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Abstract. In this paper, the pointfree version of grills is introduced. We consider a Boolean algebra B
and a subframe L instead of a topological space (X, t), and present the concept of approximation 6 over B.

Moreover, some properties of them are given. Also, we introduce and study the new concepts grill and
0-grill on Boolean algebras.

1. Introduction

The idea of grill on a topological space was first introduced by Choquet in [4]. It is proved that, grills,
nets and filters, are useful and important for studying some topological concepts such as proximity spaces,
closure spaces, the theory of compactifications and other similar extension problems. Chattopadhyay and
Thorn [3] proved that grills are always unions of ultra filters. Further, Roy and Mukherjee [10] defined
and studied the typical topology associated with a grill defined on a given topological space. Recently,
Hatir and Jafari [7] and Al-Omari and Noiri [1, 2] have developed the study of grill topological spaces with
continuities and generalized continuities. The notions of soft grill, soft operators ¢, ¢ and soft topology
7¢ were defined and discussed in [8]. Latif in [5] introduced more properties of soft grills.

Traditionally, a topological space consists of a set of points together with a topology, a system of subsets
called open sets that with the operations of intersection and union forms a lattice with certain properties.
Point-free topology focuses on the open sets rather than the points of the space. The main purpose of this
article is to introduce a point-free version of grill and 0-grills on a bounded lattice D.

This article is organized as follows. In the next section some basic notions and properties of lattices and
grills are reviewed. In Section 3, we introduce the concept of approximation on a bounded lattice. Also,
by an approximation 6, we introduce new concept 0-grill on D and we show that the set of all of grills
and the set of all of 0-grills on a bounded lattice, ordered by inclusion, are complete lattices. In Section
4, we consider a Boolean algebra B, a subframe L of B, a 0-grill G on B and define two operators (pg and

L . . . . L L
?(5,6) Then, we study some basic properties of them. In Section 5, we consider new operators Y and ¢/, -,
induced by the operators goé and (p(LQ ) respectively. Moreover, we introduce frames Lg and L p,g) induced

by l,bg and ybfa &
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2. Preliminaries

In what follows, by a space X we shall mean a topological space(X, 7).
A nonempty collection G of subsets of a nonempty set X is said to be a grill on X, if it satisfies the
following conditions:

1.0¢G
2. ifAeGand ACBC XthenB e G, and
3.ifA,BCXandAUBeGthenAeGorBegG.

In [10], Roy and Mukherjee introduced a new topology from a topological space (X, 7), constructed by

use of a grill on X, and it is described as follows: Let G be a grill on a space X. Consider the operator
¢g: P(X) — P(X) is given by

Pg(A) ={x e X: x€ Oimplies ONA € Gforall O € 7}

for all A € P(X). Then the map 1g: P(X) — P(X) given by yg(A) = A U ¢pg(A) is a Kuratowski’s closure
operator and hence induces a topology

Tg = {GQX wg(X—G)zx—G}
on X, strictly finer than 7 in general. A simple base for the open sets of 7g is described as follows:
BG 1)={V-A:VerA¢gG)

We denote the top element and the bottom element of a bounded lattice by T and L, respectively. An
element a of a bounded lattice D is called an atom ifa # 1, and L < b <aimplies b = a for every b € D. In
what follows, the set of all atom elements of a bounded lattice D is denoted by At(D).

A lattice L is said to be complemented if every x € L has a complement; that is, for every x € L, there
exists an element y of L such that x Ay = L and x V y = T. A distributive complemented lattice is called
a Boolean algebra. Notice that every element x of a Boolean algebra has a unique complement, which is
denoted by x’ (see [6]).

A frame is a complete lattice L in which the distributive law

x/\\/S:\/{x/\s:SES}

holds for all x € L and S C L. It is well known that every frame is isomorphic to a subframe of a complete
Boolean algebra (see [9, Corollary 2.6, page 53]). In what follows, B will denote a complete Boolean algebra.
Also, L will denote a subframe of the complete Boolean algebra B.

3. Approximation

In this section, we introduce the concept of approximation on a bounded lattice. Also, by an approxi-
mation 0, we introduce new concept 9-grill on D.

Definition 3.1. Let D be a bounded lattice. The function 6: D — D is called an approximation if
1. 6(1) =1,

0(6(a)) = 6(a),

a<06(a),

0(a v b) = 0(a) v O(b), and

O(a A b) < 0(a) A O(b)

foralla,b e D.

GO W N
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Proposition 3.2. Let 0: D — D be an approximation on a bounded lattice D. Then (D) is a lattice such that for
every a, § € (D),
a Vo0 g =a VP gand a AN9D) g = G(a AP p).

