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The Cubic ρ-Functional Equation in Matrix Non-Archimedean Random
Normed Spaces
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Abstract. Using the direct method and fixed point method, we investigate the Hyers-Ulam stability of the
following cubic ρ-functional equation

f (x + 2y) + f (x − 2y) − 2 f (x + y) − 2 f (x − y) − 12 f (x)

= ρ
(
4 f (x +

y
2

) + 4 f (x −
y
2

) − f (x + y) − f (x − y) − 6 f (x)
)

in matrix non-Archimedean random normed spaces, where ρ is a fixed real number with ρ , 2.

1. Introduction

The concept of stability for a functional equation arising when we replace the functional equation
by an inequality which acts as a perturbation of the equation. In 1940, Ulam [25] posed the first stability
problem concerning group homomorphisms. In 1941, Hyers [7] gave the first affirmative partial answer
to the question of Ulam for Banach spaces. Subsequently, Hyers’ result was generalized by Aoki [1] for
additive mappings and by Rassias [20] for linear mappings by considering an unbounded Cauchy difference.
Găvruţă [6] obtained generalized Rassias’ result which allows the Cauchy difference to be controlled by a
general unbounded function in the spirit of Rassias’ approach. The stability problems of several functional
equations have been extensively investigated by several mathematicians (see [8, 9, 11, 21, 22] and references
therein); as well as various stability results of functional equations and inequalities were investigated
[12, 13, 17–19] in matrix normed spaces, matrix paranormed spaces and matrix fuzzy normed spaces.

In 2016, Park [15] considered the functional equation

f (x + 2y) + f (x − 2y) − 2 f (x + y) − 2 f (x − y) − 12 f (x)

= ρ
(
4 f (x +

y
2

) + 4 f (x −
y
2

) − f (x + y) − f (x − y) − 6 f (x)
)

(1)
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where ρ is a fixed real number with ρ , 2. And he established the general solution and proved the
generalized Hyers-Ulam stability of the functional equation (1) in fuzzy Banach spaces by using the fixed
point method. The main purpose of this paper is to apply the direct method and fixed point method to
investigate the Hyers-Ulam stability of functional equation (1) in matrix non-Archimedean random normed
spaces.

2. Preliminaries

In this section, some definitions and preliminary results are given which will be used in this paper.

Definition 2.1. (cf. [23]). A mapping T : [0, 1] × [0, 1] → [0, 1] is a continuous triangular norm (briefly, a
continuous t-norm) if T satisfies the following conditions:
(1) T is commutative and associative;
(2) T is continuous;
(3) T(a, 1) = a for all a ∈ [0, 1];
(4) T(a, b) ≤ T(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are the Lukasiewicz t-norm TL, where TL(a, b) = max(a + b −
1, 0),∀a, b ∈ [0, 1] and the t-norms TP,TM,TD, where TP(a, b) := ab, TM(a, b) := min(a, b),

TD(a, b) :=

 min(a, b), if max(a, b) = 1,

0, otherwise.

By a non-Archimedean field we mean a field K equipped with a function (valuation) | · | from K into
[0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and |r+ s| ≤ max{|r|, |s|} for r, s ∈ K. Clearly |1| = |−1| = 1
and |n| ≤ 1 for all n ∈N.

Let X be a vector space over a field K with a non-Archimedean non-trivial valuation | · |. A function
‖ · ‖ : X→ [0,∞) is called a non-Archimedean norm if it satisfies the following conditions:
(i) ‖x‖ = 0 if and only if x = 0;
(ii) For any r ∈ K and x ∈ X, ‖rx‖ = |r|‖x‖;
(iii) For all x, y ∈ X, ‖x + y‖ ≤ max{‖x‖, ‖y‖} (the strong triangle inequality).
Then (X, ‖ · ‖) is called a non-Archimedean normed space.

We adopt the usual terminology, notions and conventions of the theory of non-Archimedean random
normed space as in [3, 14, 16, 23, 24]. Throughout this paper, ∆+ is the space of all probability distribution
functions, i.e., the space of all mappings F : R ∪ {−∞,∞} → [0, 1] such that F is left-continuous and non-
decreasing on R, F(0) = 0 and F(+∞) = 1. D+ is a subset of ∆+ consisting of all functions F ∈ ∆+ for which
l−F(+∞) = 1, where l− f (x) denotes the left limit of the function f at the point x, that is, l− f (x) = lim

t→x−
f (t).

