, we have

X ji+1

< min{dy, 62} (xj41 — xj)2(|9”(xj)| + |g"(xj+1)|)

Xj +x]'+1)
2

gt~ (xj1 —x)g

Xj

Summing over j from 0 to m — 1 and taking into account that |g”’| is convex, we obtain, by the triangle
inequality, that

f i1 sz — (e — ) (x]‘ +2xj+1 )}

Xj

b m—1
f g(x)dx—T(g,d)‘ = Z[
a =0

m—1

<)

j=0
m—1

< min(61, 82} Y (xje1 = x)2(1g” ()l + 19" (g

=0

X j+1

Xj + x]-+1)
2

g — (vt~ x)g

xj

This ends the proof. O
3.2. Modified Bessel functions
Let the function I, : R — [1, o0) be defined by
Lx)=2T(p+1x"I,(x), x€R
For this we recall the modified Bessel function of the first kind I, which is defined as [33]:
p+2n
(3)

b0 =) ity 1)

n>0
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The first and the nth order derivative formula of I,(x) are, respectively, given by [34]:

Lo X
Ip(x) - 2(p + 1)Ip+1(x)/ (23)
9", (x) 5 p+1 p+2 p+l-n p+2-n X2
— P _on=2p p-n . A
S = 2" Vnx F(p+1)2P3( T T T ,p+1,4), (24)
where »F3 (-, +;+, -, ;) is the hypergeometric function defined by [34]:
1 2
F p+1 p+2 p+l-n p+2—n i p+)(p; )k x% (25)
22T 2 T 2 = (D), Pl(p+1)4’<(k)"
where, for some parameter v, the Pochhammer symbol (v); is defined as
Wo=1, Wi=vir+1---(v+k-1), k=1,2,..
Proposition 3.6. Let u,v € R with 0 < u < v, then for each p > —1 we have
Ip(v)_Ip(u) u+v u+o 5 3.0
— < - i —<p
T a5 S @ 0P mintoy 01 227 VAT + 1)
2
-3 p+1 p+2 p+l-n p+2-n o
X(|1/l| ZFS( 2 s 2 s 2 ’ 2 1P+1/4
2
p-3 p+1 p+2 p+1-n p+2-n o
+|v| 2F3( 2 7 2 s 2 s 2 /P+1/4 . (26)

Proof. Let g(x) = I’ (x). Note that the function x — [}’(x) is convex on the interval [0, ) for each p > —1.
Using Corollary |2 i and (23)-(24), we obtain the desired inequality (26) immediately. [

Remark 3.7. Assuming p > —1 in Proposition |3. zs due to - (0) is undefined for each natural number k.

4. Conclusion

In this paper, we established some new integral inequalities of midpoint type for convex functions with

respect to increasing functions involving Riemann-Liouville fractional integrals. It can be observed from
Corollaries that our results are generalizations of those in [30H32].
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