Proof. It is clear that O(D) is a poset. Since 8(L) = L and 6(T) = T, then O(D) is a bounded poset.
Let a, 8 be any elements of (D). Then, there exist a,b € D such that « = 6(a) and f = 6(b). Since
a VP B =0(a) VP 0(b) = 6(a VP b) € 6(D), we conclude that 6(a) VP 6(b) is an upper bound of {a, 8} in 6(D).
Alsoa VP g <a vO®P) g, thena VP g = a V0D .
On the other hand,

0(6(a) A 6(b)) > 0(0(a A D)) = O(a A D),
and

0(0(a) AP (b)) < 6(0(a)) A O(0(b)) = O(a) A O(b).

Then G(G(a) AP Q(b)) is a lower bound of {6(a), 6(b)}. Now, let d € D be a lower bound of {6(a), 6(b)}. Then,
0(d) < 0(a) and 0(d) < O(b) and so 0(d) < 6(a) AP O(b) which implies that 6(d) = 6(6(d)) < 0(6(a) A 6(b)).
Therefore, 0(a) AP O(b) = G(G(a) AP G(b)), which means that 9(D) is a lattice. [

Let D be a bounded lattice. In what follows, Apr(D) will denote the set of all approximations on D. It is
clear that the set Apr(D) with the following relation is a poset.

0<y = VxelL; 0(x)<y(x).

Definition 3.3. Let D be a bounded lattice, and let 6 € Apr(D) be given. A non-empty subset G C D is
called

1. a grill on D, if the following conditions hold:
(@ L¢G.
(b) Foreverya,beD,ifac Ganda <b,thenbe G.
(c) Foreverya,beD,ifavbe G, thenacGorbeG.

2. a 0-grill on D, if the following conditions hold:

(@) L¢gG.
(b) Foreverya,beD,ifa e Gand 0(a) < 0(b), thenb € G.
(c) Foreverya,beD,if O(a) v O(b) € G, then O(a) € Gor O(b) € G.

Let D be a bounded lattice. In what follows, by 6 — RG(D) we denote the set all of 8- grills on D. It is
easy to see that (0 — RG(D), C) is a poset.
Remark 3.4. Notice that there is no generally connection between filters and grills. For example, let
X = f{a,b,c,d}, G = {{a}, (b}, la,c}, {a,b), {a,d}, (b, c), {b,d}, {a,b,c}, (¢, b,d), la, b,d}, X} and F = {X,{a,b,c}}. Ttis

easy to see that G is a grill and ¥ is a filter. Moreover, if A = {a} and B = {b,c}, then AUB € ¥ but A,B ¢ F
which means that ¥ is not a grill. Also, {a,c}, {b,c} € Gbut {a,c} N {b,c} ¢ G. Hence G is not a filter.

Proposition 3.5. Let D be a bounded lattice. The set 0 — RG(D), ordered by inclusion, is a complete lattice such that
for every {Galrea € 6 — RG(D),

VaeaGr = Unea Grand Nyepx Gr = UG € 0 = RG(D): G S Mhea Ga }-
Also, the set all of grills on D, ordered by inclusion, is a complete lattice.
Proof. It is straightforward. [J

Proposition 3.6. Let D be a bounded lattice and G € 0 — RG(D). Then the following statements hold.
(1) 6(D)={deD:0d)=4d).
(2) Foreveryde D, 0(d) € Gifand only ifd € G.
(3) Theset G isa grill on D.

Proof. 1t is straightforward. [J
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4. Frame Induced by a Grill

In this section, we introduce two operators (pg and (pfe ) and give some properties of them. Recall that

L is a subframe of B and for every subset X of B and x € B, we write | X = {y € B : y < x for some x € X]},
TX={yeB:y>xforsomex e X}, |lx =]{x} and Tx = T{x}.

Definition 4.1. Let G € 0 — RG(B) be given. We define (pL :B —> Bisgivenby b= \/{x € At(B): bAy €
Gforallye L N Tx}, and(pgg) B — Bis givenby b — \/{ xeAt(B) bAO(y)eGforally e LN Tx}.

For every b € B, we put Hg :={x € AKB): bAy € Gforally € LN Tx},and H? ={x € At(B): bAO(y) €

G for all y € L N Tx}. Hence (pg(b) = \/Hg and (p(eg)(b) = \/H(Q,g).

©6)

Definition 4.2. If p € B, the closure of p on L is the element

ci(p) == /\{q €B:q €L, p<qg}

Foreveryp € B,weputCi(p) :={g€ B: g € L, p < gq}. For every x € At(B), itis clear that x < cl;(p) if and
only if foranya € L, x <aimpliesa Ap # L.

