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Abstract. Under different criteria, we prove the existence and uniqueness of solutions for a Riemann-
Stieltjes integro-multipoint boundary value problem of Caputo-Riemann-Liouville type fractional integro-
differential equations. Our results rely on the modern methods of functional analysis and are well-illustrated
with the help of examples. Some interesting observations are also presented.

1. Introduction

Fractional order differential and integral operators play a significant role in the mathematical modeling
of scientific and engineering phenomena with memory. An important feature of these operators is their
nonlocal nature that helps to trace the hereditary characteristics of the related processes and materials under
investigation. Thus fractional-order models provide more insight into the study of real-world problems.
For application details, see [1]-[4] and the references cited therein. For the theoretical advancement of
fractional calculus, we refer the reader to the books [5]-[8].

Fractional order boundary value problems involving classical, nonlocal, multipoint, and integral bound-
ary conditions also received overwhelming attention, for instance, see [9]-[19] and the references cited
therein. The role of integral boundary conditions is of significant importance in blood flow problems as
these conditions provide a flexible mechanism to deal with the changing geometry of the blood vessels [20].
Also, integral boundary conditions are helpful in regularization of ill-posed problems [21].

In this paper, we study a new class of Riemann-Stieltjes integro-multipoint boundary value problems
of Caputo-Riemann-Liouville type fractional integro-differential equations given by

DD+ 0)x(t) + ulh(t, x(1)] = 9(t, X(1), 1< pr,p2 2, £ € (an,a0), (1)

r—2 ar
o) = Y () + [ xEBE), X (@) =0, 3(a) =0, ¥(a) =0, @
i=1 a
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where ‘D" denotes the Caputo fractional differential operator of order w (w = p1,p2), x, 14t € R, a > 0,
h,g :[a1,a,] X R — R are a given continuous functions, B is a function of bounded variation, 21 < w; <
Wy < <wpp<aandA;€R,i=1,2,---r=2.

Here we remark that the existence and stability results for a fractional order differential equation of the
form “Dx(t) = f(t,x(t)), 3 < q < 4, subject to the boundary conditions (2) were obtained in [17].

The rest of the paper is arranged as follows. In section 2, we recall some basic concepts of fractional
calculus and prove a new result related to a linear variant of the problem (1)-(2). In Section 3, we derive
the existence results for the nonlinear boundary value problem (1)-(2) under different criteria by applying
Leray-Schauder nonlinear alternative, Leray-Schauder degree theory, and Shaefer like fixed point theorem.
A uniqueness result for the given problem, obtained by means of Banach contraction mapping principle, is
presented in Section 4. Examples are constructed for illustrating the obtained results.

2. Basic result

Let us begin with some basic definitions of fractional calculus [5].

Definition 2.1. The Riemann-Liouville fractional integral of order 6 for a locally integrable real-valued function
q: [a, 00) — R is defined as

1 ("4
0 _
P = 5 | gt >0

where I'(.) is the Gamma function.

Definition 2.2. For an (n — 1)-times absolutely continuous function q : [a,c0) — R, the Caputo derivative of
fractional order 6 € (n —1,n] is defined as

t
Do) = oy | €= 0wy

Lemma 2.3. [5] Forn—1 < 6 < n, the general solution of the fractional differential equation: °D°y(&) = 0, & € [a, D],
is

Y(&) =ep +e1(E—a) +ex(E —a)? + ... + ep1(E—a)",

wheree; € R, i =0,1,...,n — 1. Furthermore,
n-1
P Dy(E) = y(&) + ) ei& — a)’.
i=0
In the following lemma, we solve a linear variant of the problem (1)-(2).

Lemma 2.4. For o, p € C([ay,a2]), the linear problem consisting of the fractional integro-differential equation

DDV + x)x(t) + pI*o(B)] = p(t), 1 <p1,p2 <2, € (a1,2), 3)
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and the boundary conditions (2) is equivalent to the integral equation

t - t _ o\atpi—
w0 = x| o s — | I oo

I'(p1) Ila+p1)
t 1+pa—1 > _ 1—-1
+ (tr(;l)—i:)p(s)ds + x()|x %x(s)ds
2 (az _ S)a+p1—1 2 (az _ S)p1+p2—1
+ yf —F(a+p1) o(s)ds — f; —T(Pl ) p(s)ds]
2 (112 _ S)pl—z 2 (ﬂz _ s)a+p1—2
+ }(z(t)[K 3 mX(S)dS +u 1 1_,(a+—pl_1)0'(5)d5

