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Abstract. In this paper, the pointfree version of grills is introduced. We consider a Boolean algebra B
and a subframe L instead of a topological space (X, τ), and present the concept of approximation θ over B.
Moreover, some properties of them are given. Also, we introduce and study the new concepts grill and
θ-grill on Boolean algebras.

1. Introduction

The idea of grill on a topological space was first introduced by Choquet in [4]. It is proved that, grills,
nets and filters, are useful and important for studying some topological concepts such as proximity spaces,
closure spaces, the theory of compactifications and other similar extension problems. Chattopadhyay and
Thorn [3] proved that grills are always unions of ultra filters. Further, Roy and Mukherjee [10] defined
and studied the typical topology associated with a grill defined on a given topological space. Recently,
Hatir and Jafari [7] and Al-Omari and Noiri [1, 2] have developed the study of grill topological spaces with
continuities and generalized continuities. The notions of soft grill, soft operators φG, ψG and soft topology
τG were defined and discussed in [8]. Latif in [5] introduced more properties of soft grills.

Traditionally, a topological space consists of a set of points together with a topology, a system of subsets
called open sets that with the operations of intersection and union forms a lattice with certain properties.
Point-free topology focuses on the open sets rather than the points of the space. The main purpose of this
article is to introduce a point-free version of grill and θ-grills on a bounded lattice D.

This article is organized as follows. In the next section some basic notions and properties of lattices and
grills are reviewed. In Section 3, we introduce the concept of approximation on a bounded lattice. Also,
by an approximation θ, we introduce new concept θ-grill on D and we show that the set of all of grills
and the set of all of θ-grills on a bounded lattice, ordered by inclusion, are complete lattices. In Section
4, we consider a Boolean algebra B, a subframe L of B, a θ-grill G on B and define two operators ϕL

G
and

ϕL
(θ,G). Then, we study some basic properties of them. In Section 5, we consider new operators ψL

G
and ψL

(θ,G)

induced by the operators ϕL
G

and ϕL
(θ,G), respectively. Moreover, we introduce frames LG and L(θ,G) induced

by ψL
G

and ψL
(θ,G).
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2. Preliminaries

In what follows, by a space X we shall mean a topological space(X, τ).
A nonempty collection G of subsets of a nonempty set X is said to be a grill on X, if it satisfies the

following conditions:

1. ∅ < G
2. if A ∈ G and A ⊆ B ⊆ X then B ∈ G, and
3. if A,B ⊆ X and A ∪ B ∈ G then A ∈ G or B ∈ G.

In [10], Roy and Mukherjee introduced a new topology from a topological space (X, τ), constructed by
use of a grill on X, and it is described as follows: Let G be a grill on a space X. Consider the operator
φG : P(X)→ P(X) is given by

φG(A) = {x ∈ X : x ∈ O implies O ∩ A ∈ G for all O ∈ τ}

for all A ∈ P(X). Then the map ψG : P(X) → P(X) given by ψG(A) = A ∪ φG(A) is a Kuratowski’s closure
operator and hence induces a topology

τG = {G ⊆ X : ψG(X − G) = X − G}

on X, strictly finer than τ in general. A simple base for the open sets of τG is described as follows:

β(G, τ) = {V − A : V ∈ τ,A < G}.

We denote the top element and the bottom element of a bounded lattice by > and ⊥, respectively. An
element a of a bounded lattice D is called an atom if a , ⊥, and ⊥ < b ≤ a implies b = a for every b ∈ D. In
what follows, the set of all atom elements of a bounded lattice D is denoted by At(D).

A lattice L is said to be complemented if every x ∈ L has a complement; that is, for every x ∈ L, there
exists an element y of L such that x ∧ y = ⊥ and x ∨ y = >. A distributive complemented lattice is called
a Boolean algebra. Notice that every element x of a Boolean algebra has a unique complement, which is
denoted by x′ (see [6]).

A frame is a complete lattice L in which the distributive law

x ∧
∨

S =
∨
{x ∧ s : s ∈ S}

holds for all x ∈ L and S ⊂ L. It is well known that every frame is isomorphic to a subframe of a complete
Boolean algebra (see [9, Corollary 2.6, page 53]). In what follows, B will denote a complete Boolean algebra.
Also, L will denote a subframe of the complete Boolean algebra B.

3. Approximation

In this section, we introduce the concept of approximation on a bounded lattice. Also, by an approxi-
mation θ, we introduce new concept θ-grill on D.

Definition 3.1. Let D be a bounded lattice. The function θ : D→ D is called an approximation if

1. θ(⊥) = ⊥,
2. θ

(
θ(a)

)
= θ(a),

3. a ≤ θ(a),
4. θ(a ∨ b) = θ(a) ∨ θ(b), and
5. θ(a ∧ b) ≤ θ(a) ∧ θ(b)

for all a, b ∈ D.
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Proposition 3.2. Let θ : D → D be an approximation on a bounded lattice D. Then θ(D) is a lattice such that for
every α, β ∈ θ(D),

α ∨θ(D) β = α ∨D β and α ∧θ(D) β = θ(α ∧D β).

Proof. It is clear that θ(D) is a poset. Since θ(⊥) = ⊥ and θ(>) = >, then θ(D) is a bounded poset.
Let α, β be any elements of θ(D). Then, there exist a, b ∈ D such that α = θ(a) and β = θ(b). Since
α ∨D β = θ(a) ∨D θ(b) = θ(a ∨D b) ∈ θ(D), we conclude that θ(a) ∨D θ(b) is an upper bound of {α, β} in θ(D).
Also α ∨D β ≤ α ∨θ(D) β, then α ∨D β = α ∨θ(D) β.
On the other hand,

θ
(
θ(a) ∧ θ(b)

)
≥ θ

(
θ(a ∧ b)

)
= θ(a ∧ b),

and

θ
(
θ(a) ∧D θ(b)

)
≤ θ

(
θ(a)

)
∧ θ

(
θ(b)

)
= θ(a) ∧ θ(b).

Then θ
(
θ(a) ∧D θ(b)

)
is a lower bound of {θ(a), θ(b)}. Now, let d ∈ D be a lower bound of {θ(a), θ(b)}. Then,

θ(d) ≤ θ(a) and θ(d) ≤ θ(b) and so θ(d) ≤ θ(a) ∧D θ(b) which implies that θ(d) = θ
(
θ(d)

)
≤ θ

(
θ(a) ∧D θ(b)

)
.

Therefore, θ(a) ∧θ(D) θ(b) = θ
(
θ(a) ∧D θ(b)

)
, which means that θ(D) is a lattice.

Let D be a bounded lattice. In what follows, Apr(D) will denote the set of all approximations on D. It is
clear that the set Apr(D) with the following relation is a poset.