Proposition 4.3. Let G be a 0-grill on B. Then the following statements hold.
(D) pg(L) =L =@ 6L
(2) ForeverybeB, ¢ g(b) < ¢t © g)(b) and, in particular, equality holds if and only if H”
(3) Foreverya,beB,ifa <b,then (pg(a) < (pg(b) and (p(eg)(a) < (P(e g)(b)
(4) Foreverybe GNAHKB), b < (pg(b) <@ eg)(b) and in particular, (pg(b) < (pg((pg(b)) 6g)< (Le,g)(b))'

(GQ

Proof. (1) Obvious.
(2) Since Hb c H” VAL conclude that for every b € B, (pg(b) < (p(g ) (D). The rest is evident.

(3) Let x € At(B) and y € LN Tx such thata A 6(y) € G. Sincea < b and G is a O- grlll on B, we have
(a A Q(y)) < 9<b A Q(y)) and so b A O(y) € G, which implies that x € H(Qg Then, H' (6 g S H(ng) and so

Plog@D < P60
(4) For every y € LN Th, we have O(y) > y > band so b A O(y) = b Ay = b € G, which implies that

be Hb N H?e ) and so b < (pg(b) < qo(Lelg)(b). The rest is evident. [J

Example 4.4. Let B be the set of all positive integers which are integral divisors of 70. Thus
B =1{1,2,5,7,10,14,35,70}.

For any x, y € B, let x A y be the greatest common divisor of x and y, let x V y be the least common multiple
of xand y, and let x’ = %. Then (B, V, A,1,70) is a Boolean algebra. The function 6: B — B given by

1 2 5 7 10 14 35 70

6:1210 14 10 14 70 70

is an approximation. Consider the subframe L = {1,7,10,70} of Band let G = {2,5,7,10, 14, 35, 70}. It is easy
to see that G is a 6-grill on B. Let b = 2. Then, Hé ={2,5}, and H2, ., = {2,5,7}. Therefore, (pg(Z) =10 and

0.6)
(P(Le,g) (2) = 70 and so (pg(Z) < (p(Le’g)(Z).

Proposition 4.5. Let G € O — RG(B) and b € B be given. The following statements hold.
() @50) < club).
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(2) If there exists a subset A of At(B) such that clL((p(Lag)(b)) =V A, then

({6 () = Plog (®) and (Pl g () €L
(3) If there exists a subset A of At(B) such that clL((p’é(b)) =\ A, then

PL(5(b)) < clu(h(b)) = Ph(b) and ((plé(b)), el

Proof. (1) Letx € Hg and x £ clz(b). Then there exists an element f of L such that x £ ' and b < t'. Since x is
an atom element of B, we conclude that t € LN Tx and L = b At € G, which is a contradiction. Therefore,

PE(b) < cli(b).
(2) Let x € Aand a € L N Tx be given. Ifa A (p(LG,g)(b) = 1, then
an (p(LQ,g)(b) =1= (p(Lag)(b) <a <
= C1L<(p(L6,g)(b)) <x
= x < (cli(¢fo ) ®)))
=Sx=1,
which is a contradiction. Therefore,
L#aA (p(LQ,g)(b)
=a/\\/{zeAt(B): O(c)AbeGforallce LN1z)
=\/laAz:z€AKB)and 0(c) b€ Gforallce LN 1z},

So that there exists an atom element z of B such thata Az # L and 6(c) Ab € G for all c € L N Tz. Hence,
z < a, which implies that b A 6(a) € G, thatis x € H? Thus,

0.6)
cli(¢fy (1)) = \/A s \/ Higg) = P(o6)(®),

and since qo(Le’g)(b) < CIL((p(Lerg)(b)), we conclude that clL(go(LQ,g)(b)) = pg b).
(3) The proof of (3) is similar to the proof of part (2). O
. PR . . L
The following example shows that Proposition 4.5 (1) is not true for operation ¢, ..

Example 4.6. Consider the Boolean algebra, subframe L and 0-grill G as in Example 4.4. Then, (p(Le 6 2)=70
and cl;(2) = 10. Therefore, (p(LQ @) £ clL(2).

Proposition 4.7. For every G € 0 — RG(B), p(b) = L if and only if Hy, = 0 and also ¢f, ., (b) = L if and only if
HE . =0.
0.9

Proof. 1t is straightforward. [

Proposition 4.8. For every G € 6 — RG(B), the following statements hold.
1. If(plé(b) =1lor (p(Le,g)(b) = 1,thenb ¢ G N At(B).
2. Ifb ¢ G, then g, (b) = L = (D).

Proof. 1t is straightforward. [J
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Proposition 4.9. If G1,G» € 0 — RG(B) with G1 C G, then for all b € B,
Plo.gn®) < Py 5., (b) and @, (b) < pg, (b).
Proof. Itis clear. O
Proposition 4.10. For every G € O — RG(B) and every a,b € B,
Plog) @V b) = Pl (@) V (. 6)(b) and pg(a v b) = pg(a) V g (b).

Proof. By Proposition 4.3(3),
Plog @ V Po6 1) < @)@V b).