_ g\P1tp2 =2 1-1
_ f %p(s)ds +)(3(t KZ fm Gl S)) x(s)ds

i=

r—2
) (a) — S)a+p1 Wi (a) _ s)p1+p2 -1
: ;‘ A a T(Oz +p1) s)ds + Z Ai o T(p1 +p2) p(s)ds

2 ~ S (S _ u)p1—1 ~ S (S _ u)m—p]—l
+ j‘: ( K 5 —T(Pl) x(u)du — u 3 —F(a ) o(u)du

* (s — u)prirel
+ B e p(u)du)dB(s)],

where

(t=a) (t=ap1*! (t=a1)" (t=ap*!
X1 (t) ﬁl I"(p11+1) + 54 r(p11+2) + ﬁ7/ XZ(t) ,32 T p11+1 ﬁS T P11+2 ﬁ81
(t=a1)P1

(t=ay)y1*!
B3,y + Bt + Pos

x3(t)

Esy1 + 71

E E *E2E3E E2E4—E3E6—E1 V1 E.E-E.—E-E. *E2+E2E'3
ﬁ7:1+16y1 6/ﬁ8:1 1 ) 1E2E6 24,‘59= 1

E, = (@2—a)" E, = (aa—ap1*! E; = (ﬂz—ﬂl)prl/ Es= _Z:;12A (wi—a1)P1 f“z (s=a)h dB(s),

T(p1+1) 7 T(p1+2) 7 T(p1) L T(p1+1) a; T(p1+1)

_EE E2E¢—E1E4+)1 E _ EsE _ EEE N
{ﬁl R R T

Bs = —Yig Al - [ St iB(s), Be=1- Y5 Ai— [ dB(s),
and it is assumed that

y1 = EE3Eq—E3Es — E2Eq + E1E4 # 0.
Proof. Applying the integral operator I"> to both sides of (3) and using Lemma 2.3, we get

(‘DPr +10)x(t) + ulto(t) = IPp(t) +c1 + oot —a1),

2725

)

(7)

(®)

©)

where ¢; and ¢, are unknown arbitrary constants. Now operating the integral operator I to (9), we obtain

x(t) = =k x(t) — pI*Pra(t) + P2 p(t) + IPrey + [P oot — aq) + c3 + calt — aq).

(10)
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From (10), we have

I AN G N A G e (L =yt
x(t) = K T x(s)ds yL T+ o(s)ds+f1 o1+ ) ————p(s)ds

(t—m) (t=aynt!
C1 C2
F(pl + 1) F(p1 + 2)

+c3 + C4(t - ﬂl),

Xt = -« (t(_ N x(s)ds—pf (t—s)"h> o(s)ds

I'a+p1 -

f — _
(t = s)prtr2 (t=apn! (t—a)
+ ——0(S)ds+¢ +c +c
L L(pr +p2 - 1)p( ) Y T(py) Tpi+1)

2726

(11)

(12)

Using the boundary conditions (2) in (11) and (12) together with the notations (7), we obtain ¢, = 0 and a

system of algebraic equations in ¢1, c; and c3 given by
Eici + Exea +c3 =14,
Esc1 + Eica = I,

E4C1 + E5C2 + E6C3 = 13,

where [; (i = 1,2, 3) are given by

~ 2 (ay — 57! fv (ap — s)+P11 ~ f (ar — s)Pr 1
L = «x —————x(s)ds + u 5 —————0(s)ds T = p(s)ds,

m F(pl)

2 (112 _ S)p1—2 2 (az _ S)a+p1—2
~<c 7 ds + ~<c J
W T -1 O Taep o)

_ v (wl S) 1-1 _ = " (wi — S)OH—P1
I3 = KZ —————x(s)ds yZ T@+7p1) —————0(s)ds

i=1

r=2 .
[ @it j”_‘FG—WH
+ le Ai Tor +72) p(s)ds + ( K N x(u)du

i= a am ay

[(a+p1)

1) (112 )p1 +p2—2

L = e
? o Tpr+p2=1)

A

o(s)ds —

(5 )‘le (s —wyr?
S R s 2 s(u)du + f o7 S ———— p(u)du)dB(s).

