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Abstract. Sufficient conditions for the oscillation of all solutions of difference equations with continuous
time caused by several deviating arguments are presented. Examples are provided to illustrate the results
and compare them to relevant results in the literature.

1. Introduction

In the last few decades, the oscillatory behavior of the solutions of difference equations has been
researched, see, for example, [1, 3–21] and references therein. Studies on the oscillatory properties of the
solutions of difference equations with continuous variables include the work of Golda and Werbowski [5],
Shen and Stavroulakis [16], Nowakowska and Werbowski [9–14] and Zhang and Choi [18]. These papers
deal with linear functional equations. Karpuz and Öcalan [6], Ladas, Pakula and Wang [7], Zhang and Yan
[19], Zhang, Yan and Zhao [21], Zhang, Yan and Choi [20] have investigated the oscillatory behavior of the
solutions of constant delay difference equations with continuous time.

In this paper we consider the delay difference equation with continuous time

∆x(t) +

m∑
i=1

pi(t)x(t − ki(t)) = 0, t ≥ t0, (1)

and the (dual) advanced difference equation

∇x(t) −
m∑

i=1

pi(t)x(t + ki(t)) = 0, t ≥ t0. (2)

Equations (1) and (2) are studied under the following assumptions: everywhere t0 is a real number, m ≥ 1
is an integer, pi : [t0,∞)→ R+, 1 ≤ i ≤ m, are continuous functions and ki : [t0,∞)→ {1, 2, . . .} are piecewise
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constant functions, 1 ≤ i ≤ m. Throughout this paper, we are going to use the following notation:

αn = lim inf
t→∞

t−1∑
τ=t−kn(t)

pn(τ), βn = lim inf
t→∞

t+kn(t)∑
τ=t+1

pn(τ), 1 ≤ n ≤ m.

As usual, ∆ denotes the forward difference operator ∆x(t) = x(t + 1)− x(t) and ∇ denotes the backward difference
operator ∇x(t) = x(t) − x(t − 1).
Set

t−1(t0) = min
1≤i≤m

{inf{s − ki(s) − 1 : s ≥ t0}} .

It is clear that t−1(t0) ≤ t0 − 2 < t0 − 1. A real-valued function x : [t0,∞) → R is called a solution of the
difference equation (1) (or (2)) if it is defined on the interval [t−1(t0),∞) (or such that sup{|x(s)| : s ≥ t∗} > 0
for any t∗ ≥ t0) and x satisfies equation (1) (or (2)) for any t ≥ t0. Such solution is called oscillatory if there
exists a sequence of points {tn}

∞

n=1, tn ∈ [t0,∞), such that limn→∞ tn = ∞ and x(tn) · x(tn+1) ≤ 0 for n = 1, 2, . . . .
Otherwise, the solution is non-oscillatory.

The delay difference equation with constant delays

∆x(t) +

m∑
i=1

pi(t)x(t − ki) = 0, t ≥ t0 (3)

is special case of equation (1).

Remark 1.1. Replacing t + 1 by t in equation (3), this becomes

x(t) − x(t − 1) +

m∑
i=1

Pi(t)x(t − Ki) = 0, t ≥ t0 + 1, (4)

where Pi(t) = pi(t − 1) and Ki = ki + 1 for i = 1, 2, . . . ,m.

The research in this article advances the investigation of delay difference equations with continuous
time in Chatzarakis, Győri, Péics and Stavroulakis [2]. It is motivated by the study of the oscillatory
properties of the solutions of discrete difference equations with variable coefficients by Chatzarakis, Péics
and Stavroulakis [4] as analogues of the oscillatory behavior of the solutions of corresponding differential
equations observed by Ladas and Stavroulakis [8]. We establish sufficient conditions which ensure that all
solutions of equations (1) and (2) are oscillatory. We illustrate our results through examples in which we
compare them to relevant results in the literature.

2. Preliminaries

In 1982, Ladas and Stavroulakis [8], studied the differential equation with variable coefficients and with
retarded (advanced) arguments of the form

y′(t) +

n∑
i=1

pi(t)y(t − τi) = 0

y′(t) −
n∑

i=1

pi(t)y(t + τi) = 0

 , (5)

and established the following theorem.