Let x € At(B) \ (H?Q,g) U H(be/g)) be given. Then, there exist y1,y, € L N Tx such that a A 8(y1) ¢ G and

b A 6(y2) ¢ G, which implies that

(a A S(yl)) v (b A 9(]/2)) ¢G,
and since

@V b) A0 Ay2) < @V h) A(O1) A O(y2)
= (a7 0() A B(2)) v (04 B() A B(y2))
<(anen)v(bnr6w)

we conclude that (@ V b) A O(y1 A y2) ¢ G, that is x ¢ HYY,. Hence, H"Y". C H”

. . . 0.9) ©0.9) 0.6) UH
qo(glg)(a Vb) < (P(e,g)(“) \Y qo(e,g)(b)' O

?9, g Therefore,
Proposition 4.11. For every G € O — RG(B) and every (a,b) € L X B, the following statements hold.
L ¢(6/0) = ¢, 5, (0(@) Ab) and pg(b) = pg(a A D).
L, — L N\ _
2. gg(a’) = L and (p(eg)«ﬁ(a)) ) = 1.
Proof. (1) By Proposition 4.3(3), (p(LQ,g)(Q(a) Ab) < qo(LQ’g)(b). Let x € H?e,g) with a A x # L. Since x is an

atom element of B, we conclude that x < a < 6(a). Now, suppose that y € L N Tx, then y Aa € LN Tx and

bAO@Ay)€G andsobAO@a)A6(y) € G. Then, x € Hfgg" and therefore, o, - (6(a) A b) = @k, - (b).

(2) By statement (1) and Proposition 4.3(1), we have
Pg@) = pglana’) = pg(L) = 1L,
and
Poo(0@)) = ¢l (0@ A (0@) ) = Py (1) = 1. O
0

Proposition 4.12. Let G € 6 — RG(B) and L\ {L} C G. Then the following statements hold.

1. The Boolean algebra B is atomic if and only if(pé(T) =T.
2. The Boolean algebra B is atomic if and only if (p(Le (M=T.

3. If the Boolean algebra B is atomic, then b < (p(L6 g)(G(b)) and b < (pé(b) forevery b € L.
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Proof. (1) Necessity. To prove that (pé(T) = T, it suffices to show that if x € At(B), then x < qolé(T). Let
x € At(B) be given. If x £ goé('l’), then x ¢ H;, which implies that there exists an element c of L N Tx such
thatc = ¢ A T ¢ G, which is a contradiction.

Sufficiency. By Lemma 3 in [6], it is clear.

(2) It is clear that (pé(T) = T if and only if (p(LG,g)(T) =T.

(3) For every b € L, by statement (1) and Proposition 4.11, we have

b=bAT=bA@gT)=bA@gbAT)=DbAqgb),
which implies that b < (pg(b). O
Proposition 4.13. For every G € 6 — RG(B) and every a, b € B, the following statements hold.
L oL@ A (p5®) = pha D) A (p50)
2 9@ A (9l ®) = Plog@nt) A (ol 0)
3. Ifb¢ G then goé(a vV b) = gog(a) = (pé(a A D).
4. Ifb ¢ G, then (p(LG,g)(a Vb)= (p(Lag)(a) = (p(Le,g)(a AD).

’

’

Proof. (1) By Propositions 4.3 and 4.10, we have

Pga) = pga b))V @ga Ab) < pgla Ab) V pgb),

which implies that

oL@ A (p50) < (ph@nt) v oL®) A (p50))
= oL A D) A (pL(D)
Also, we have
PLa ) A (pD) < h@) A (P D))

The proof is now complete.
(2) Similar to the proof of statement (1).
(3) By Proposition 4.8 and 4.10, we have

’

Pga Vv b) = pgla) vV g b) = pgla).

Again, by Proposition 4.8 and statement (1), we have

PL@) = p@) A (P50) = 9L A b) A (p50)) = pha D).

(4) Similar to the proof of statement (3). [

5. -Operator

L
0.6)
respectively. Moreover, we introduce frames Lg and L g) induced by 1/)2 and ¢

. . . L . L L
In this section, we consider new operators i and 1 induced by theL operators @ and ¢, o,
0.6)

Definition 5.1. Let G € 0 — RG(B) be given. Operators ¢;: B — B and ¢
for every b € B,

(Le,g)3 B — B are defined as follow
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gblé(b) =bV (plé(b) and I,D(Lglg)(b) =bV ¢€6,g)(b)‘

. . . L L . . .
Sev<'31jal basic facts concerning the behavior of the operators i ¢ and Vo) are included in the following
proposition.

Proposition 5.2. For every G € O — RG(B) and every a, b € B, the following statements hold.
L gg(L) = Land P, o (L) = L.
2.b< lpg(b) < ‘Pfe,g)(b)'
3. Ifa <b, then %(u) < l,bé(b) and gb(Le/g)(a) < z,b(Lelg)(b).