Eliminating c3 from (13) and (15), we get
(E1E6 — E4)c1 + (E2E6 — Es)cp = Egly — I5.
Solving (14) and (17) for ¢; and ¢;, we find that

EE E?Eq — E1E4 + E
o=-_bbep oo BT, by s,
V4
71 Esn 71

EsE Es— EE E
Cy = 3 611 + 4 ! 612 - —313, V1 #0,
71 4! 71

p(s)ds,

(13)

(14)
(15)

(16)

(17)

(18)

(19)
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where y1 is defined by (8). Using (18) and (19) in (13), we get

E2E¢ — E,E5E E2E, — E3E4, - E E{E-E« — E-E —E?2 + E,E
G = [1+ 1E6 236111+[14 1L6 1)/1Jr 1E2E¢g 24]12+[ 1 23]13'
71 E3yq 71 71
Inserting the values of ¢c1, ¢, c3 and ¢4 in (11) together with notations (5), we obtain the solution (4). The
converse of the lemma follows by direct computation. m]

3. Existence results

Let B denote the Banach space of all continuous functions from [a1,4,] — R endowed with the norm
defined by [|x|| = sup{lx(¥)l,t € [a1,a2]}. In view of Lemma 2.4, we transform the problem (1)-(2) into an
equivalent fixed point problem as

x=Gx, (20)
where G : 8 — B is defined by

_ (s G
(Gx)(t) —K A Tpl)x(s)ds —u L T@ip)

_ c\p1tp2-1 2 -1
+ f %9(5 x(s)ds + x1(B)] f %x(s)ds

_ Q\atpi— p1+p21
+ o f (2( ) S h(s x(s))ds — f (”r(p )er) 9(s, %(s))ds]

{12 _ 1—2 _ o\atpi—2
+ x| ) %x(s)ds+y j: if’ij—;p)h(s x(s))ds

1 1+p2—2 r-2 -1
— f %g(s x(s))ds +)(3(t KZ/L]W (@; S) —————x(s)ds

1=

h(s, x(s))ds

_ f)\' “ Mk(s x(s))ds
H e "Ju T@+p) ’

r=2
[ @i sy f@ww
+ Z{/\l TG+ 1) g(s, x(s))ds +f x(u)du

i= n

H fu: M+ pn) h(u, x(u))du + T, g(u,x(u)))du)dB(s)], 1)

Observe that the problem (1)-(2) has solutions if the operator G has fixed points. For computational
convenience, we set

(t—a)

Ay = su + [x1(8)|
’ fe[fhgz] {F(Pl + 1) 1( )

(a2 — a1
I'(p1)

(a2 —m)

F(p1 + 1)

+ 2Bl
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+ (t)lrim(a’l WL [ )
= +1) ), T+ 1) ’

i=

(t —a)™
Ay = sup {=————— +|x1(f)]
! te[a1§2]{r(a+P1 +1) 1( )

LGl VeI Tl ) i
IMa+p1+1) X2 I'(a+p1)

a+p1 2 (S _ al)aﬂzl

r—2
+ @)l ;| F( « +1)+ i W‘F—Pl"‘l)dB(S))},

(t — al)”””z

ay — a2
Ay = sup —+|X1(t)|%

(az _ al)p‘l +p] -1

+ x2(b)l

oy L1+ P2+ 1) i+ p2+1) T(p1 +p1)
r=2
(wj — ay)Pr*P2 fﬂz (s —ap)ntp2
+ o) Zwr(pl D) Torrm B (22)

1=

Our first existence result for the problem (1)-(2) is based on Leray-Schauder alternative criterion [22].
Theorem 3.1. Let h, g : [a1,a2] X R — IR be continuous functions and the following conditions hold:

(H1) there exist functions n1,1, € C([a1,a2] X R*), and nondecreasing functions 1, ¢, : R* — IR* such that
h(t, )] < nu®)P1(lIxlD), 19t 0)l < na@®)pa(llxll), ¥ (¢, x) € [a1,a2] X R;

(Ha) there exists a positive constant M such that

-1
M(IIMAo + lullimllgr (VDAL + [Inally2(M)Az) > 1,
where A; (i = 0,1,,2) are defined by (22).
Then the problem (1)-(2) has at least one solution on [a;, az].