θ ≤ ψ⇐⇒ ∀x ∈ L; θ(x) ≤ ψ(x).

Definition 3.3. Let D be a bounded lattice, and let θ ∈ Apr(D) be given. A non-empty subset G ⊆ D is
called

1. a grill on D, if the following conditions hold:
(a) ⊥ < G.
(b) For every a, b ∈ D, if a ∈ G and a ≤ b, then b ∈ G.
(c) For every a, b ∈ D, if a ∨ b ∈ G, then a ∈ G or b ∈ G.

2. a θ-grill on D, if the following conditions hold:
(a) ⊥ < G.
(b) For every a, b ∈ D, if a ∈ G and θ(a) ≤ θ(b), then b ∈ G.
(c) For every a, b ∈ D, if θ(a) ∨ θ(b) ∈ G, then θ(a) ∈ G or θ(b) ∈ G.

Let D be a bounded lattice. In what follows, by θ − RG(D) we denote the set all of θ- grills on D. It is
easy to see that (θ − RG(D),⊆) is a poset.

Remark 3.4. Notice that there is no generally connection between filters and grills. For example, let
X = {a, b, c, d}, G =

{
{a}, {b}, {a, c}, {a, b}, {a, d}, {b, c}, {b, d}, {a, b, c}, {c, b, d}, {a, b, d},X

}
and F =

{
X, {a, b, c}

}
. It is

easy to see that G is a grill and F is a filter. Moreover, if A = {a} and B = {b, c}, then A ∪ B ∈ F but A,B < F
which means that F is not a grill. Also, {a, c}, {b, c} ∈ G but {a, c} ∩ {b, c} < G. Hence G is not a filter.

Proposition 3.5. Let D be a bounded lattice. The set θ−RG(D), ordered by inclusion, is a complete lattice such that
for every {Gλ}λ∈Λ ⊆ θ − RG(D),∨

λ∈ΛGλ =
⋃
λ∈ΛGλ and

∧
λ∈ΛGλ =

⋃
{ G ∈ θ − RG(D) : G ⊆

⋂
λ∈ΛGλ }.

Also, the set all of grills on D, ordered by inclusion, is a complete lattice.

Proof. It is straightforward.

Proposition 3.6. Let D be a bounded lattice and G ∈ θ − RG(D). Then the following statements hold.
(1) θ(D) = { d ∈ D : θ(d) = d }.
(2) For every d ∈ D, θ(d) ∈ G if and only if d ∈ G.
(3) The set G is a grill on D.

Proof. It is straightforward.
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4. Frame Induced by a Grill

In this section, we introduce two operators ϕL
G

and ϕL
(θ,G) and give some properties of them. Recall that

L is a subframe of B and for every subset X of B and x ∈ B, we write ↓X = {y ∈ B : y ≤ x for some x ∈ X},
↑X = {y ∈ B : y ≥ x for some x ∈ X}, ↓x = ↓{x} and ↑x = ↑{x}.

Definition 4.1. Let G ∈ θ − RG(B) be given. We define ϕL
G

: B → B is given by b 7→
∨
{x ∈ At(B) : b ∧ y ∈

G for all y ∈ L ∩ ↑x}, and ϕL
(θ,G) : B→ B is given by b 7→

∨
{x ∈ At(B) : b ∧ θ(y) ∈ G for all y ∈ L ∩ ↑x}.

For every b ∈ B, we put Hb
G

:= {x ∈ At(B) : b∧ y ∈ G for all y ∈ L ∩ ↑x}, and Hb
(θ,G) := {x ∈ At(B) : b∧θ(y) ∈

G for all y ∈ L ∩ ↑x}. Hence ϕL
G

(b) =
∨

Hb
G

and ϕL
(θ,G)(b) =

∨
Hb

(θ,G).

Definition 4.2. If p ∈ B, the closure of p on L is the element

clL(p) :=
∧
{q ∈ B : q′ ∈ L, p ≤ q}.

For every p ∈ B, we put CL(p) := {q ∈ B : q′ ∈ L, p ≤ q}. For every x ∈ At(B), it is clear that x ≤ clL(p) if and
only if for any a ∈ L, x ≤ a implies a ∧ p , ⊥.

Proposition 4.3. Let G be a θ-grill on B. Then the following statements hold.

(1) ϕL
G

(⊥) = ⊥ = ϕL
(θ,G)(⊥).

(2) For every b ∈ B, ϕL
G

(b) ≤ ϕL
(θ,G)(b) and, in particular, equality holds if and only if Hb

G
= Hb

(θ,G).

(3) For every a, b ∈ B, if a ≤ b, then ϕL
G

(a) ≤ ϕL
G

(b) and ϕL
(θ,G)(a) ≤ ϕL

(θ,G)(b).

(4) For every b ∈ G ∩ At(B), b ≤ ϕL
G

(b) ≤ ϕL
(θ,G)(b) and in particular, ϕL

G
(b) ≤ ϕL

G

(
ϕL
G

(b)
)
≤ ϕL

(θ,G)

(
ϕL

(θ,G)(b)
)
.

Proof. (1) Obvious.
(2) Since Hb

G
⊆ Hb

(θ,G), we conclude that for every b ∈ B, ϕL
G

(b) ≤ ϕL
(θ,G)(b). The rest is evident.

(3) Let x ∈ At(B) and y ∈ L ∩ ↑x such that a ∧ θ(y) ∈ G. Since a ≤ b and G is a θ- grill on B, we have
θ
(
a ∧ θ(y)

)
≤ θ

(
b ∧ θ(y)

)
and so b ∧ θ(y) ∈ G, which implies that x ∈ Hb

(θ,G). Then, Ha
(θ,G) ⊆ Hb

(θ,G) and so
ϕL

(θ,G)(a) ≤ ϕL
(θ,G)(b).

(4) For every y ∈ L ∩ ↑b, we have θ(y) ≥ y ≥ b and so b ∧ θ(y) = b ∧ y = b ∈ G, which implies that
b ∈ Hb

G
∩Hb

(θ,G) and so b ≤ ϕL
G

(b) ≤ ϕL
(θ,G)(b). The rest is evident.

Example 4.4. Let B be the set of all positive integers which are integral divisors of 70. Thus

B = {1, 2, 5, 7, 10, 14, 35, 70}.