Proof. By Proposition 4.3, it is straightforward. [
Proposition 5.3. For every G € 6 — RG(B) and every a,b € B,
V5@V D) = (@) v E0) and g (a v E) = gl o @)V 9l 5 0).

Proof. This follows from Proposition 4.10. [
Definition 5.4. Corresponding to a 6- grill G on B, we define

Lg:={beB: wg(b') =V}
and

Ligg) = {b € B: Y o (') = ).
Proposition 5.5. For every G € 6 — RG(B), Lg and L g) are frames, and L g) is a subframe of Lg.

Proof. It is clear that T, L € Lg. For everya,b € Lg,
YE(@Ab)) = pha V) = gL@) v yg) =a VI = (@Aby.

Hence, Lg is closed under finite meets. Now, suppose that {03} ea € Lg. For every A € A, 1/)%( Areat?) <
ng(b:\) = b. Let u € B be a lower bound of the set {b’}yea. By Proposition 5.2, u < gbg(u) < gbé(/\AeA b)).
Therefore,

e\ b = v\ o) = \ By = (\/ b
AEA AeA AEA AEA

Hence, Lg is closed under arbitrary join. Since B is complete Boolean algebra, we infer that B is a frame,
which implies that Lg is a frame. Similarly, L g) is a frame.
Ifb € Lpg), then (pé(b’) < qo(LQ,g)(b’) < V', which implies that b € Lg. Therefore, L g) is a subframe Lg. [J

Proposition 5.6. For every G € O — RG(B) and every b € B, ifb ¢ G, then V/, ((pé(b))l €lgandl’, ((p(Le, g)(b))’ €
Leg):
Proof. This follows from Propositions 4.3 and 4.8. [
Proposition 5.7. If G1,G» € 0 — RG(B) with G1 C G», then Lg, C Lg, and Lg,g,) € La,,)-
Proof. By Proposition 4.9,
b <yl ) < U e) =V,

forevery b € Lg,. Hence, Lg, C Lg,. Similarly, Ligg,) € L,g,). O
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Throughout this article, for every G € 6 — RG(B), we put
BG,L):={xAy:xeL, y¢ Gl
and
B(6,G,1) =00 Ay': 6(x) €L, y ¢ G).
A base B of a frame L is a subset of L such that every element of L is a join of elements of B.

Proposition 5.8. For every G € 6 — RG(B), the following statements hold.
1. LEB(G, L) S Lgand L < B(0,G,L) C Li,g)-
2. If B is an atomic complete Boolean algebra, then B(0, G, L) is a base of Lg,g).
3. If B is an atomic complete Boolean algebra, then B(G, L) is a base of Lg.
4. The set B(G, L) is closed under finite meets.
5. If 6|, : L — B is a lattice homomorphism, then B(0, G, L) is closed under finite meets.
Proof. (1) For every v € L, since L ¢ G, we infer that 9(v) = O(v) A L’ € B(0,G, L). Therefore, L € B(0,G, L).
o L - L "\ =
E;tei(fyg)r: Land y ¢ G. Then, by Propositions 4.8(2) and 4.11(2), (p(e/g)(y) = 1 and (p(elg)((e(x)) ) = 1.
Yoo((00 A y)) = via((0®) v )
= (06) v ¥ v 9fog((09) v )
= (0) vV plo((00)) v Pl ®)
=(6() vy
=(0() A y')

Hence, 0(x) A iy’ € L(g,g), which implies that B(6,G,L) C L. Similarly, L € B(G,L) C Lg.
) (2) Letu € Ligg \{L} and x € AKB) with x < ube given. Then, 1’ = %ag)(u’) > (p(Le,g)(u’). Ifx < (p(Le,g)(u’),
then

’

x < (p(L@g)(u’) Au=xVu <uvVu')A (go(Lelg)(u’) vu')y=u
=>x<u
=x=1,
which is a contradiction. Hence, x £ (p(LQ g)(u’) and there exists an element v of LN Tx such that O(v) Au’ ¢ G.
We puta = 0(v) Au'. Itis clear that O(v) Aa’ € B(0,G,L) and x < O(v) Au = 60(v) Aa’” < u. So, this equality
shows that every element u of L(g,g) can be written as the joint of B(0, G, L).

(3) Similar to the proof of statement (2).
(4) Letay,ap ¢ Gand v1,v, € L. Thena; Va, ¢ G and v1 A v; € L, which implies that

(01 Aay) A (va Aay) = (01 Av2) A (a1 Vap)' € B(G, L).

Hence, B(G, L) is closed under finite meets.
(5) Letay,a; ¢ G and 0(v1), O(v) € L. Then, a1 V ay ¢ G and 6(v1 A v2) = O(v1) A 6(v2) € L, which implies
that

O(v1) Aay A O(vp) Aay = 0(v1 Avp) A(ay Va) € B(O,G,L).