Theorem A ([8], Theorems 5.1-5.2). Assume that

lim inf
t→∞

∫ t

t−τi/2
pi(s)ds > 0

(
lim inf

t→∞

∫ t+τi/2

t
pi(s)ds > 0

)
, i = 1, 2, . . . ,n, and
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i=1

 n∑
j=1

lim inf
t→∞

∫ t

t−τ j

pi(s)ds




1/n

>
1
e


 n∏

i=1

 n∑
j=1

lim inf
t→∞

∫ t+τ j

t
pi(s)ds




1/n

>
1
e

 .
Then all solutions of (5) are oscillatory.

In 2014, Chatzarakis, Peics and Stavroulakis [4], investigated the difference equation with several
retarded arguments

∆x(n) +

m∑
i=1

pi(n)x(τi(n)) = 0, (6)

and established the following theorem.

Theorem B ([4], Theorem 2.1). Assume that (τi(n)) are increasing sequences of integers such that τi(n) ≤ n − 1,
n ∈ N0, limn→∞ τi(n) = ∞, 1 ≤ i ≤ m, and (pi(n)), 1 ≤ i ≤ m, are sequences of positive real numbers. Define ai,
1 ≤ i ≤ m, by ai = lim infn→∞

∑n−1
j=τi(n) pi( j). If ai > 0, 1 ≤ i ≤ m, and m∏

i=1

ai +

m∑
j=1, j,i

lim inf
n→∞

n−1∑
k=τ j(n)

pi(k)




1/m

>
1
e
,

then all solutions of (6) oscillate.

In the same paper, the authors investigated the difference equation with several advanced arguments

∇x(n) −
m∑

i=1

pi(n)x(σi(n)) = 0, (7)

and established the following theorem.

Theorem C ([4], Theorem 3.1). Assume that (pi(n)), 1 ≤ i ≤ m, are sequences of positive real numbers and (σi(n))
are increasing sequences of the integers such that σi(n) ≥ n + 1, n ∈ N, 1 ≤ i ≤ m. Define bi, 1 ≤ i ≤ m, by
bi = lim infn→∞

∑σi(n)
j=n+1 pi( j). If m∏

i=1

bi +

m∑
j=1, j,i

lim inf
n→∞

σ j(n)∑
k=n+1

pi(k)




1/m

>
1
e
,

then all solutions of (7) oscillate.

Beside the mentioned literatures, which have been the motivation for our research, we state comparable
results from the literature to our results.

Equation (4) is a special case of the linear functional equation of the form

x(1s(t)) =

s−1∑
i=0

Qi(t)x(1i(t)) +

M+1∑
i=s+1

Qi(t)x(1i(t)), (8)

where M ≥ 1, s ∈ {1, 2, . . . ,M}, 10(t) = t, 1i+1(t) = 1(1i(t)), i = 0, 1, . . . and Qi are nonnegative real-valued
functions for i = 0, 1, . . . , s − 1, s + 1, . . . ,M + 1, that was studied by Nowakowska and Werbowski [10–12].
Nowakowska and Werbowski in [9] considered equation (8) for s = 1. Equation (8) yields (4) making
the following choices for the parameters and coefficients: M = m, s = 1, 1(t) = t − 1, Q0(t) ≡ 1 and
Qi(t) = Pi−1(t), i = 2, 3, . . . ,M+1. Hence, the sufficient conditions for oscillation developed by Nowakowska
and Werbowski [10], for equation (4), have been stated in the following theorem.
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Theorem D ([10], Theorems 1-3). Let B1(t) =
∑m−1

i=1 Pi(t)Pm−i(t − i) + Pm(t). If

lim inf
t→∞

m−1∑
i=0

B1(t − i) >
( m

m + 1

)m+1
(9)

or

lim sup
t→∞

m∑
i=0

B1(t − i)
m∏

j=1

1 +

i∑
k=1

B1(t − (k + m))

 > 1 (10)

or

m−1∑
i=0

B1(t − i) ≥ δ, δ <
( m

m + 1

)m+1
,

lim sup
t→∞

m∑
i=0

B1(t − i)
m∏

j=1

1 +

i∑
k=1

B1(t − (k + m))

 > 1 − δm+1,

(11)

then all solutions of (4) are oscillatory.

The sufficient conditions for the oscillation obtained by Nowakowska and Werbowski [11] formulated
for the equation (4) have a form formulated in terms of the following theorem.