Proof. We complete the proof in several steps. Firstly, we show that the operator G : 8 — B defined
by (21) is bounded. For b > 0, let S, = {x € 8B : ||x|| < b} be a bounded set in B. Then, for x € 5;, we have

IGxll = sup [(Gx)(®)

tefayar]
(t—sp! (t_s)a+1 -1
= e ""fl Ty POl + f Ty e xS
t (t — S)p1+Pz—1 2 (az _ S)pl_l
8 WI!](S,x(S))Id5+|X1(t)|[|1<|fa:‘ T}ﬁ)'x(s)lds
(ﬂ _S)a+ 1-1 2 (ﬂ _ S)p1+p271
+ | |f i—.( Tp |h(S,X(5))|dS+£ WW(S,X(S))ldS]
+ Ira®[id ) (az( Dl |x(s)| ds + f“ rﬂ(z —+S)a+1—2 oo
O o

19(s, x())lds] + Lxa(®)[ I Z A Cw(s)lds

o Tp1+p2-1) o L)
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-2 ( )a+ 1-1
Y [ S xo
r=2 w; _ ptpe-1 2 S (o _ 1\p1—1
L [y s+ [0 [ S

i= ay

_ a+pr—1 S _ 1+p2—1
" f M i+ | S, ks )

r(“ a r(pl + PZ)
(t—a ) (ay — ar)" (ap — ap)P !
lknlx”tf[ﬁgz]{f(m D + il =—= T+ 1) + IXZ(t)l—F(pl)

r=2
@ —a)" (" s—a)”
(o) ;IM oD f o 17O

(t—a)*"

IMNa+p1+1)

(ay — ap)**™™

+xa(t )|m

Wl () sup

te[aya]

(112 _ 1)a+ -1 r—2 (a)i _al)aﬂ;l 2 (S _al)a+p1
b= * ) Zm,wr(mplﬂ) + f RO

1=

(t—a)*P (a2 — a2

||ﬂ2||¢2(||x||)tes[2£’2]{m Ix 1(>Ir(p —
(@ —a) Vg @i (s
AR T Z M D faj L1 +p2 + 1)dB(s))}’

i=

which in view of (22), leads to the following estimate:

A

< xlllxllAo + lullimullpa (A + [In2lg2(|lxl)A2

IA

klbAo + ulllnllp1(D)Ar + lIn2llP2(b)As.

This shows that the operator G maps bounded sets into bounded sets in 8. Next, we show that G is
equicontinuous on B. Let t1,t; € [a1,a2] witha; < t; <t <ap, and x € 55, where S;, is a bounded set in 8.

(G0)(t2) - (G)(H)]
||[ " (b — )T — (t — )Y
I'(p1)

] f "It =) = (b =9
H I'(a+p1)

|x(s)lds + ft 2 %Ix(s)lds]

|h(s, x(s))|ds



+

IA
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12 t, — a+pr—1 fy ¢ _Sp1+pz—1_ t _Sp1+p2—1
I =y, wqspyas] + [ 2= i T O

v Tla+pr) o I'(p1 +p2)

2 |(t — s)Ptre
v T(pr+p2)

a+p;—1
a(t2) = a0 f '(”2 (5)lds + [l f a2 — S) ’ '|h(s,x<s>)|ds

2 |(ap — s)Prtpl|
w1 +p2)

lg(s, x(s))lds

2 _g)—2
|g(s,x(s))|ds]+|X2(tz)—)(2(t1)|[|1<|f %

o Klds

_ Q)atpi—2 2 _ Q\pitp2—2
* (a2 — s) ||h(s *(8))lds + (a2 — s) |

W TavpoD T tpa—1)

195, x(s))Ids]

11|

r=2
wate ~ i Y [
i=1 n

r-2 a+p1—1 — g)itpe-l
Y [ x(s))|ds+Z|A| [ S s s

(s )1 1|
f; » f sy

* (s — w * (s —wprrl
|ul T (e, x(u)))du + T lg(u, x(”))|du)dB(S)]
%(l(fz —m)P' = (ty —a)"| + 2(t2 - tl)pl)
—lﬂl(lxni_”;ili”?l)) (|(t2 — )" = (= @) + 2(t - fl)aﬂgl)

lIn2lly(IIx1))
F(pl + p2 + 1)(|(t2

2 _ 1—1
it - il [ I s

(a2 — S)‘”” N f“ [(az —s)*P27| 1|
| If Ta+p ———— |h(s, x(s))|ds + 5 F(p ) (s, x(s)) Ids]

_ o\atpi—2
a(t) ~ x| f e st [ 2= s s

—m)P = (= @)+ 2(f - tl)p1+p2)