For any x, y ∈ B, let x ∧ y be the greatest common divisor of x and y, let x ∨ y be the least common multiple
of x and y, and let x′ = 70

x . Then (B,∨,∧, 1, 70) is a Boolean algebra. The function θ : B→ B given by

θ =

(
1 2 5 7 10 14 35 70
1 2 10 14 10 14 70 70

)
is an approximation. Consider the subframe L = {1, 7, 10, 70} of B and let G = {2, 5, 7, 10, 14, 35, 70}. It is easy
to see that G is a θ-grill on B. Let b = 2. Then, H2

G
= {2, 5}, and H2

(θ,G) = {2, 5, 7}. Therefore, ϕL
G

(2) = 10 and
ϕL

(θ,G)(2) = 70 and so ϕL
G

(2) � ϕL
(θ,G)(2).

Proposition 4.5. Let G ∈ θ − RG(B) and b ∈ B be given. The following statements hold.

(1) ϕL
G

(b) ≤ clL(b).
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(2) If there exists a subset A of At(B) such that clL

(
ϕL

(θ,G)(b)
)

=
∨

A, then

clL

(
ϕL

(θ,G)(b)
)

= ϕL
(θ,G)(b) and

(
ϕL

(θ,G)(b)
)′
∈ L.

(3) If there exists a subset A of At(B) such that clL

(
ϕL
G

(b)
)

=
∨

A, then

ϕL
G

(
ϕL
G

(b)
)
≤ clL

(
ϕL
G

(b)
)

= ϕL
G

(b) and
(
ϕL
G

(b)
)′
∈ L.

Proof. (1) Let x ∈ Hb
G

and x � clL(b). Then there exists an element t of L such that x � t′ and b ≤ t′. Since x is
an atom element of B, we conclude that t ∈ L ∩ ↑x and ⊥ = b ∧ t ∈ G, which is a contradiction. Therefore,
ϕL
G

(b) ≤ clL(b).
(2) Let x ∈ A and a ∈ L ∩ ↑x be given. If a ∧ ϕL

(θ,G)(b) = ⊥, then

a ∧ ϕL
(θ,G)(b) = ⊥ ⇒ ϕL

(θ,G)(b) ≤ a′ ≤ x′

⇒ clL

(
ϕL

(θ,G)(b)
)
≤ x′

⇒ x ≤
(
clL

(
ϕL

(θ,G)(b)
))′

⇒ x = ⊥,

which is a contradiction. Therefore,

⊥ , a ∧ ϕL
(θ,G)(b)

= a ∧
∨
{z ∈ At(B) : θ(c) ∧ b ∈ G for all c ∈ L ∩ ↑z }

=
∨
{a ∧ z : z ∈ At(B) and θ(c) ∧ b ∈ G for all c ∈ L ∩ ↑z }.

So that there exists an atom element z of B such that a ∧ z , ⊥ and θ(c) ∧ b ∈ G for all c ∈ L ∩ ↑z. Hence,
z ≤ a, which implies that b ∧ θ(a) ∈ G, that is x ∈ Hb

(θ,G). Thus,

clL

(
ϕL

(θ,G)(b)
)

=
∨

A ≤
∨

Hb
(θ,G) = ϕL

(θ,G)(b),

and since ϕL
(θ,G)(b) ≤ clL

(
ϕL

(θ,G)(b)
)
, we conclude that clL

(
ϕL

(θ,G)(b)
)

= ϕL
G

(b).
(3) The proof of (3) is similar to the proof of part (2).

The following example shows that Proposition 4.5 (1) is not true for operation ϕL
(θ,G).

Example 4.6. Consider the Boolean algebra, subframe L and θ-grillG as in Example 4.4. Then,ϕL
(θ,G)(2) = 70

and clL(2) = 10. Therefore, ϕL
(θ,G)(2) � clL(2).

Proposition 4.7. For every G ∈ θ − RG(B), ϕL
G

(b) = ⊥ if and only if Hb
G

= ∅ and also ϕL
(θ,G)(b) = ⊥ if and only if

Hb
(θ,G) = ∅.

Proof. It is straightforward.

Proposition 4.8. For every G ∈ θ − RG(B), the following statements hold.

1. If ϕL
G

(b) = ⊥ or ϕL
(θ,G)(b) = ⊥, then b < G ∩ At(B).

2. If b < G, then ϕL
(θ,G)(b) = ⊥ = ϕL

G
(b).

Proof. It is straightforward.
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Proposition 4.9. If G1,G2 ∈ θ − RG(B) with G1 ⊆ G2, then for all b ∈ B,

ϕL
(θ,G1)(b) ≤ ϕL

(θ,G2)(b) and ϕL
G1

(b) ≤ ϕL
G2

(b).

Proof. It is clear.

Proposition 4.10. For every G ∈ θ − RG(B) and every a, b ∈ B,

ϕL
(θ,G)(a ∨ b) = ϕL

(θ,G)(a) ∨ ϕL
(θ,G)(b) and ϕL

G
(a ∨ b) = ϕL

G
(a) ∨ ϕL

G
(b).

Proof. By Proposition 4.3(3),

ϕL
(θ,G)(a) ∨ ϕL

(θ,G)(b) ≤ ϕL
(θ,G)(a ∨ b).

Let x ∈ At(B) \
(
Ha

(θ,G) ∪ Hb
(θ,G)

)
be given. Then, there exist y1, y2 ∈ L ∩ ↑x such that a ∧ θ(y1) < G and

b ∧ θ(y2) < G, which implies that(
a ∧ θ(y1)

)
∨

(
b ∧ θ(y2)

)
< G,

and since

(a ∨ b) ∧ θ(y1 ∧ y2) ≤ (a ∨ b) ∧
(
θ(y1) ∧ θ(y2)

)
=

(
a ∧ θ(y1) ∧ θ(y2)

)
∨

(
b ∧ θ(y1) ∧ θ(y2)

)
≤

(
a ∧ θ(y1)

)
∨

(
b ∧ θ(y2)

)
,

we conclude that (a ∨ b) ∧ θ(y1 ∧ y2) < G, that is x < Ha∨b
(θ,G). Hence, Ha∨b

(θ,G) ⊆ Ha
(θ,G) ∪ Hb

(θ,G). Therefore,
ϕL

(θ,G)(a ∨ b) ≤ ϕL
(θ,G)(a) ∨ ϕL

(θ,G)(b).

Proposition 4.11. For every G ∈ θ − RG(B) and every (a, b) ∈ L × B, the following statements hold.

1. ϕL
(θ,G)(b) = ϕL

(θ,G)(θ(a) ∧ b) and ϕL
G

(b) = ϕL
G

(a ∧ b).

2. ϕL
G

(a′) = ⊥ and ϕL
(θ,G)

((
θ(a)

)′)
= ⊥.