The space ∆+ is partially ordered by the usual point-wise ordered of functions, i.e., F ≤ G if and only if
F(t) ≤ G(t) for all t ∈ R.

Definition 2.2. (cf. [10, 24]). A non-Archimedean random normed space (briefly, NA-RN-space) is a triple (X, µ,T),
where X is a linear space over a non-Archimedean fieldK, T is a continuous t-norm, and µ is a mapping from X into
D+ such that the following conditions hold:
(NA-RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;
(NA-RN2) µαx(t) = µx( t

|α| ) for all x ∈ X, t > 0, and α , 0;
(NA-RN3) µx+y(max(t, s)) ≥ T(µx(t), µy(s)) for all x, y ∈ X and t, s ≥ 0;
It is easy to see that if (NA-RN3) holds, then
(RN3) µx+y(t + s) ≥ T(µx(t), µy(s)).

Definition 2.3. (cf. [10]) Let (X, µ,T) be an NA-RN-space. Let {xn} be a sequence in X. Then {xn} is said to be
convergent if there exists x ∈ X such that

lim
n→∞

µxn−x(t) = 1

for all t > 0. In this case, x is called the limit of the sequence {xn}.
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A sequence {xn} in X is called Cauchy if for each ε > 0 and t > 0, there exists n0 such that for all n ≥ n0
and all p > 0 we have µxn+p−xn (t) > 1 − ε. If each Cauchy sequence is convergent, then the random norm is
said to be complete, and the NA-RN-space is called a non-Archimedean random Banach space.

We will also use the following notations. The set of all m × n-matrices in X will be denoted by Mm,n(X).
When m = n, the matrix Mm,n(X) will be written as Mn(X). The symbols e j ∈ M1,n(C) will denote the row
vector whose jth component is 1 and the other components are 0. Similarly, Ei j ∈Mn(C) will denote the n×n
matrix whose (i, j)-component is 1 and the other components are 0. The n×n matrix whose (i, j)-component
is x and the other components are 0 will be denoted by Ei j ⊗ x ∈Mn(X).

Let (X, ‖ · ‖) be a normed space. Note that (X, {‖ · ‖n}) is a matrix normed space if and only if (Mn(X), ‖ · ‖n)
is a normed space for each positive integer n and ‖AxB‖k ≤ ‖A‖‖B‖‖x‖n holds for A ∈Mk,n, x = [xi j] ∈Mn(X)
and B ∈Mn,k, and that (X, {‖ · ‖n}) is a matrix Banach space if and only if X is a Banach space and (X, {‖ · ‖n})
is a matrix normed space.

Let E,F be vector spaces. For a given mapping h : E → F and a given positive integer n, define
hn : Mn(E)→Mn(F) by

hn([xi j]) = [h(xi j)]

for all [xi j] ∈Mn(E).
We introduce the concept of a matrix non-Archimedean random normed space.

Definition 2.4. (cf. [5]) Let (X, µ,T) be an NA-RN-space. Then:
(1) (X, {µ(n)

},T) is called a matrix non-Archimedean random normed space if for each positive integer n, (Mn(X), µ(n),T)
is a non-Archimedean random normed space and µ(k)

AxB(t) ≥ µ(n)
x ( t
‖A‖·‖B‖ ) for all t > 0, A ∈Mk,n(R), x = [xi j] ∈Mn(X)

and B ∈Mn,k(R) with ‖A‖ · ‖B‖ , 0.
(2) (X, {µ(n)

},T) is called a matrix non-Archimedean random Banach space if (X, µ,T) is a non-Archimedean random
Banach space and (X, {µ(n)

},T) is a matrix non-Archimedean random normed space.

Example 2.5. Let (X, {‖ · ‖n}) be a matrix normed space and α, β > 0. Define

µ(n)
x (t) =

αt
αt + β‖x‖n

, t > 0, x = [xi j] ∈Mn(X).

Since

µ(k)
AxB(t) =

αt
αt + β‖AxB‖k

≥
αt

αt + β(‖A‖‖x‖n‖B‖)
=

α t
‖A‖‖B‖

α t
‖A‖‖B‖ + β‖x‖n

= µ(n)
x (

t
‖A‖‖B‖

)

for all t > 0, A ∈ Mk,n(R), x = [xi j] ∈ Mn(X) and B ∈ Mn,k(R) with ‖A‖ · ‖B‖ , 0, (X, {µ(n)
},TM) is a matrix

non-Archimedean random normed space.