? @z = sy

L Toirpm oD e x($)Ids] + 1xa(2) — xs(t)[

a+p1 1|

IKIZMI [ e |x(s>|ds+|y|2m| [ e s s

2730



+

In the above inequality, notice that the right hand side tends to zero as t, — f; — 0 independent of x € S,
which shows that G is equicontinuous. Thus, by the Arzela-Ascoli theorem, the operator G : 8 — 8
is completely continuous. In the following step, we show the boundedness of the set of all solutions to
equation x = fGx for 0 < g < 1. For t € [a1,a,], employing the computations used in proving that G is

|l

a1

B. Ahmad et al. / Filomat 34:8 (2020), 2723-2738

r=2 w; _ a\itm—1 ) S _ -1
- L [T s+ [ (w1 [ st

i=

ay

G

I(s — u)+¥i1]
o L1 +p2)

T+ [(u, x(u))|)du +

bounded, we have

[x()

IN

IB(Gx) (@)l
(t—a) (a2 —am)" (a2 — )"~
|K|||x||t€S;1}ZZ]{m Ol Fe =y + e s —
r—2 1
) Z"‘z'(?{p ] T
(t = a)* (a2 —a))*™"

llma g () sup {r(m—wﬂxﬂﬂlr(m—w

telay 2]

o & (ff>|rf‘|A|“”"‘”’cle
A2 T(a+p A3 "T(a+p; +1)

i=

P (s —ap)T (t —ay)e
—dB S + X —
 farp D ()} + Il (l ”)tf[lfi] {r<p1 e

(612 — Lll)p1 tr2

F(p1 +p2+ 1)

(612 - al)plﬂ’z‘l

X0 T(p1 +p2)

+ xa(6)]

r—2
(wi — al)pwpz 2 (S _ al)p1+p2
Im(t)l(; e f: oot 1)dB(s))},

which, on taking the norm for ¢ € [a1, a2], yields

[l

<

[clllxllAo + |ellimllr(IxIDAL + lIn2ll2(|x() Az

Rewriting the above inequality, we get

]l

<
|clllxllAo + |ellimlla(lxIDAL + lIm2llg2(]lxl) Az

From (H,), there exists M such that ||x|| # M. Let us consider the set X =
operator G : X — C([a1,a2], R) is continuous and completely continuous. Thus, from the choice of X, there
isno x € dX such that x = fGx for some 0 < f < 1. Therefore, by Leray-Schauder nonlinear alternative [22],
the operator G has a fixed point x € X, which implies that there exists a solution of the problem (1)-(2) on

[a1,a2].

lg(ue, x(u))ldu)dB(s)].

{x € B: ||x]| < M}. Notice that the
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Example 3.2. Consider the following fractional integro-differential supplemented with non-conjugate Riemann-
Stieltjes integro-multipoint boundary conditions:

CD%[(CD% Z)et) + S| = g(t,x), te (0,9),

23
x(0) = Z)\x(w)+f4 x(s)dB(s), x’(0) =0 x(é)—O x'(L—L)—O =
—~ 1 7 - 7 3 - 7 3 - 7
whereay =0, 4 =3, pp=3, p1=3, =3 k=55, =55 =%, =0, A3=7, A4=% =1, w1 =
2
%, wy = }I' w3 = %, wy = %, ws =1, h(t,x) = %(% + cosx), and g(t,x) = (tan X+ s1r1x)

V2 + 1600
Let us take B(s) = SZ‘%. Using the given data, we find that Ay =~ 6.02737, A1 = 4.76728 and A, = 2.27540.

Evidently, |h(t, )| < G (L + 1) and |g(t, x)| < os(5 + lIxl). Let us fix m(t) = Ly ¢1(||x||) = 1,

m(t) = 2= and Y>(|l) = § + |xl. By the assumption: M(|xIMAo + lulllmlls (M)A, + ||T72||llf2(M)Az) >1,
we have that M > M; with M1 0.305019. Therefore the hypotheses of Theorem 3.1 hold and hence there exists at
least one solution for the problem (23) on [0, 5].

In the following result, we make use of Leray-Schauder degree theory to establish the existence of
solutions for the problem (1)-(2)

Theorem 3.3. Suppose that there exist positive constants €;, p; (i = 1,2) such that |h(t, x)| < e1lx| + p1, lg(t, x)| <
elx| + p2, VY (t,x) € [a1,a2] X R and

< (IxlAo + lule1Ar + e24) < 1. (24)
Then the problem (1)-(2) has at least one solution on [a;, a,].