Theorem E ([11], Theorems 2, 4). Let

B2(t) =

m∑
i=1

Pi(t). (12)

If

lim inf
t→∞

B2(t) >
1
4

(13)

or

lim sup
t→∞

(B2(t) + B2(t − 1) + B2(t − 1)B2(t − 2)) > 1 (14)

or

B2(t) ≥ δ > 0, δ <
1
4
,

lim sup
t→∞

(B2(t) + B2(t − 1) + B2(t − 1)B2(t − 2)) > 1 − δ2,
(15)

then all solutions of (4) are oscillatory.

The sufficient condition for the oscillation of the solutions of equation (4) presented in Theorem 1 in
Nowakowska and Werbowski [12] is same as (13), but conditions in Theorems 2 and 3 have the following
form.

Theorem F ([12], Theorems 2-3). Let B2 be defined as (12). If

lim sup
t→∞

(B2(t) + B2(t + 1) + B2(t + 1)B2(t + 2)) > 1 (16)
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or

B2(t) ≥ δ > 0, δ <
1
4
,

lim sup
t→∞

(B2(t) + B2(t + 1) + B2(t + 1)B2(t + 2)) > 1 − δ2,
(17)

then all solutions of (4) are oscillatory.

The oscillatory conditions obtained by Nowakowska and Werbowski [9] for equation (4) have the form
of conditions (9) and (13).

Nowakowska and Werbowski in [13] considered the iterative equation

x(1(t)) =

M∑
i=1

Ai(t)x(1i+1(t)) +

l∑
j=0

Ā j(t)x(1−i(t)), (18)

where M ≥ 1, l ≥ 0, 10(t) = t, 1i+1(t) = 1(1i(t)), i = 0, 1, . . ., 1−1 is the inverse function of 1, Ai, i = 1, 2, . . . ,M,
and Āi, j = 1, 2, . . . , l, are nonnegative real-valued functions and Ā0 is positive real-valued function. For
M = m, l = 0, 1(t) = t − 1, Ā0(t) ≡ 1 and Ai(t) = Pi(t), i = 1, 2, . . . ,M, equation (18) yields (4). Therefore,
Theorems 1 and 3 in [13] provide conditions which ensure that equation (4) has only oscillatory solutions
and are equivalent to conditions stated in Theorem D.

3. Delay Difference Equations

The following two results are the discrete analogues of the results obtained by Ladas and Stavroulakis
and were stated in Theorem A for delay differential equations. At the same time, those results are the
continuous analogues of the results in Theorem B, formulated by Chatzarakis, Péics and Stavroulakis.

Theorem 3.1. The condition

lim inf
t→∞

t−1∑
τ=t−

[
kn(t)

2

] pn(τ) > 0 for kn(t) ≥ 2 eventually, n = 1, 2, . . . ,m

in conjunction with the condition m∏
i=1

αi +

m∑
n=1,n,i

lim inf
t→∞

t−1∑
τ=t−kn(t)

pi(τ)




1
m

>
1
e

(19)

or

1
m

 m∑
i=1

√
αi


2

=
1
m


m∑

i=1

lim inf
t→∞

t−1∑
τ=t−ki(t)

pi(τ)


1
2


2

>
1
e

(20)

imply that all solutions of (1) are oscillatory.

Proof. It suffices to show that (1) does not have an eventually positive solution. To this end suppose that
x(t) is a solution of (1) such that x(t) > 0 for t ≥ t1 ≥ t−1(t0). Choose a t2 > t1 such that x(t − ki(t)) > 0,
i = 1, 2, . . . ,m, for t ≥ t2. Then from (1) we get that ∆x(t) < 0, i.e. x(t + 1) < x(t) for t ≥ t2. Next choose a
t3 > t2 such that x(t) < x(t − ki(t)), i = 1, 2, . . . ,m, for t ≥ t3.
Set

ωi(t) =
x(t − ki(t))

x(t)
, i = 1, 2, . . . ,m, for t ≥ t3 (21)
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and `i = lim inft→∞ ωi(t), i = 1, 2, . . . ,m. Then ωi(t) > 1, `i ≥ 1 for i = 1, 2, . . . ,m. Dividing both sides of
equation (1) by x(t) for t ≥ t3, using (21) and summing both sides of the obtained equation from t − kn(t) to
t − 1 for n = 1, 2, . . . ,m, we get

t−1∑
τ=t−kn(t)

∆x(τ)
x(τ)

+

m∑
i=1

t−1∑
τ=t−kn(t)

pi(τ)ωi(τ) = 0, n = 1, 2, . . . ,m. (22)

In similar way as in the proof of the Theorem B, we can get that

t−1∑
τ=t−kn(t)