3. Stability of the cubic ρ-functional equation (1): Direct method

From now on, let (X, {µ(n)
},T) be a matrix non-Archimedean random normed space, (Y, {µ(n)

},T) be
a matrix non-Archimedean random Banach space. In this section, we prove the Hyers-Ulam stability of
the cubic ρ-functional equation (1) in matrix non-Archimedean random normed spaces by using the direct
method. We need the following lemmas:

Lemma 3.1. (cf. [15]). Let V and W be real vector spaces. If a mapping f : V →W satisfies (1), then f is cubic.

Lemma 3.2. Let (X, {µ(n)
},T) be a matrix non-Archimedean random normed space. Then

(1) µ(n)
Ekl⊗x(t) = µx(t) for all t > 0 and x ∈ X;

(2) For all [xi j] ∈Mn(X) and t =
n∑

i, j=1
ti j > 0,

µxkl (t) ≥ µ
(n)
[xi j]

(t) ≥ T(µxi j (ti j) : i, j = 1, 2, . . . ,n),

µxkl (t) ≥ µ
(n)
[xi j]

(t) ≥ T(µxi j (
t

n2 ) : i, j = 1, 2, . . . ,n);
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(3) lim
m→∞

xm = x if and only if lim
m→∞

xi jm = xi j for xm = [xi jm], x = [xi j] ∈Mk(X).

Proof. (1) It is easy to see that Ekl⊗x = e∗kxel. By the definition of Mn,m(R), it follow that ‖Ekk‖ = ‖EkkE∗kk‖ =

‖Ekk‖
2, so we have

‖Ekk‖ = 1 and ‖e∗kek‖ = ‖Ekk‖ = ‖ek‖
2,

thus

‖ek‖ = ‖e∗k‖ = 1.

By the definition of matrix non-Archimedean random normed space, for all t > 0, we

µ(n)
Ekl⊗x(t) = µ(n)

e∗kxel
(t) ≥ µx(

t
‖e∗k‖‖el‖

) = µx(t).

Since ek(Ekl ⊗ x)e∗l = x,

µx(t) = µek(Ekl⊗x)e∗l
(t) ≥ µ(n)

Ekl⊗x(
t

‖e∗k‖‖el‖
) = µ(n)

Ekl⊗x(t).

Thus, we have µ(n)
Ekl⊗x(t) = µx(t).

(2) Since µxkl (t) = µek[xi j]e∗l
(t) ≥ µ(n)

[xi j]
( t
‖ek‖‖el‖

) = µ(n)
[xi j]

(t),

µ(n)
[xi j]

(t) = µ(n)
n∑

i, j=1
Ei j⊗xi j

(t) ≥ T(µ(n)
Ei j⊗xi j

(ti j) : i, j = 1, 2, . . . ,n) = T(µxi j (ti j) : i, j = 1, 2, . . . ,n),

where t =
n∑

i, j=1
ti j. So µ(n)

[xi j]
(t) ≥ T(µxi j (

t
n2 ) : i, j = 1, 2, . . . ,n).

(3) For xm = [xi jm], x = [xi j] ∈Mk(X), t > 0. If lim
m→∞

xm = x, then lim
m→∞

µxm−x(t) = 1. It follows from (2) that

µxkl (t) ≥ µ
(n)
[xi j]

(t),

which is to see that

lim
m→∞

µxi jm−xi j (t) ≥ lim
m→∞

µ(n)
[xi jm−xi j]

(t) = lim
m→∞

µ(n)
xm−x(t) = 1,

that is,

lim
m→∞

xi jm = xi j.

On the contrary, by µxkl (t) ≥ µ
(n)
[xi j]

(t) ≥ T(µxi j (
t

n2 ) : i, j = 1, 2, . . . ,n), we obtain the result. �

For a mapping f : X→ Y, define D f : X2
→ Y and D fn : Mn(X)2

→Mn(Y) by

D f (a, b) := f (2a + b) + f (2a − b) − 2 f (a + b) − 2 f (a − b) − 12 f (a)

− ρ
(
4 f (a +

b
2

) + 4 f (a −
b
2

) − f (a + b) − f (a − b) − 6 f (a)
)
,

D fn([xi j], [yi j]) := fn(2[xi j] + [yi j]) + fn(2[xi j] − [yi j]) − 2 fn([xi j] + [yi j]) − 2 fn([xi j] − [yi j]) − 12 fn([xi j])