Proof. (1) By Proposition 4.3(3), ϕL
(θ,G)(θ(a) ∧ b) ≤ ϕL

(θ,G)(b). Let x ∈ Hb
(θ,G) with a ∧ x , ⊥. Since x is an

atom element of B, we conclude that x ≤ a ≤ θ(a). Now, suppose that y ∈ L ∩ ↑x, then y ∧ a ∈ L ∩ ↑x and
b ∧ θ(a ∧ y) ∈ G, and so b ∧ θ(a) ∧ θ(y) ∈ G. Then, x ∈ Hθ(a)∧b

(θ,G) and therefore, ϕL
(θ,G)(θ(a) ∧ b) = ϕL

(θ,G)(b).

(2) By statement (1) and Proposition 4.3(1), we have

ϕL
G

(a′) = ϕL
G

(a ∧ a′) = ϕL
G

(⊥) = ⊥,

and

ϕL
(θ,G)

((
θ(a)

)′)
= ϕL

(θ,G)

(
θ(a) ∧

(
θ(a)

)′)
= ϕL

(θ,G)(⊥) = ⊥. �

Proposition 4.12. Let G ∈ θ − RG(B) and L \ {⊥} ⊆ G. Then the following statements hold.

1. The Boolean algebra B is atomic if and only if ϕL
G

(>) = >.

2. The Boolean algebra B is atomic if and only if ϕL
(θ,G)(>) = >.

3. If the Boolean algebra B is atomic, then b ≤ ϕL
(θ,G)

(
θ(b)

)
and b ≤ ϕL

G
(b) for every b ∈ L.
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Proof. (1) Necessity. To prove that ϕL
G

(>) = >, it suffices to show that if x ∈ At(B), then x ≤ ϕL
G

(>). Let
x ∈ At(B) be given. If x � ϕL

G
(>), then x < H>

G
, which implies that there exists an element c of L ∩ ↑x such

that c = c ∧ > < G, which is a contradiction.
Sufficiency. By Lemma 3 in [6], it is clear.
(2) It is clear that ϕL

G
(>) = > if and only if ϕL

(θ,G)(>) = >.

(3) For every b ∈ L, by statement (1) and Proposition 4.11, we have

b = b ∧ > = b ∧ ϕL
G

(>) = b ∧ ϕL
G

(b ∧ >) = b ∧ ϕL
G

(b),

which implies that b ≤ ϕL
G

(b).

Proposition 4.13. For every G ∈ θ − RG(B) and every a, b ∈ B, the following statements hold.

1. ϕL
G

(a) ∧
(
ϕL
G

(b)
)′

= ϕL
G

(a ∧ b′) ∧
(
ϕL
G

(b)
)′

.

2. ϕL
(θ,G)(a) ∧

(
ϕL

(θ,G)(b)
)′

= ϕL
(θ,G)(a ∧ b′) ∧

(
ϕL

(θ,G)(b)
)′

.

3. If b < G, then ϕL
G

(a ∨ b) = ϕL
G

(a) = ϕL
G

(a ∧ b′).

4. If b < G, then ϕL
(θ,G)(a ∨ b) = ϕL

(θ,G)(a) = ϕL
(θ,G)(a ∧ b′).

Proof. (1) By Propositions 4.3 and 4.10, we have

ϕL
G

(a) = ϕL
G

(a ∧ b′) ∨ ϕL
G

(a ∧ b) ≤ ϕL
G

(a ∧ b′) ∨ ϕL
G

(b),

which implies that

ϕL
G

(a) ∧
(
ϕL
G

(b)
)′
≤

(
ϕL
G

(a ∧ b′) ∨ ϕL
G

(b)
)
∧

(
ϕL
G

(b)
)′

= ϕL
G

(a ∧ b′) ∧
(
ϕL
G

(b)
)′
.

Also, we have

ϕL
G

(a ∧ b′) ∧
(
ϕL
G

(b)
)′
≤ ϕL

G
(a) ∧

(
ϕL
G

(b)
)′
.

The proof is now complete.
(2) Similar to the proof of statement (1).
(3) By Proposition 4.8 and 4.10, we have

ϕL
G

(a ∨ b) = ϕL
G

(a) ∨ ϕL
G

(b) = ϕL
G

(a).

Again, by Proposition 4.8 and statement (1), we have

ϕL
G

(a) = ϕL
G

(a) ∧
(
ϕL
G

(b)
)′

= ϕL
G

(a ∧ b′) ∧
(
ϕL
G

(b)
)′

= ϕL
G

(a ∧ b′).

(4) Similar to the proof of statement (3).

5. ψ-Operator

In this section, we consider new operators ψL
G

and ψL
(θ,G) induced by the operators ϕL

G
and ϕL

(θ,G),
respectively. Moreover, we introduce frames LG and L(θ,G) induced by ψL

G
and ψL

(θ,G).

Definition 5.1. Let G ∈ θ − RG(B) be given. Operators ψL
G

: B→ B and ψL
(θ,G) : B→ B are defined as follow

for every b ∈ B,
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ψL
G

(b) := b ∨ ϕL
G

(b) and ψL
(θ,G)(b) := b ∨ ϕL

(θ,G)(b).

Several basic facts concerning the behavior of the operators ψL
G

and ψL
(θ,G) are included in the following

proposition.

Proposition 5.2. For every G ∈ θ − RG(B) and every a, b ∈ B, the following statements hold.

1. ψL
G

(⊥) = ⊥ and ψL
(θ,G)(⊥) = ⊥.

2. b ≤ ψL
G

(b) ≤ ψL
(θ,G)(b).

3. If a ≤ b, then ψL
G

(a) ≤ ψL
G

(b) and ψL
(θ,G)(a) ≤ ψL

(θ,G)(b).

Proof. By Proposition 4.3, it is straightforward.

Proposition 5.3. For every G ∈ θ − RG(B) and every a, b ∈ B,

ψL
G

(a ∨ b) = ψL
G

(a) ∨ ψL
G

(b) and ψL
(θ,G)(a ∨ b) = ψL

(θ,G)(a) ∨ ψL
(θ,G)(b).

Proof. This follows from Proposition 4.10.

Definition 5.4. Corresponding to a θ- grill G on B, we define

LG := {b ∈ B : ψL
G

(b′) = b′}.

and

L(θ,G) := {b ∈ B : ψL
(θ,G)(b

′) = b′}.

Proposition 5.5. For every G ∈ θ − RG(B), LG and L(θ,G) are frames, and L(θ,G) is a subframe of LG.

Proof. It is clear that >,⊥ ∈ LG. For every a, b ∈ LG,

ψL
G

(
(a ∧ b)′

)
= ψL

G
(a′ ∨ b′) = ψL

G
(a′) ∨ ψL

G
(b′) = a′ ∨ b′ = (a ∧ b)′.