∆x(τ)
x(τ)

≥ − lnωn(t), n = 1, 2, . . . ,m. (23)

Combining (22) and (23), we obtain

lnωn(t) ≥
m∑

i=1

t−1∑
τ=t−kn(t)

pi(τ)ωi(τ), n = 1, 2, . . . ,m. (24)

Taking the limit inferior on both sides of inequalities (24), we obtain

ln `n ≥

m∑
i=1

`i

lim inf
t→∞

t−1∑
τ=t−kn(t)

pi(τ)

 , n = 1, 2, . . . ,m. (25)

Case 1. `n < ∞ for n = 1, 2, . . . ,m.
First, assume that condition (19) holds. Summing up both sides of the inequality (25) from 1 to m we

get the inequality

m∑
n=1

ln `n ≥

m∑
i=1

`i

 m∑
n=1

lim inf
t→∞

t−1∑
τ=t−kn(t)

pi(τ)

 .
Set

F(`1, `2, . . . , `m) =

m∑
n=1

ln `n −

m∑
i=1

`i

 m∑
n=1

lim inf
t→∞

t−1∑
τ=t−kn(t)

pi(τ)

 .
At the critical point

 m∑
n=1

lim inf
t→∞

t−1∑
τ=t−kn(t)

p1(τ)


−1

, . . . ,

 m∑
n=1

lim inf
t→∞

t−1∑
τ=t−kn(t)

pm(τ)


−1

the function F has a maximum and

Fmax =

m∑
i=1

− ln

 m∑
n=1

lim inf
t→∞

t−1∑
τ=t−kn(t)

pi(τ)


 −m ≥ 0.

Similar argumentation as in the proof of the Theorem B leads to m∏
i=1

αi +

m∑
n=1,n,i

lim inf
t→∞

t−1∑
τ=t−kn(t)

pi(τ)




1
m

≤
1
e
,
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which contradicts hypothesis (19).
Now, assume that condition 20 holds. Using (25) and the fact that 1

e ≥
ln `n
`n

, n = 1, 2, . . . ,m, we get

1
e
≥

m∑
i=1

`i

`n

lim inf
t→∞

t−1∑
τ=t−kn(t)

pi(τ)

 , n = 1, 2, . . . ,m.

Summing up the above inequalities, we obtain

m
e
≥

m∑
i=1

αi +

m∑
i< j

i, j=1

 `i

` j
lim inf

t→∞

t−1∑
τ=t−k j(t)

pi(τ) +
` j

`i
lim inf

t→∞

t−1∑
τ=t−ki(t)

p j(τ)

 .
Using the relation between arithmetic and geometric means we have

m
e
≥

m∑
i=1

αi + 2
m∑
i< j

i, j=1

√√√√lim inf
t→∞

t−1∑
τ=t−k j(t)

pi(τ)


lim inf

t→∞

t−1∑
τ=t−ki(t)

p j(τ)


and

m
e
≥


m∑

i=1

lim inf
t→∞

t−1∑
τ=t−ki(t)

pi(τ)


1
2


2

=

 m∑
i=1

(αi)
1
2


2

,

which contradicts hypothesis (20).
Case 2. `n = ∞ for some n, n = 1, 2, . . . ,m. That is,

lim
t→∞

x(t − kn(t))
x(t)

= +∞ for some n, n = 1, 2, . . . ,m. (26)

From equation (1) and for the value n for which (26) holds, we have

∆x(t) + pn(t)x(t − kn(t)) ≤ 0, t ≥ t3. (27)

If kn(t) = 1, we have x(t + 1) − x(t) + pn(t)x(t − 1) ≤ 0, t ≥ t3. Dividing both sides of the last inequality by x(t)
we obtain

x(t + 1)
x(t)

− 1 + pn(t)
x(t − 1)

x(t)
≤ 0, t ≥ t3. (28)

On the other hand

lim
t→∞

x(t − 1)
x(t)

= lim
t→∞

x(t)
x(t + 1)

= +∞,

which is contradiction to inequality (28).
If kn(t) ≥ 2, summing up both sides of the inequality (27) from t −

[
kn(t)

2

]
to t − 1, we obtain

t−1∑
τ=t−

[
kn (t)

2

] ∆x(τ) +

t−1∑
τ=t−

[
kn(t)

2

] pn(τ)x(τ − kn(t)) ≤ 0, t ≥ t3.