− ρ
(
4 fn([xi j] +

[yi j]
2

) + 4 fn([xi j] −
[yi j]

2
) − fn([xi j] + [yi j]) − fn([xi j] − [yi j]) − 6 fn([xi j])

)
for all a, b ∈ X and all x = [xi j], y = [yi j] ∈Mn(X).
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Theorem 3.3. Let ϕ : X2
→D

+ be a function such that there exists α ∈ R with 0 < |8| < |α| such that

ϕ(
a
2
,

b
2

)(t) ≥ ϕ(a, b)(|α|t) (2)

for all a, b ∈ X and all t > 0 and lim
m→∞

T
∞

`=mϕ(a, 0)( |2||α|
`

|8|` t) = 1 for all a ∈ X and all t > 0. Suppose that f : X→ Y is a
mapping satisfying

µ(n)
D fn([xi j],[yi j])

(t) ≥
n∑

i, j=1

ϕ(xi j, yi j)(t) (3)

for all x = [xi j], y = [yi j] ∈Mn(X) and all t > 0. Then there exists a unique cubic mapping C : X→ Y such that

µ(n)
fn([xi j])−Cn([xi j])

(t) ≥ T
(
T
∞

`=1ϕ(xi j, 0)(
|2||α|`+1

|8|`n2
t) : i, j = 1, . . . ,n

)
(4)

for all x = [xi j] ∈Mn(X) and all t > 0.

Proof. When n = 1, (3) is equivalent to

µD f (a,b)(t) ≥ ϕ(a, b)(t) (5)

for all a, b ∈ X and all t > 0. Letting b = 0 in (5), we get

µ f (a)−8 f ( a
2 )(t) ≥ ϕ(a, 0)(|2||α|t) (6)

for all a ∈ X and all t > 0. Replacing a by a
2m in (6) and using the inequality (2), we get

µ f ( a
2m )−8 f ( a

2m+1 )(t) ≥ ϕ(a, 0)(|2||α|m+1t) (7)

for all a ∈ X and all t > 0. It follows from (2) and (7) that

µ8m f ( a
2m )−8m+1 f ( a

2m+1 )(t) ≥ ϕ(a, 0)(
|2||α|m+1

|8|m
t) (8)

for all a ∈ X and all t > 0. Hence

µ8m f ( a
2m )−8m+p f ( a

2m+p )(t) ≥ T
m+p
`=m (µ8` f ( a

2`
)−8`+p f ( a

2`+p )(t)) ≥ T
m+p
`=m ϕ(a, 0)(

|2||α|`+1

|8|`
t) (9)

for all a ∈ X and all t > 0. Since lim
m→∞

T
∞

`=mϕ(a, 0)( |2||α|
`+1

|8|` t) = 1 for all a ∈ X and all t > 0, it follows that the

sequence {8m f ( a
2m )} is a Cauchy sequence in the matrix non-Archimedean random Banach space (Y, µ(n),T ).

Hence, we can define the mapping C : X→ Y by

lim
m→∞

µ8m f ( a
2m )−C(a)(t) = 1 (10)

for all a ∈ X and all t > 0. Next, we have

µ f (a)−8m f ( a
2m )(t) = µΣm−1

`=0 (8` f ( a
2`

)−8`+1 f ( a
2`+1 ))(t) ≥ T

m−1
`=0 (µ8` f ( a

2`
)−8`+1 f ( a

2`+1 )(t)) ≥ Tm−1
`=0 ϕ(a, 0)(

|2||α|`+1

|8|`
t) (11)

for all a ∈ X and all t > 0. Therefore,

µ f (a)−C(a)(t) ≥ T (µ f (a)−8m f ( a
2m )(t), µ8m f ( a

2m )−C(a)(t)) ≥ T (Tm−1
`=0 ϕ(a, 0)(

|2||α|`+1

|8|`
t), µ8m f ( a

2m )−C(a)(t)). (12)
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Moreover, letting m→∞ in (12), we obtain

µ f (a)−C(a)(t) ≥ T∞`=1ϕ(a, 0)(
|2||α|`+1

|8|`
t). (13)