Hence, LG is closed under finite meets. Now, suppose that {bλ}λ∈Λ ⊆ LG. For every λ ∈ Λ, ψL
G

(
∧
λ∈Λ b′λ) ≤

ψL
G

(b′λ) = b′λ. Let u ∈ B be a lower bound of the set {b′λ}λ∈Λ. By Proposition 5.2, u ≤ ψL
G

(u) ≤ ψL
G

(
∧
λ∈Λ b′λ).

Therefore,

ψL
G

((
∨
λ∈Λ

bλ)′) = ψL
G

(
∧
λ∈Λ

b′λ) =
∧
λ∈Λ

b′λ = (
∨
λ∈Λ

bλ)′.

Hence, LG is closed under arbitrary join. Since B is complete Boolean algebra, we infer that B is a frame,
which implies that LG is a frame. Similarly, L(θ,G) is a frame.

If b ∈ L(θ,G), then ϕL
G

(b′) ≤ ϕL
(θ,G)(b

′) ≤ b′, which implies that b ∈ LG. Therefore, L(θ,G) is a subframe LG.

Proposition 5.6. For every G ∈ θ − RG(B) and every b ∈ B, if b < G, then b′,
(
ϕL
G

(b)
)′
∈ LG and b′,

(
ϕL

(θ,G)(b)
)′
∈

L(θ,G).

Proof. This follows from Propositions 4.3 and 4.8.

Proposition 5.7. If G1,G2 ∈ θ − RG(B) with G1 ⊆ G2, then LG2 ⊆ LG1 and L(θ,G2) ⊆ L(θ,G1).

Proof. By Proposition 4.9,

b′ ≤ ψL
G1

(b′) ≤ ψL
G2

(b′) = b′,

for every b ∈ LG2 . Hence, LG2 ⊆ LG1 . Similarly, L(θ,G2) ⊆ L(θ,G1).
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Throughout this article, for every G ∈ θ − RG(B), we put

B(G,L) := {x ∧ y′ : x ∈ L, y < G},

and

B(θ,G,L) := {θ(x) ∧ y′ : θ(x) ∈ L, y < G}.

A base B of a frame L is a subset of L such that every element of L is a join of elements of B.

Proposition 5.8. For every G ∈ θ − RG(B), the following statements hold.

1. L ⊆ B(G,L) ⊆ LG and L ⊆ B(θ,G,L) ⊆ L(θ,G).

2. If B is an atomic complete Boolean algebra, then B(θ,G,L) is a base of L(θ,G).

3. If B is an atomic complete Boolean algebra, then B(G,L) is a base of LG.

4. The set B(G,L) is closed under finite meets.

5. If θ|L : L→ B is a lattice homomorphism, then B(θ,G,L) is closed under finite meets.

Proof. (1) For every v ∈ L, since ⊥ < G, we infer that θ(v) = θ(v) ∧ ⊥′ ∈ B(θ,G,L). Therefore, L ⊆ B(θ,G,L).
Let θ(x) ∈ L and y < G. Then, by Propositions 4.8(2) and 4.11(2), ϕL

(θ,G)(y) = ⊥ and ϕL
(θ,G)

((
θ(x)

)′)
= ⊥.

Therefore,

ψL
(θ,G)

((
θ(x) ∧ y′

)′)
= ψL

(θ,G)

((
θ(x)

)′
∨ y

)
=

(
θ(x)

)′
∨ y ∨ ϕL

(θ,G)

((
θ(x)

)′
∨ y

)
=

(
θ(x)

)′
∨ y ∨ ϕL

(θ,G)

((
θ(x)

)′)
∨ ϕL

(θ,G)(y)

=
(
θ(x)

)′
∨ y

=
(
θ(x) ∧ y′

)′
.

Hence, θ(x) ∧ y′ ∈ L(θ,G), which implies that B(θ,G,L) ⊆ L(θ,G). Similarly, L ⊆ B(G,L) ⊆ LG.
(2) Let u ∈ L(θ,G) \ {⊥} and x ∈ At(B) with x ≤ u be given. Then, u′ = ψL

(θ,G)(u
′) ≥ ϕL

(θ,G)(u
′). If x ≤ ϕL

(θ,G)(u
′),

then

x ≤ ϕL
(θ,G)(u

′) ∧ u⇒ x ∨ u′ ≤ (u ∨ u′) ∧ (ϕL
(θ,G)(u

′) ∨ u′) = u′

⇒ x ≤ u′

⇒ x = ⊥,

which is a contradiction. Hence, x � ϕL
(θ,G)(u

′) and there exists an element v of L∩↑x such that θ(v)∧u′ < G.
We put a = θ(v) ∧ u′. It is clear that θ(v) ∧ a′ ∈ B(θ,G,L) and x ≤ θ(v) ∧ u = θ(v) ∧ a′ ≤ u. So, this equality
shows that every element u of L(θ,G) can be written as the joint of B(θ,G,L).

(3) Similar to the proof of statement (2).
(4) Let a1, a2 < G and v1, v2 ∈ L. Then a1 ∨ a2 < G and v1 ∧ v2 ∈ L, which implies that

(v1 ∧ a′1) ∧ (v2 ∧ a′2) = (v1 ∧ v2) ∧ (a1 ∨ a2)′ ∈ B(G,L).

Hence, B(G,L) is closed under finite meets.
(5) Let a1, a2 < G and θ(v1), θ(v2) ∈ L. Then, a1 ∨ a2 < G and θ(v1 ∧ v2) = θ(v1) ∧ θ(v2) ∈ L, which implies

that

θ(v1) ∧ a′1 ∧ θ(v2) ∧ a′2 = θ(v1 ∧ v2) ∧ (a1 ∨ a2)′ ∈ B(θ,G,L).

Hence, B(θ,G,L) is closed under finite meets.
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Proposition 5.9. Let G ∈ θ − RG(B) and b ∈ B. If b ≤ ϕL
G

(b), then clL(b) = clL

(
ϕL
G

(b)
)
.

Proof. Since b ≤ ϕL
G

(b), we infer that clL(b) ≤ clL

(
ϕL
G

(b)
)
. On the other hand, by Proposition 4.5, we have

clL

(
ϕL
G

(b)
)
≤ clL

(
clL(b)

)
= clL(b), then clL(b) = clL

(
ϕL
G

(b)
)
.

Proposition 5.10. Let B be an atomic complete Boolean algebra. For every G ∈ θ − RG(B) and every b ∈ B, the
following statements hold.

1. If b ≤ ϕL
G

(b), then clL(b) = clLG (b).

2. If b ≤ ϕL
(θ,G)(b), then clL(b) = clL(θ,G) (b).

3. clLG

(
ϕL
G

(b)
)

= ϕL
G

(b).