Hence, B(6, G, L) is closed under finite meets. [
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Proposition 5.9. Let G € 0 — RG(B) and b € B. Ifb < pL(b), then I (b) = cl.(pL(D)).

Proof. Since b < (pé(b), we infer that cly (b) < clL<(pé(b)). On the other hand, by Proposition 4.5, we have
cli(pL(b)) < cli(cli (b)) = cli(b), then cli(b) = cli(pL(b)). O

Proposition 5.10. Let B be an atomic complete Boolean algebra. For every G € O — RG(B) and every b € B, the
following statements hold.

1. Ifb < pL(b), then cly(b) = cly, (b)
2. Ifb < (p{“e/g)(b), then clp(b) = clp, g ().

3. clig(pL(b)) = pL(b).
4. cli,(b) = YL(b).

Proof. (1). It is clear that C(b) C Cp,(b), then clp,;(b) < cl (b). Let x € At(B) with x £ clp,(b) be given. Then,
there exists an element a of Cp,(b) such that x £ a, which implies that x < a’. Since a’ € Lg, we conclude
from Proposition 5.8 that there exists a subset {x) A ¥/} }1ea of B(G, L) such that {xa}lren S L, {yalrea NG =0
and a’ = \/ p(xa A y)), which implies thata = A\ ;5 (¥ V y1) and there exists an element A of A such that
X £ X,V Yy, Hence, x < x,, and

bSan;\(l VY, = b A (x), /\yi\o)z 1.
Also, we have

X Ab < x, Apgb), by hypothesis
= X, A gy, AD), by Proposition 4.11
= X A@glra, AbAY, ), by Proposition 4.13
= X3 A @é(l)
= x3, ANl by Proposition 4.3
= 1.

Hence, xj‘o € Cr(b) and x £ x}ko, which implies that x £ cl; (b). Therefore, cl;(b) < clz (D).

(2) It is clear that Cp.(b) € Cp,, (D), then cl,, (b) < clp(b). Let x € At(B) with x £ clp,; (b) be given. Then,
there exists an element a of Cp,,, (b) such that x £ a, which implies that x < a’. Since a € L(g,g), we conclude
from Proposition 5.8(2) that there exists a subset {6(x)) A y\}1ea of B(6,G, L) such that {O(xa)}ren € L,

yaheaNG =0and a’ = Ve (G(x,\) A y’A), which implies that a = A;cp ((G(x)’A \% yA)) and there exists an
element Ay of A such that x £ (G(X)):\ V 1,,. Hence, x < 0(x;,) and
0

b<a<0(xn) Vyry=bA0(xy) Ay, =L

Also, we have

G(XAO) Ab < Q(X/\o) A (p%@,g) (b)/ by hypothesis
= 0(x3,) A (p(Le,g)(G(x,\o) A b), by Proposition 4.11

= 0O(xy,) A (p(Leg)(G(x,\o) AbA yg\o), by Proposition 4.13
= 0(xy,) A (P(Le/g)(J-)

= O(xp) AL, by Proposition 4.3
= 1.
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Hence, 6(x),) € Cr(b) and x £ 6(x,,)’, which implies that x £ cl. (b). Therefore, cl;(b) < cl, , (b).
(3) Since

clig (p5 (b)) = /\ {xeB: pLb) v plhx) < x)
and, by Proposition 4.5(3),
P5(0) V 95(95(b)) = PE(b),

we conclude that cl ((pg(b)) < (pé(b), which implies that

iy (p5®) = P5(0).

(4) Since cl;,(b) = A\ {x €B:bvV (p’é(x) < x} and

bV k(b v pL®) = bV eLb) v oL(pk®) = bV oLb),

we conclude that cl;,(b) < bV (pé(b) = ng(b). Let x £ clp,(b) and x € A#(B). Similar to the proof of the
statement (1), there exists an element x,, of L and y), ¢ G such thatx < x), Ay) and b Ax), Ay, = L.
Hence, by Proposition 4.13, we have

(pg(b AXp,) = (pg(b Axpy AYy) = L
Also, by Proposition 4.11,
Xao A @gb) = x20 A @b Axp,) = L.
Now, if x < (pé(b), then
1 ;tx:x/\qog(b) < xy, /\qog(b) =1,
which is a contradiction. So thatx £ gog(b). Therefore, (pg(b) < clg4(b), which implies that ¢g(b) = b\/(pg(b) <
cly,(b). Hence, 1/)2(17) =cl, (). O
6. Frame Suitable for a Grill

In this section, we consider grills and 0-grills satisfying a certain condition and give some properties of
them.