As T is continuous, from a well known result in the probabilistic metric space (see [23, Chapter 12]), it
follows that

lim
m→∞

µ8m f (2−m(2a+b))+8m f (2−m(2a−b))−2·8m f (2−m(a+b))−2(8m) f (2−m(a−b))−12(8m) f (2−ma)

−ρ(4(8m) f (2−m(a+ b
2 ))+4(8m) f (2−m(a− b

2 ))−8m f (2−m(a+b))−8m f (2−m(a−b))−6(8m) f (2−ma))(t)

= µC(2a+b)+C(2a−b)−2C(a+b)−2C(a−b)−12C(a)−ρ(4C(a+ b
2 )+4C(a− b

2 )−C(a+b)−C(a−b)−6C(a))(t)

for all a, b ∈ X and all t > 0. On the other hand, replacing a, b by 2−ma, 2−mb in (5), and using (2), we get

lim
m→∞

µ8m f (2−m(2a+b))+8m f (2−m(2a−b))−2·8m f (2−m(a+b))−2(8m) f (2−m(a−b))−12(8m) f (2−ma)

−ρ(4(8m) f (2−m(a+ b
2 ))+4(8m) f (2−m(a− b

2 ))−8m f (2−m(a+b))−8m f (2−m(a−b))−6(8m) f (2−ma))(t)

≥ ϕ(a, b)(
|α|m

|8|m
t)

for all a, b ∈ X and all t > 0. Since lim
m→∞

ϕ(a, b)( |α|
m

|8|m t) = 1, we infer that C is a cubic mapping.
To prove the uniqueness of C, let C′ : X→ Y is another cubic mapping such that

µC′(a)− f (a)(t) ≥ T∞`=1ϕ(a, 0)(
|2||α|`+1

|8|`
t)

for all a ∈ X and all t > 0. Let n = 1. Then we have

µC′(a)−C(a)(t) ≥ T (µC(a)−8m f ( a
2m )(t), µ8m f ( a

2m )−C′(a)(t)).

Thanks to (10), we can conclude that C(a) = C′(a) for all a ∈ X, which gives the conclusion. Thus the
mapping C : X→ Y is a unique cubic mapping.

By Lemma 3.2 and (13), we get

µ(n)
fn([xi j])−Cn([xi j])

(t) ≥ T
(
µ f ([xi j])−C([xi j])(

t
n2 ) : i, j = 1, . . . ,n

)
≥ T

(
T
∞

`=1ϕ(xi j, 0)(
|2||α|`+1

|8|`n2
t) : i, j = 1, . . . ,n

)
for all x = [xi j] ∈ Mn(X) and all t > 0. Thus C : X → Y is a unique cubic mapping satisfying (4), as desired.
This completes the proof of the theorem. �

Corollary 3.4. Let r, θ be positive real numbers with r < 3. Suppose that f : X→ Y is a mapping satisfying

µ(n)
D fn([xi j],[yi j])

(t) ≥
t

t +
∑n

i, j=1 θ(‖xi j‖
r + ‖yi j‖

r)
(14)

for all x = [xi j], y = [yi j] ∈Mn(X) and all t > 0. If

lim
m→∞

T
∞

`=m(
t

t + |8|`
|2||2|`rθ‖a‖

r
) = 1

for all a ∈ X and all t > 0, then there exists a unique cubic mapping C : X→ Y such that

µ(n)
fn([xi j])−Cn([xi j])

(t) ≥ T
(
T
∞

`=1(
t

t + |8|`n2

|2||2|(`+1)rθ‖xi j‖
r
) : i, j = 1, . . . ,n

)
(15)

for all x = [xi j] ∈Mn(X) and all t > 0.
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Proof. The proof follows immediately by taking ϕ(a, b)(t) = t
t+θ(‖a‖r+‖b‖r) for all a, b ∈ X and all t > 0 in

Theorem 3.3. �

Theorem 3.5. Let ϕ : X2
→D

+ be a function such that there exists α ∈ R with 0 < |α| < |8| such that

ϕ(2a, 2b)(t) ≥ ϕ(a, b)(
t
|α|

) (16)

for all a, b ∈ X and all t > 0 and lim
m→∞

T
∞

`=mϕ(a, 0)( |2||8|
`

|α|` t) = 1 for all a ∈ X and all t > 0. Suppose that f : X→ Y is a
mapping satisfying (3) for all x = [xi j], y = [yi j] ∈ Mn(X) and all t > 0. Then there exists a unique cubic mapping
C : X→ Y such that

µ(n)
fn([xi j])−Cn([xi j])

(t) ≥ T
(
T
∞

`=1ϕ(xi j, 0)(
|2||8|`+1

|α|`n2
t) : i, j = 1, . . . ,n

)
(17)

for all x = [xi j] ∈Mn(X) and all t > 0.