4. clLG (b) = ψL
G

(b).

Proof. (1). It is clear that CL(b) ⊆ CLG (b), then clLG (b) ≤ clL(b). Let x ∈ At(B) with x � clLG (b) be given. Then,
there exists an element a of CLG (b) such that x � a, which implies that x ≤ a′. Since a′ ∈ LG, we conclude
from Proposition 5.8 that there exists a subset {xλ ∧ y′λ}λ∈Λ of B(G,L) such that {xλ}λ∈Λ ⊆ L, {yλ}λ∈Λ ∩ G = ∅
and a′ =

∨
λ∈Λ(xλ ∧ y′λ), which implies that a =

∧
λ∈Λ(x′λ ∨ yλ) and there exists an element λ0 of Λ such that

x � x′λ0
∨ yλ0 . Hence, x ≤ xλ0 and

b ≤ a ≤ x′λ0
∨ yλ0 ⇒ b ∧ (xλ0 ∧ y′λ0

) = ⊥.

Also, we have

xλ0 ∧ b ≤ xλ0 ∧ ϕ
L
G

(b), by hypothesis
= xλ0 ∧ ϕ

L
G

(xλ0 ∧ b), by Proposition 4.11
= xλ0 ∧ ϕ

L
G

(xλ0 ∧ b ∧ y′λ0
), by Proposition 4.13

= xλ0 ∧ ϕ
L
G

(⊥)
= xλ0 ∧ ⊥, by Proposition 4.3
= ⊥.

Hence, x′λ0
∈ CL(b) and x � x′λ0

, which implies that x � clL(b). Therefore, clL(b) ≤ clLG (b).
(2) It is clear that CL(b) ⊆ CL(θ,G) (b), then clL(θ,G) (b) ≤ clL(b). Let x ∈ At(B) with x � clL(θ,G) (b) be given. Then,

there exists an element a of CL(θ,G) (b) such that x � a, which implies that x ≤ a′. Since a ∈ L(θ,G), we conclude
from Proposition 5.8(2) that there exists a subset {θ(xλ) ∧ y′λ}λ∈Λ of B(θ,G,L) such that {θ(xλ)}λ∈Λ ⊆ L,
{yλ}λ∈Λ ∩ G = ∅ and a′ =

∨
λ∈Λ

(
θ(xλ) ∧ y′λ

)
, which implies that a =

∧
λ∈Λ

(
(θ(x)′λ ∨ yλ)

)
and there exists an

element λ0 of Λ such that x �
(
θ(x)

)′
λ0
∨ yλ0 . Hence, x ≤ θ(xλ0 ) and

b ≤ a ≤ θ(xλ0 )′ ∨ yλ0 ⇒ b ∧ θ(xλ0 ) ∧ y′λ0
= ⊥.

Also, we have

θ(xλ0 ) ∧ b ≤ θ(xλ0 ) ∧ ϕL
(θ,G)(b), by hypothesis

= θ(xλ0 ) ∧ ϕL
(θ,G)

(
θ(xλ0 ) ∧ b

)
, by Proposition 4.11

= θ(xλ0 ) ∧ ϕL
(θ,G)

(
θ(xλ0 ) ∧ b ∧ y′λ0

)
, by Proposition 4.13

= θ(xλ0 ) ∧ ϕL
(θ,G)(⊥)

= θ(xλ0 ) ∧ ⊥, by Proposition 4.3
= ⊥.
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Hence, θ(xλ0 ) ∈ CL(b) and x � θ(xλ0 )′, which implies that x � clL(b). Therefore, clL(b) ≤ clL(θ,G) (b).
(3) Since

clLG

(
ϕL
G

(b)
)

=
∧{

x ∈ B : ϕL
G

(b) ∨ ϕL
G

(x) ≤ x
}

and, by Proposition 4.5(3),

ϕL
G

(b) ∨ ϕL
G

(
ϕL
G

(b)
)

= ϕL
G

(b),

we conclude that clLG

(
ϕL
G

(b)
)
≤ ϕL

G
(b), which implies that

clLG

(
ϕL
G

(b)
)

= ϕL
G

(b).

(4) Since clLG (b) =
∧{

x ∈ B : b ∨ ϕL
G

(x) ≤ x
}

and

b ∨ ϕL
G

(
b ∨ ϕL

G
(b)

)
= b ∨ ϕL

G
(b) ∨ ϕL

G

(
ϕL
G

(b)
)

= b ∨ ϕL
G

(b),

we conclude that clLG (b) ≤ b ∨ ϕL
G

(b) = ψL
G

(b). Let x � clLG (b) and x ∈ At(B). Similar to the proof of the
statement (1), there exists an element xλ0 of L and yλ0 < G such that x ≤ xλ0 ∧ y′λ0

and b ∧ xλ0 ∧ y′λ0
= ⊥.

Hence, by Proposition 4.13, we have

ϕL
G

(b ∧ xλ0 ) = ϕL
G

(b ∧ xλ0 ∧ y′λ0
) = ⊥.

Also, by Proposition 4.11,

xλ0 ∧ ϕ
L
G

(b) = xλ0 ∧ ϕ
L
G

(b ∧ xλ0 ) = ⊥.

Now, if x ≤ ϕL
G

(b), then

⊥ , x = x ∧ ϕL
G

(b) ≤ xλ0 ∧ ϕ
L
G

(b) = ⊥,

which is a contradiction. So that x � ϕL
G

(b). Therefore,ϕL
G

(b) ≤ clLG (b), which implies thatψL
G

(b) = b∨ϕL
G

(b) ≤
clLG (b). Hence, ψL

G
(b) = clLG (b).

6. Frame Suitable for a Grill

In this section, we consider grills and θ-grills satisfying a certain condition and give some properties of
them.

Definition 6.1. A frame L is said to be suitable for a grill G (a θ-grill G) if for every b ∈ B, b ∧
(
ϕL
G

(b)
)′
< G(

b ∧
(
ϕL

(θ,G)(b)
)′
< G

)
.

It is easy to see that, if L is suitable for the θ-grill G, then L is suitable for grill G.

Proposition 6.2. Let L be suitable for the θ- grill G and b ∈ B. If b ∧ ϕL
(θ,G)(b) = ⊥, then b < G.

Proof. We have

b = b ∧
(
ϕL

(θ,G)(b) ∨
(
ϕL

(θ,G)(b)
)′)

=
(
b ∧ ϕL

(θ,G)(b)
)
∨

(
b ∧

(
ϕL

(θ,G)(b)
)′)

= b ∧
(
ϕL

(θ,G)(b)
)′
< G.
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Lemma 6.3. Let B be an atomic complete Boolean algebra, G ∈ θ − RG(B) and b ∈ B. Then,(
b ∧

(
ϕL

(θ,G)(b)
)′)
∧ ϕL

(θ,G)

(
b ∧

(
ϕL

(θ,G)(b)
)′)

= ⊥.