Definition 6.1. A frame L is said to be suitable for a grill G (a 0-grill G) if for every b € B, b A (gog(b)), ¢G
L ’
(b7 (9fo0®) #9)
It is easy to see that, if L is suitable for the 0-grill G, then L is suitable for grill G.
Proposition 6.2. Let L be suitable for the 0- grill G and b € B. If b A (p(Le g0 =L, thenb ¢ G.

Proof. We have
b=bA(¢fo0® v (¢lag®))
= (0 A plogy®) v (07 (0o ®))
=b A (Pl 1) ¢6.
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Lemma 6.3. Let B be an atomic complete Boolean algebra, G € 0 — RG(B) and b € B. Then,
(07 (#log®) ) A #log (b A (Pfe®) ) = L.

Proof. Letb € B and (b A ((p(LQ/g)(b)),) A (p(Le,g)(b A ((p(Le,g)(b)),) # L. Then, there exists an atom element x of B
such that

x<(bA ((Pfs,@(b)),) A @b A ((P<Le,g>(b)),)'

which implies that

X< ((P?G,g)(b))’ = X £ @p60)

b
= x¢ H(e,g)

= 00U, Ab¢ G forsomeb, € LN1x.

Since G is a 0-grill on B and

(00 Ab A (95®)) < 6(6() AD),

: L (it ®)
we conclude that O(by) A b A (go(Le g)(b)) ¢ G, which implies that x ¢ H ’ . Therefore

0,6)
x £ (P(Le,g)(b A ((p(L@’g)(b)) ) This is a contradiction. [

Proposition 6.4. Consider the following statements for a 0-grill G on B:
1. Forevery b € B, if b A gy, 5, (b) = L, then ¢y, o, (b) = L.
L L "\ =
2. Foreveryb € B, (P(Q,g)<b A ((P(e,g)(b)) ) =1.
3. Foreveryb € B, (p(Lglg)<b A (p(LQ,g)(b)) = Plo6) ).

Then the statement (2) implies the statement (3) and the statement (3) implies the statement (1). If B is the atomic
complete Boolean algebra, then statements (1), (2) and (3) are equivalent with L is suitable for the 6-grill G on B.

Proof. (2) = (3) Let b € B, then we have

Poe® = (P%e,@((b“P(Le,g)(b))V(bA((f’(Le@(b)),))

(P%g,g)(b A (p(LG,Q)(b)) v (p(LQ,g)(b A ((Pfdgfg)(b)),)
(P(Le,g)(b A (P(Le,g)(b)), by the statement (2).

(3) = (1) Letb € Band b A (Pfe,g)(b) = 1, then, by Proposition 4.3 (1) and statement (3), (p(LQ’g)(b) =

L L -
Plog (0 1 Plog®) = L
Now, suppose that B is the atomic complete Boolean algebra and we show that the statement (1) implies
the statement (2). By Lemma 6.3,

b A (Pl ®) A Pt A (Plog®)) = L
Hence, by statement (1), for every b € B, (p(Le/g)(b A ((p(Lelg)(b))l) =1. O

Proposition 6.5. Let L be suitable for a 0-grill G on B, then the following statements hold.
L L L
L. Forevery b € B, ¢, ,(b) < (P(e,g)(qo(e,g)(b))'
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L L (oL
2. Forevery b € B, ¢ (b) < (pg((pg(b)).
3. If Biis the atomic complete Boolean algebra, then @y is an idempotent operator, i.e., (pg(gog(b)) = g, (b) for any
beB.

Proof. (1) Let b € B, then we have

Plo)® = P g)((b A P, g)(b)) ( ((Pge,g)(b)),))

= Pl (b A Pl ) V 9l (b A (9l 6 ®)) )

= (P(Le,g)<b A (P(Ls,g)(b)) Vi, asb A (go(leg)(b)) ¢G
= 9loe(b A Ploe®)
<P g)( (Le,g)(b))/ by Proposition 4.3(2).

(2) Tt is similar to (1).
(3). By Proposition 4.5(2), it is clear. [J

In the following example, we show that (p(LH ) Is not necessary an idempotent operator.

Example 6.6. Consider the Boolean algebra, subframe L and 0-grill G as in Example 4.6. It is easy to see
that pf, - (5) = 10 and ¢}, ;,(10) = 70. Then, ¢k, - (¢, - (5)) = 70, and so gL, . (5) # Pk, 5 (0L, 5, 5))-

Proposition 6.7. Let B be an atomic complete Boolean algebra. If L is suitable for a grill G on B, then B(G,L) = Lg
Proof. (1) Letb € Lg, then b’ = pL(b') v (b’ A (L (b)) ), which implies that b = (pL(b")) A (b Vv pL(b)). Since

L is suitable for the 0-grill G, we conclude that b’ A ((pé(b’))’ ¢ G. Also, by Proposition 4.5(2), ((pé(b’))’ eL
Hence b € B(G, L), thatis Lg € B(G, L). By Proposition 5.8(2), the proof is then complete. [

The following example shows that Proposition 6.7 is not true for a 6-grill G.