Proof. Letting b = 0 in (5), we get

µ f (a)− f ( 2a
8 )(t) ≥ ϕ(a, 0)(|2||8|t) (18)

for all a ∈ X and all t > 0. Replacing a by 2ma in (18) and using the inequality (16), we get

µ
f (2ma)− f (2m+1a)

8

(t) ≥ ϕ(a, 0)(
|2||8|
|α|m

t) (19)

for all a ∈ X and all t > 0. It follows from (16) and (19) that

µ f (2ma)
8m −

f (2m+1a)
8m+1

(t) ≥ ϕ(a, 0)(
|2||8|m+1

|α|m
t) (20)

for all a ∈ X and all t > 0. Hence

µ f (2ma)
8m −

f (2m+pa)
8m+p

(t) ≥ Tm+p
`=m (µ f (2`a)

8`
−

f (2`+pa)

8`+p

(t)) ≥ Tm+p
`=m ϕ(a, 0)(

|2||8|`+1

|α|`
t) (21)

for all a ∈ X and all t > 0. Since lim
m→∞

T
∞

`=mϕ(a, 0)( |2||8|
`+1

|α|` t) = 1 for all a ∈ X and all t > 0, it follows that the

sequence { f (2ma)
8m } is a Cauchy sequence in the matrix non-Archimedean random Banach space (Y, µ(n),T ).

Hence, we can define the mapping C : X→ Y by

lim
m→∞

µ f (2ma)
8m −C(a)(t) = 1 (22)

for all a ∈ X and all t > 0. Next, we have

µ f (a)− f (2ma)
8m

(t) = µ
Σm−1
`=0 ( f (2`a)

8`
−

f (2`+1a)
8`+1 )

(t) ≥ Tm−1
`=0 (µ f (2`a)

8`
−

f (2`+1a)
8`+1

)(t)) ≥ Tm−1
`=0 ϕ(a, 0)(

|2||8|`+1

|α|`
t) (23)

for all a ∈ X and all t > 0. Therefore,

µ f (a)−C(a)(t) ≥ T (µ f (a)− f (2ma)
8m

(t), µ f (2ma)
8m −C(a)(t)) ≥ T (Tm−1

`=0 ϕ(a, 0)(
|2||8|`+1

|α|`
t), µ f (2ma)

8m −C(a)(t)). (24)

Moreover, letting m→∞ in (24), we obtain

µ f (a)−C(a)(t) ≥ T∞`=1ϕ(a, 0)(
|2||8|`+1

|α|`
t). (25)

The rest of the proof is similar to the proof of Theorem 3.3 and thus it is omitted. This completes the proof
of the theorem. �
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Corollary 3.6. Let r, θ be positive real numbers with r > 3. Suppose that f : X→ Y is a mapping satisfying (14) for
all x = [xi j], y = [yi j] ∈Mn(X) and all t > 0. If

lim
m→∞

T
∞

`=m(
t

t + |2|`r
|2||8|`θ‖a‖

r
) = 1

for all a ∈ X and all t > 0, then there exists a unique cubic mapping C : X→ Y such that

µ(n)
fn([xi j])−Cn([xi j])

(t) ≥ T
(
T
∞

`=1(
t

t + |2|`rn2

|2||8|`+1θ‖xi j‖
r
) : i, j = 1, . . . ,n

)
(26)

for all x = [xi j] ∈Mn(X) and all t > 0.

Proof. Letting ϕ(a, b)(t) = t
t+θ(‖a‖r+‖b‖r) for all a, b ∈ X and all t > 0 in Theorem 3.5, we obtain the result.�

4. Stability of the cubic ρ-functional equation (1): Fixed point method

In this section, we prove the Hyers-Ulam stability of the cubic ρ-functional equation (1) in matrix
non-Archimedean random normed spaces by using fixed point method. We begin with the definition of a
generalized metric on a set.

Let E be a set. A function d : E × E→ [0,∞] is called a generalized metric on E if d satisfies
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x), ∀x, y ∈ E;
(3) d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ E.

Before proceeding to the proof of the main results, we begin with a result due to Diaz and Margolis [4].