Proof. Let b ∈ B and
(
b ∧

(
ϕL

(θ,G)(b)
)′)
∧ ϕL

(θ,G)

(
b ∧

(
ϕL

(θ,G)(b)
)′)
, ⊥. Then, there exists an atom element x of B

such that

x ≤
(
b ∧

(
ϕL

(θ,G)(b)
)′)
∧ ϕL

(θ,G)

(
b ∧

(
ϕL

(θ,G)(b)
)′)
,

which implies that

x ≤
(
ϕL

(θ,G)(b)
)′
⇒ x � ϕL

(θ,G)(b)
⇒ x < Hb

(θ,G)

⇒ θ(bx) ∧ b < G for some bx ∈ L ∩ ↑x.

Since G is a θ-grill on B and

θ
(
θ(bx) ∧ b ∧

(
ϕL

(θ,G)(b)
)′)

≤ θ
(
θ(bx) ∧ b

)
,

we conclude that θ(bx) ∧ b ∧
(
ϕL

(θ,G)(b)
)′
< G, which implies that x < H

b∧
(
ϕL

(θ,G)(b)
)′

(θ,G) . Therefore

x � ϕL
(θ,G)

(
b ∧

(
ϕL

(θ,G)(b)
)′)

. This is a contradiction.

Proposition 6.4. Consider the following statements for a θ-grill G on B:

1. For every b ∈ B, if b ∧ ϕL
(θ,G)(b) = ⊥, then ϕL

(θ,G)(b) = ⊥.

2. For every b ∈ B, ϕL
(θ,G)

(
b ∧

(
ϕL

(θ,G)(b)
)′)

= ⊥.

3. For every b ∈ B, ϕL
(θ,G)

(
b ∧ ϕL

(θ,G)(b)
)

= ϕL
(θ,G)(b).

Then the statement (2) implies the statement (3) and the statement (3) implies the statement (1). If B is the atomic
complete Boolean algebra, then statements (1), (2) and (3) are equivalent with L is suitable for the θ-grill G on B.

Proof. (2)⇒ (3) Let b ∈ B, then we have

ϕL
(θ,G)(b) = ϕL

(θ,G)

((
b ∧ ϕL

(θ,G)(b)
)
∨

(
b ∧

(
ϕL

(θ,G)(b)
)′))

= ϕL
(θ,G)

(
b ∧ ϕL

(θ,G)(b)
)
∨ ϕL

(θ,G)

(
b ∧

(
ϕL

(θ,G)(b)
)′)

= ϕL
(θ,G)

(
b ∧ ϕL

(θ,G)(b)
)
, by the statement (2).

(3) ⇒ (1) Let b ∈ B and b ∧ ϕL
(θ,G)(b) = ⊥, then, by Proposition 4.3 (1) and statement (3), ϕL

(θ,G)(b) =

ϕL
(θ,G)

(
b ∧ ϕL

(θ,G)(b)
)

= ⊥.
Now, suppose that B is the atomic complete Boolean algebra and we show that the statement (1) implies

the statement (2). By Lemma 6.3,

b ∧
(
ϕL

(θ,G)(b)
)′
∧ ϕL

(θ,G)

(
b ∧

(
ϕL

(θ,G)(b)
)′)

= ⊥.

Hence, by statement (1), for every b ∈ B, ϕL
(θ,G)

(
b ∧

(
ϕL

(θ,G)(b)
)′)

= ⊥.

Proposition 6.5. Let L be suitable for a θ-grill G on B, then the following statements hold.

1. For every b ∈ B, ϕL
(θ,G)(b) ≤ ϕL

(θ,G)

(
ϕL

(θ,G)(b)
)
.
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2. For every b ∈ B, ϕL
G

(b) ≤ ϕL
G

(
ϕL
G

(b)
)
.

3. If B is the atomic complete Boolean algebra, then ϕL
G

is an idempotent operator, i.e., ϕL
G

(
ϕL
G

(b)
)

= ϕL
G

(b) for any
b ∈ B.

Proof. (1) Let b ∈ B, then we have

ϕL
(θ,G)(b) = ϕL

(θ,G)

((
b ∧ ϕL

(θ,G)(b)
)
∨

(
b ∧

(
ϕL

(θ,G)(b)
)′))

= ϕL
(θ,G)

(
b ∧ ϕL

(θ,G)(b)
)
∨ ϕL

(θ,G)

(
b ∧

(
ϕL

(θ,G)(b)
)′)

= ϕL
(θ,G)

(
b ∧ ϕL

(θ,G)(b)
)
∨ ⊥, as b ∧

(
ϕL

(θ,G)(b)
)′
< G

= ϕL
(θ,G)

(
b ∧ ϕL

(θ,G)(b)
)

≤ ϕL
(θ,G)

(
ϕL

(θ,G)(b)
)
, by Proposition 4.3(2).

(2) It is similar to (1).
(3). By Proposition 4.5(2), it is clear.

In the following example, we show that ϕL
(θ,G) is not necessary an idempotent operator.

Example 6.6. Consider the Boolean algebra, subframe L and θ-grill G as in Example 4.6. It is easy to see
that ϕL

(θ,G)(5) = 10 and ϕL
(θ,G)(10) = 70. Then, ϕL

(θ,G)

(
ϕL

(θ,G)(5)
)

= 70, and so ϕL
(θ,G)(5) , ϕL

(θ,G)

(
ϕL

(θ,G)(5)
)
.

Proposition 6.7. Let B be an atomic complete Boolean algebra. If L is suitable for a grill G on B, thenB(G,L) = LG.

Proof. (1) Let b ∈ LG, then b′ = ϕL
G

(b′)∨
(
b′ ∧

(
ϕL
G

(b′)
)′)

, which implies that b =
(
ϕL
G

(b′)
)′
∧

(
b∨ϕL

G
(b′)

)
. Since

L is suitable for the θ-grill G, we conclude that b′ ∧
(
ϕL
G

(b′)
)′
< G. Also, by Proposition 4.5(2),

(
ϕL
G

(b′)
)′
∈ L.

Hence b ∈ B(G,L), that is LG ⊆ B(G,L). By Proposition 5.8(2), the proof is then complete.

The following example shows that Proposition 6.7 is not true for a θ-grill G.