Example 6.8. Take B ={1,a,b,c,d,e, f, T}. We define the binary relation < on B in the following figure.

Jb /
\'

The function 0: B — B by

Q_J_abcdefT
“\L d b fd T f T)

is an approximation on B. Consider subframe L = {1,a,c,e, T} and 0-grill G = {c, f,e, T} on B. It is easy to
check that L is suitable for O-grill G. Moreover, L g = {1,a,c,e, f, T} and B(0,G,L) = {L,c,e, f, T}. Then
B(@, Q, L) C L(Q,g).

Proposition 6.9. Let B be an atomic complete Boolean algebra, and let L be suitable fora grill Gon B. Ifae L, b € B,
then

Ph(a A b) = pg(a A k() = cli(a A pL(0).
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Proof. In view of Proposition 4.11(1), Proposition 6.5(2) and Proposition 4.3(2), which implies that

ael = a/\qog(b)S(pé(a/\b)
= ghlangL®) < ph@5anD) = pha b,

IA

Also, we have (pé(a Ab A ((pg(b))l)
Proposition 4.13(1), we have

oL@ Ab) A (95(a A ph®))

qoé(b A (gog(b))’) =1,asbA ((pé(b))l ¢ G. On the other hand, by

IA

(pg(a AbA (11 A (pg(b))l)

Pglanb A (pp®))
= 1.

Hence, pg(aAD) < (pé(a A (pé(b)), which implies that pj(aAb) = (pé(a A (pg(b)) < clL((pé(a A b)), by Proposition
4.5(2). Now by using Propositions 4.5(2) and 4.11(1) we obtain,

a A pl(b) < phlaAb) = cli(a A pl(b)) < cli(pha A b)) = plaAb).
The proof is now complete. [

Corollary 6.10. Let B be an atomic complete Boolean algebra, and let L be suitable for a grill Gon B. Ifa e L\ G,
thena < ((pg('l'))/.

Proof. Leta € L\ G. In view of Propositions 4.8(2) and 6.9, we obtain
1= pg(@) = pla A T) = ph(a A pp(T)) = clifa A pf(T))
Hence, a A (pé(‘l’) = 1, which implies thata < ((pg(T)),. O

Corollary 6.11. Let B be an atomic complete Boolean algebra, and let L be suitable for a grill G on B. (pé(T) =Tif
and only if L\ {L} C G.

Proof. By Proposition 4.12(1) and Corollary 6.10, it is clear. [J

In the following example, we show that Proposition 6.9 is not true for a 6-grill G on a atomic complete
Boolean algebra.

Example 6.12. Consider the Boolean algebra, subframe L and 6-grill G as in Example 4.6. Then, it is easy
to see that L is a suitable for 6-grill G. Fora = 7 and b = 2, we have qo(LG ¢7) =7and (P(Le (2 =70. Then

qo(LQ,g) (anb) = qo(LQ,g)(l) =1land (p(LG,g)(W\go(Lglg)(Z)) = 90(L9,g)(7) = 7. Therefore (p(Le/g)(a/\b) # (p(Lelg)(a/\(p(Le/g)(b)).

Proposition 6.13. Let B be an atomic complete Boolean algebra , and let L be suitable for a grill G on B. Suppose
thatxeL y¢ Gandz=x Ay IfL\ {1} C G, then

cngz =cljz = (pg(z) = (pg(x) =clx = cng X.
Proof. By Proposition 4.12(2), x < (pg(x), which implies that
clr () = cli (5 () = () = cli(ph(x)) = clx,

by Proposition 5.10. In view of Proposition 4.13(2), (pg(z) = (pg(x). By Proposition 4.12(1) and 4.13(1), we
have

(PE@) = p5(M) A (PE@) = 95T AZ) A (950)) = 0h) A (950))

’
7
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which implies that ((pg(z)), < @g(z'). Also, we have

PV y)
PE() V @5(y), by Proposition 4.10
(Pg(x') A by Proposition 4.8(2)

Pgz)

= )

< x, by Proposition 4.11(2)
< X¥Vy

= z.

Hence, z < (pé(z). Then, by proposition 5.10, we have

cliy (2) = cli, (P (@) = i (9h(2) = Ph(2) = cli ().

The proof is now complete. [

Example 4.6 shows that the above proposition is not true for a 6-grill G.

7. Conclusion

This paper has addressed a pointfree version of grills. In the present paper, we defined an approximation

0 on a bounded lattice. Also, by an approximation 6, we introduce new concept 0-grill on a bounded lattice.
Moreover, we discussed some properties of grills and 0-grills. This may be a part of our future research.
There are still a number of fields that can be explored using 8-grills. Due to the fact that the radical ideals
and z-ideals of a ring form a frame. So we can expand the concept of grill and 0-grill to algebra.
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