Due to ∆x(t) < 0, we have that

x(t) − x
(
t −

[
kn(t)

2

])
+ x(t − kn(t))

t−1∑
τ=t−

[
kn(t)

2

] pn(τ) ≤ 0, t ≥ t3.

Similarly as in the proof of Theorem 2.1 in [8], (26) leads to contradiction. The proof of the theorem is
complete.
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Advanced Difference Equations

The following results are the discrete analogues of the results by Ladas and Stavroulakis stated in
Theorem A, for advanced differential equations. At the same time, they are the continuous analogues of the
results by Chatzarakis, Péics and Stavroulakis stated in Theorem C. The proofs follow a similar procedure
as those in the previous section ant thus, are omitted.

Theorem 3.2. If

lim inf
t→∞

t+
[

kn(t)
2

]∑
τ=t+1

pn(τ) > 0 for kn(t) ≥ 2 eventually, n = 1, 2, . . . ,m

and the condition m∏
i=1

βi +

m∑
n=1,n,i

lim inf
t→∞

t+kn(t)∑
τ=t+1

pi(τ)




1
m

>
1
e

or

1
m

 m∑
i=1

√
βi


2

=
1
m


m∑

i=1

lim inf
t→∞

t+ki(t)∑
τ=t+1

pi(τ)


1
2


2

>
1
e

holds, then all solutions of (2) are oscillatory.

4. Examples and Comparisons

The independence of our conditions for delay difference equations from relevant conditions in literature
is illustrated by considering the special case (4). Therefore, we reformulate the above presented results for
it.

Corollary 4.1. For constants Ki ∈ {2, 3, . . .}, and positive and continuous functions Pi, i = 1, 2, . . . ,m, the condition

lim inf
t→∞

t−1∑
τ=t−

[ Ki−1
2

] Pi(τ) > 0 for Ki ≥ 3, i = 1, 2, . . . ,m (29)

in conjunction with the condition m∏
i=1

 m∑
j=1

lim inf
t→∞

t−1∑
τ=t−K j+1

Pi(τ)




1
m

>
1
e
, (30)

or

1
m


m∑

i=1

lim inf
t→∞

t−1∑
τ=t−Ki+1

Pi(τ)


1
2


2

>
1
e

(31)

imply that every solution of (4) oscillates.

Let us first show that conditions (19) and (20) are independent. We illustrate it on equation (4) with
constant coefficients, and therefore we reformulate the presented results for the constant coefficients and
constant delays.
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Corollary 4.2. If, for positive constants Pi, i = 1, 2, . . . ,m, and constants Ki ∈ {2, 3, . . .}, m∏
i=1

Pi


1
m
 m∑

n=1

(Kn − 1)

 > 1
e

(32)

or

1
m

 m∑
i=1

√
Pi(Ki − 1)


2

>
1
e
, (33)

then all solutions of the equation

x(t) − x(t − 1) +

m∑
i=1

Pix(t − Ki) = 0, t ≥ t0 + 1

are oscillatory.

Analogous statements as Remark 1.1 and Corolaries 4.1 and 4.2 can be formulated for advanced equa-
tions.

The following example illustrates that conditions (32) and (33) are independent, pointing out that
conditions (19) and (20) are independent.

Example 4.3. For the delay difference equation

x(t) − x(t − 1) +
3

25
x(t − 2) +

13
100

x(t − 3) = 0, t ≥ 0, (34)

the condition (32) is satisfied and (33) is not fulfilled, but for the delay difference equation

x(t) − x(t − 1) +
1

10
x(t − 2) +

3
20

x(t − 3) = 0, t ≥ 0, (35)

condition (32) is not fulfilled while (33) is.
Namely,

Left side of conditions (32), (33) Value for (34) Value for (35)
√

P1P2 ((K1 − 1) + ((K2 − 1)) = 3
√

39
50 ≈ 0.3747 > 1

e = 3
√

6
20 ≈ 0.367423 < 1

e

1
2

(√
P1(K1 − 1) +

√
P2(K2 − 1)

)2
≈ 0.366635 < 1

e ≈ 0.373205 > 1
e

The following example illustrates the independence of conditions (30) and (31) from the conditions in
papers [9–13], i.e., from the conditions in Theorems D, E, F.