Example 6.8. Take B = {⊥, a, b, c, d, e, f ,>}. We define the binary relation ≤ on B in the following figure.

ss s ss s ss

�
�

@
@

�
�

@
@
�
�
@

@
�
�

@
@

⊥

a b c

d e f

>

The function θ : B→ B by

θ =

(
⊥ a b c d e f >

⊥ d b f d > f >

)
,

is an approximation on B. Consider subframe L = {⊥, a, c, e,>} and θ-grill G = {c, f , e,>} on B. It is easy to
check that L is suitable for θ-grill G. Moreover, L(θ,G) = {⊥, a, c, e, f ,>} and B(θ,G,L) = {⊥, c, e, f ,>}. Then
B(θ,G,L) ⊂ L(θ,G).

Proposition 6.9. Let B be an atomic complete Boolean algebra, and let L be suitable for a grillG on B. If a ∈ L, b ∈ B,
then

ϕL
G

(a ∧ b) = ϕL
G

(
a ∧ ϕL

G
(b)

)
= clL

(
a ∧ ϕL

G
(b)

)
.
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Proof. In view of Proposition 4.11(1), Proposition 6.5(2) and Proposition 4.3(2), which implies that

a ∈ L ⇒ a ∧ ϕL
G

(b) ≤ ϕL
G

(a ∧ b)

⇒ ϕL
G

(
a ∧ ϕL

G
(b)

)
≤ ϕL

G
(ϕL
G

(
a ∧ b)

)
= ϕL

G
(a ∧ b).

Also, we have ϕL
G

(
a ∧ b ∧

(
ϕL
G

(b)
)′)
≤ ϕL

G

(
b ∧

(
ϕL
G

(b)
)′)

= ⊥, as b ∧
(
ϕL
G

(b)
)′
< G. On the other hand, by

Proposition 4.13(1), we have

ϕL
G

(a ∧ b) ∧
(
ϕL
G

(
a ∧ ϕL

G
(b)

))′
≤ ϕL

G

(
a ∧ b ∧

(
a ∧ ϕL

G
(b)

)′)
= ϕL

G

(
a ∧ b ∧

(
ϕL
G

(b)
)′)

= ⊥.

Hence,ϕL
G

(a∧b) ≤ ϕL
G

(
a∧ϕL

G
(b)

)
, which implies thatϕL

G
(a∧b) = ϕL

G

(
a∧ϕL

G
(b)

)
≤ clL

(
ϕL
G

(a∧b)
)
, by Proposition

4.5(2). Now by using Propositions 4.5(2) and 4.11(1) we obtain,

a ∧ ϕL
G

(b) ≤ ϕL
G

(a ∧ b)⇒ clL

(
a ∧ ϕL

G
(b)

)
≤ clL

(
ϕL
G

(a ∧ b)
)

= ϕL
G

(a ∧ b).

The proof is now complete.

Corollary 6.10. Let B be an atomic complete Boolean algebra, and let L be suitable for a grill G on B. If a ∈ L \ G,
then a ≤

(
ϕL
G

(>)
)′

.

Proof. Let a ∈ L \ G. In view of Propositions 4.8(2) and 6.9, we obtain

⊥ = ϕL
G

(a) = ϕL
G

(a ∧ >) = ϕL
G

(
a ∧ ϕL

G
(>)

)
= clL

(
a ∧ ϕL

G
(>)

)
.

Hence, a ∧ ϕL
G

(>) = ⊥, which implies that a ≤
(
ϕL
G

(>)
)′

.

Corollary 6.11. Let B be an atomic complete Boolean algebra, and let L be suitable for a grill G on B. ϕL
G

(>) = > if
and only if L \ {⊥} ⊆ G.

Proof. By Proposition 4.12(1) and Corollary 6.10, it is clear.

In the following example, we show that Proposition 6.9 is not true for a θ-grill G on a atomic complete
Boolean algebra.

Example 6.12. Consider the Boolean algebra, subframe L and θ-grill G as in Example 4.6. Then, it is easy
to see that L is a suitable for θ-grill G. For a = 7 and b = 2, we have ϕL

(θ,G)(7) = 7 and ϕL
(θ,G)(2) = 70. Then

ϕL
(θ,G)(a∧b) = ϕL

(θ,G)(1) = 1 andϕL
(θ,G)

(
7∧ϕL

(θ,G)(2)
)

= ϕL
(θ,G)(7) = 7. ThereforeϕL

(θ,G)(a∧b) , ϕL
(θ,G)

(
a∧ϕL

(θ,G)(b)
)
.

Proposition 6.13. Let B be an atomic complete Boolean algebra , and let L be suitable for a grill G on B. Suppose
that x ∈ L, y < G and z = x ∧ y′. If L \ {⊥} ⊆ G, then

clL
G

z = clLz = ϕL
G

(z) = ϕL
G

(x) = clLx = clL
G

x.

Proof. By Proposition 4.12(2), x ≤ ϕL
G

(x), which implies that

clL
G

(x) = clL
G

(
ϕL
G

(x)
)

= ϕL
G

(x) = clL

(
ϕL
G

(x)
)

= clLx,

by Proposition 5.10. In view of Proposition 4.13(2), ϕL
G

(z) = ϕL
G

(x). By Proposition 4.12(1) and 4.13(1), we
have (

ϕL
G

(z)
)′

= ϕL
G

(>) ∧
(
ϕL
G

(z)
)′

= ϕL
G

(> ∧ z′) ∧
(
ϕL
G

(z)
)′

= ϕL
G

(z′) ∧
(
ϕL
G

(z)
)′
,
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which implies that
(
ϕL
G

(z)
)′
≤ ϕL

G
(z′). Also, we have

ϕL
G

(z′) = ϕL
G

(x′ ∨ y)
= ϕL

G
(x′) ∨ ϕL

G
(y), by Proposition 4.10

= ϕL
G

(x′) ∨ ⊥, by Proposition 4.8(2)
= ϕL

G
(x′)

≤ x′, by Proposition 4.11(2)
≤ x′ ∨ y
= z′.

Hence, z ≤ ϕL
G

(z). Then, by proposition 5.10, we have

clLG (z) = clLG

(
ϕL
G

(z)
)

= clL

(
ϕL
G

(z)
)

= ϕL
G

(z) = clL(z).

The proof is now complete.

Example 4.6 shows that the above proposition is not true for a θ-grill G.

7. Conclusion

This paper has addressed a pointfree version of grills. In the present paper, we defined an approximation
θ on a bounded lattice. Also, by an approximation θ, we introduce new concept θ-grill on a bounded lattice.
Moreover, we discussed some properties of grills and θ-grills. This may be a part of our future research.
There are still a number of fields that can be explored using θ-grills. Due to the fact that the radical ideals
and z-ideals of a ring form a frame. So we can expand the concept of grill and θ-grill to algebra.
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