Lemma 4.1. (cf. [4]). Let (E, d) be a complete generalized metric space and J : E → E be a strictly contractive
mapping with Lipschitz constant L < 1. Then for each fixed element x ∈ E, either

d(Jnx, Jn+1x) = ∞ ∀n ≥ 0,
or

d(Jnx, Jn+1x) < ∞ ∀n ≥ n0,

for some natural number n0. Moreover, if the second alternative holds then:
(i) The sequence {Jnx} is convergent to a fixed point y∗ of J;
(ii) y∗ is the unique fixed point of J in the set E∗ := {y ∈ E | d(Jn0 x, y) < +∞} and d(y, y∗) ≤ 1

1−L d(y, Jy), ∀x, y ∈ E∗.

Theorem 4.2. Let s ∈ {1,−1} be fixed and let ϕ : X2
→D

+ be a function such that there exists there exists an L with
0 < L < 1 and

ϕ(a, b)(t) ≥ ϕ(
a
2s ,

b
2s )(

t
|8|sL

) (27)

for all a, b ∈ X and all t > 0. Suppose that f : X→ Y is a mapping satisfying (3) for all x = [xi j], y = [yi j] ∈ Mn(X)
and all t > 0. Then there exists a unique cubic mapping C : X→ Y such that

µ(n)
fn([xi j])−Cn([xi j])

(t) ≥


T

(
ϕ(xi j, 0)( |2||8|(1−L)

n2L t) : i, j = 1, . . . ,n
)
, if s = −1,

T

(
ϕ(xi j, 0)( |2||8|(1−L)

n2 t) : i, j = 1, . . . ,n
)
, if s = 1

(28)

for all x = [xi j] ∈Mn(X) and all t > 0.
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Proof. When n = 1, similar to the proof of Theorem 3.3, we have

µ2 f (2a)−16 f (a)(t) ≥ ϕ(a, 0)(t) (29)

for all a ∈ X and all t > 0.
Let S :=

{
1 : X→ Y

}
, and introduce a generalized metric d on S as follows:

d(1, h) := inf
{
λ ∈ R+

∣∣∣∣∣µ1(a)−h(a)(λt) ≥ ϕ(a, 0)(t),∀a ∈ X,∀t > 0
}
.

It is easy to prove that (S, d) is a complete generalized metric space (cf. [2]). Now, we define the mapping
J : S→ S by

J1(a) :=
1
8s 1(2

sa), for all 1 ∈ S and a ∈ X, s ∈ {1,−1}. (30)

Let 1, h ∈ S and let λ ∈ R+ be an arbitrary constant with d(1, h) ≤ λ. From the definition of d, we get

µ1(a)−h(a)(λt) ≥ ϕ(a, 0)(t)

for all a ∈ X and t > 0. Therefore, using (27), we get

µJ1(a)−Jh(a)(λLt) = µ( 1
8s 1(2sa)− 1

8s h(2sa))(λLt) ≥ ϕ(2sa, 0)(|8|sLt) ≥ ϕ(a, 0)(t) (31)

for some L < 1, all a ∈ X and all t > 0. Hence, it holds that d(J1,Jh) ≤ λL, that is, d(J1,Jh) ≤ Ld(1, h) for
all 1, h ∈ S.

Furthermore, by (27) and (29), we obtain the inequality

d( f ,J f ) ≤


L
|2||8| , if s = −1,

1
|2||8| , if s = 1.

It follows from Lemma 4.1 that the sequence Jm f converges to a fixed point C of J , that is, for all a ∈ X
and all t > 0,

C : X→ Y, lim
m→∞

µ 1
8sm f (2sma)−C(a)(t) = 1 (32)

and

C(2sa) = 8sC(a). (33)

Meanwhile, C is the unique fixed point of J in the set S∗ = {1 ∈ S : d( f , 1) < ∞}. Thus there exists a λ ∈ R+

such that

µ f (a)−C(a)(λt) ≥ ϕ(a, 0)(t)

for all a ∈ X and all t > 0. Also,

d( f ,C) ≤
1

1 − L
d( f ,J f ) ≤


L

|2||8|(1−L) , if s = −1,

1
|2||8|(1−L) , if s = 1.