Example 4.4. Consider the delay difference equation

x(t) − x(t − 1) +
13

100
x(t − 2) +

sin 2t + 8
60

x(t − 3) = 0, t ≥ 0. (36)

Here m = 2, P1(t) ≡ 13
100 , P2(t) = sin 2t+8

60 , K1 = 2 and K2 = 3, thus

lim inf
t→∞

P2(t − 1) =
2
15
−

1
60

=
7

60
> 0
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and condition (29) is fulfilled. Since,

lim inf
t→∞

t−1∑
τ=t−K1+1

P1(τ) =
13

100
, lim inf

t→∞

t−1∑
τ=t−K2+1

P1(τ) =
13
50
,

lim inf
t→∞

t−1∑
τ=t−K1+1

P2(τ) =
7

60
, lim inf

t→∞

t−1∑
τ=t−K2+1

P2(τ) =
4

15
−

1
30

cos 1 ≈ 0.248657,

condition (30) takes the form 2∏
i=1

 2∑
j=1

lim inf
t→∞

t−1∑
τ=t−K j+1

Pi(τ)




1
2

≈ 0.37746 >
1
e
≈ 0.367879.

That means that condition (30) is fulfilled, so every solution of (36) oscillates. Furthermore, condition (31) gives

1
2


2∑

i=1

√√√
lim inf

t→∞

t−1∑
τ=t−Ki+1

Pi(τ)


2

≈ 0.369121 >
1
e

and it is fulfilled, too.
On the other hand, concerning the conditions in Theorem D, we have that

B1(t) = P1(t)P1(t − 1) + P2(t) =
4507

30000
+

1
60

sin 2t.

Thus, conditions (9) and (10) give

lim inf
t→∞

(B1(t) + B1(t − 1)) >
(2

3

)3

and

lim sup
t→∞

(
B1(t) + B1(t − 1) (1 + B1(t − 3))2 + B1(t − 2) (1 + B1(t − 3) + B1(t − 4))2

)
> 1.

However,
(

2
3

)3
≈ 0.296296,

lim inf
t→∞

(B1(t) + B1(t − 1)) = lim inf
t→∞

( 4507
15000

+
1

60
(sin 2t + sin (2t − 2))

)
≈ 0.282457

and

lim sup
t→∞

2∑
i=0

B1(t − i)
2∏

j=1

1 +

i∑
k=1

B1(t − (k + 2))

 ≈ 0.604293, (37)

which means that (9) and (10) are not satisfied.
For the sake of showing that condition (11) is not fulfilled, as well, let us take δ such that

B1(t) + B1(t − 1) ≥ δ and δ <
8

27
,

i.e., δ ≤ 4507
15000 −

1
30 cos 1. But

1 − δ3
≥ 1 −

( 4507
15000

−
1

30
cos 1

)3

≈ 0.977465
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and (37). Thus, the following inequality

lim sup
t→∞

2∑
i=0

B1(t − i)
2∏

j=1

1 +

i∑
k=1

B1(t − (k + 2))

 > 1 − δ3,

is not valid and therefore, condition (11) is not satisfied.
Considering conditions in Theorems E and F, we have that

B2(t) = P1(t) + P2(t) =
79

300
+

1
60

sin 2t.

Since

lim inf
t→∞

B2(t) =
37

150
≈ 0.246667 <

1
4
,

condition (13) is not fulfilled. Due to

lim sup
t→∞

(B2(t) + B2(t − 1) + B2(t − 1)B2(t − 2)) ≈ 0.612428, (38)

lim sup
t→∞

(B2(t) + B2(t + 1) + B2(t + 1)B2(t + 2)) ≈ 0.612428, (39)

conditions (14) and (16) are not fulfilled, as well.
Since, for δ such that B2(t) ≥ δ > 0 and δ < 1

4 we have

1 − δ2
≥ 1 −

(1
4

)2

=
15
16
≈ 0.9375

and (38) and (39). Thus, the inequalities

lim sup
t→∞

(B2(t) + B2(t − 1) + B2(t − 1)B2(t − 2)) > 1 − δ2,

lim sup
t→∞

(B2(t) + B2(t + 1) + B2(t + 1)B2(t + 2)) > 1 − δ2

are not valid and hence, conditions (15) and (17) are not satisfied.
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[4] G. E. Chatzarakis, H. Péics, I. P. Stavroulakis, Oscillations in Difference Equations with Deviating Arguments and Variable

Coefficients, Abstr. Appl. Anal. 2014 Art. ID 902616 (2014) 9 pp.
[5] W. Golda, J. Werbowski, Oscillation of Linear Functional Equations of the Second Order, Funkcial. Ekvac. 37 (1994) 221–227.
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