This means that the following inequality

µ f (a)−C(a)(t) ≥


ϕ(a, 0)( |2||8|(1−L)

L t), if s = −1,

ϕ(a, 0)(|2||8|(1 − L)t), if s = 1
(34)
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holds for all a ∈ X and all t > 0. As T is continuous, from a well known result in the probabilistic metric
space (see [23, Chapter 12]), it follows that

lim
m→∞

µ8−sm f (2sm(2a+b))+8−sm f (2sm(2a−b))−2·8−sm f (2sm(a+b))−2(8−sm) f (2sm(a−b))−12(8−sm) f (2sma)

−ρ(4(8−sm) f (2sm(a+ b
2 ))+4(8−sm) f (2sm(a− b

2 ))−8−sm f (2sm(a+b))−8−sm f (2sm(a−b))−6(8−sm) f (2sma))(t)

= µC(2a+b)+C(2a−b)−2C(a+b)−2C(a−b)−12C(a)−ρ(4C(a+ b
2 )+4C(a− b

2 )−C(a+b)−C(a−b)−6C(a))(t)

for all a, b ∈ X and all t > 0. On the other hand, it follows from (3), (27) and (32) that

lim
m→∞

µ8−sm f (2sm(2a+b))+8−sm f (2sm(2a−b))−2·8−sm f (2sm(a+b))−2(8−sm) f (2sm(a−b))−12(8−sm) f (2sma)

−ρ(4(8−sm) f (2sm(a+ b
2 ))+4(8−sm) f (2sm(a− b

2 ))−8−sm f (2sm(a+b))−8−sm f (2sm(a−b))−6(8−sm) f (2sma))(t)

≥ ϕ(a, b)(
|8|sm

|8|smLm t) = ϕ(a, b)(
1

Lm t)

for all a, b ∈ X and all t > 0. Since lim
m→∞

ϕ(a, b)( 1
Lm t) = 1, we infer that C is a cubic mapping.

By Lemma 3.2 and (34), we get

µ(n)
fn([xi j])−Cn([xi j])

(t) ≥ T
(
µ f ([xi j])−C([xi j])(

t
n2 ) : i, j = 1, . . . ,n

)

≥


T

(
ϕ(xi j, 0)( |2||8|(1−L)

n2L t) : i, j = 1, . . . ,n
)
, if s = −1,

T

(
ϕ(xi j, 0)( |2||8|(1−L)

n2 t) : i, j = 1, . . . ,n
)
, if s = 1

for all x = [xi j] ∈Mn(X) and all t > 0. Thus C : X→ Y is a unique cubic mapping satisfying (28), as desired.
This completes the proof of the theorem. �

Corollary 4.3. Let r, θ be positive real numbers with r , 3. Suppose that f : X→ Y is a mapping satisfying (14) for
all x = [xi j], y = [yi j] ∈Mn(X) and all t > 0. Then there exists a unique cubic mapping C : X→ Y such that

µ(n)
fn([xi j])−Cn([xi j])

(t) ≥


T

(
|8|(|2|r−|2|3)t

|8|(|2|r−|2|3)t+θn2 |2|2‖xi j‖r
: i, j = 1, . . . ,n

)
, if 0 < r < 3,

T

(
|8|(|2|3−|2|r)t

|8|(|2|3−|2|r)t+θn2 |2|2‖xi j‖r
: i, j = 1, . . . ,n

)
, if r > 3

(35)

for all x ∈ X.

Proof. The proof follows immediately by taking ϕ(a, b)(t) = t
t+θ(‖a‖r+‖b‖r) for all a, b ∈ X and all t > 0, and

choosing

L =


|2|3−r, if 0 < r < 3,

|2|r−3, if r > 3

in Theorem 4.2. �
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[9] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Science, New York, 2011.

[10] J. I. Kang and R. Saadati, Approximation of homomorphisms and derivations on non-Archimedean random Lie C∗-algebras via
fixed point method, J. Ineq. Appl. 2012(2012), Article ID 251.

[11] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Science, New York, 2009.
[12] J. Lee, C. Park and D. Shin, An AQCQ-functional equation in Matrix normed spaces, Result. Math. 64(2013), 305-318.
[13] J. Lee, D. Shin and C. Park, Hyers-Ulam stability of functional equations in matrix normed spaces, J. Ineq. Appl. 2013(2013), Article

ID 22.
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[24] A. N. Šerstnev, On the notion of a random normed space (in Russian), Dokl. Akad. Nauk. SSSR 149(1963), 280-283.
[25] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.