Proof. In order to show that there exists x € R satisfying (20), let us introduce aset Sx = {x € B : rf\ax] lx(8)] <
telay

K}, where K is a positive constant to be fixed later. Then, it is enough to show that G : Sy — C(la1,a2]) is
such that

x#+AGx,¥Yx€dSx, YO< A< (25)
Define
DA, x)=AGx, xeC(R), 0<A <1,

and note that ¢ (x) = x — D(A, x) = x — AGx is completely continuous. In case (25) holds, then the following
Leray-Schauder degrees are well defined and the homotopy invariance of topological degree implies that

deg(qu/ SK’ 0)

deg(I - Agl SK/ 0) = deg((PlrSK/ 0)
deg(gbo,SK,O) = deg(I, SK,O) =1+0, 0€ Sk,

where [ is the unit operator. So ¢1(t) = x — AGx = 0 for at least one x € Sk by the nonzero property of
Leray-Schauder degrees. Next we establish (25). For that, we suppose that x = AGx for some 0 < A <1
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and for all ¢ € [a1,a,]. Then

(Ml = |AGx(®)

< |Kuxh§z§ﬂ{§b;——13 O + |xz<n£—37%%T3i
+ ) timﬁ;’(’p o e o))

+ Im&ﬂﬂ+wnngiiﬁf%i%%;%3+Lnﬁﬂ§%i%%;;5
+|wﬂr(f“4ﬂmw§jM§;§fg

1=

2 (s —ag)m (t —ay)*r?
[ ) e+ sup (Fe S

telay az]

(3 — a7

(@2 = @y
F(p1 +p2+ 1)

I'(p1 + p2)

r—2
(wi —ay )P P (s—am)y
" IxB(t)I(Z; Mi'Hm D) f [(p1+p2+ l)dB(S))}

+ Ixa®)l + x2(t)l

i=

IN

(IrlAg + lule1 Ay + e2A2)lx] + (Julp1 A1 + padda),
which, on taking norm and solving for ||x|, yields

T2
x| <

where 71 = [k|Ag + |ule1A1 + €242, T2 = |ulp1A1 + p2A2. In view of (24), letting K = 121 + 1, (25) holds. m]
Example 3.4. Consider the same problem (23) in Example 3.2 with

7 lx + &
X+ 7 -
(V3 + 3600) g+ lx+ 3l
Clearly, |h(t,x)| < 31—3||x|| + 1—25 and |g(t, x)| < 6—70||x|| +1. So, € = %, € = %, p1 = 15, p2 =1land 7, =

[k|Ao + |ule1 A1 + e2A ~ 0.525384 < 1. Hence, by the conclusion of Theorem 3.3, there exists at least one solution
for the problem (23) with h(t, x) and g(t, x) given by (26) on [0, 3

X + 3, and g(t,x) =

2
ht) = (e )k 15

(26)

Next we prove an existence result with the aid of Shaefer like fixed point theorem, which is stated below
[23].

Theorem 3.5. Let K be a Banach space. Suppose that U : K — K is a completely continuous operator and the set
M={zeKlz=yUz,0 <y < 1}is bounded. Then U has a fixed point in K.

Theorem 3.6. Assume that there exists v1, vo € C([a1,a2], R") such that |h(t, x(t))] < v1(t), |g(t, x(t))| < va(t), Yt €
[a1,a2], x € B, with sup vi(t)l =vill, sup [v2(t)] = |lvall. Then there exists at least one solution for the problem

telar 2] telay,az]
(1)-(2) on [ay, a2].



B. Ahmad et al. / Filomat 34:8 (2020), 2723-2738 2734
Proof. It has already been shown in Theorem 3.1 that the operator G : 8 — B is completely continuous.
Next we consider the set X = {x € B|x = yGx, 0 < y < 1}, and show that it is bounded. Let x € X, then
x=yGx, 0 <y <1 Foranyt € [a1,a,], we get

@l = ylG0)@®)

t -1
(t—s)

sup {|x| -
te[gﬁz] { m I'(p1)

(t —syprrt (2
+ f T + p2) o196, x(S))Ids+le(t)I I f Ix(s)lds

IA

top_ oyatpi—-1
(s + ul [ %mw,x(s»us

oo [ s + = 1|g(s,x(s>)|ds]

n  Tla+p) T(p1 +p2)
_ o\atpi—2
T R e T [ e e RIS

(a2—s)l71+22 r=2 5)1 1
+ j: T(pr + pa2 — |!](S x(s))lds] + xs(b)l |K|; IA; |f T x(s)lds

(w; — s)**P1~
+ Z [ S s

r=2 " (w; —S) p1+pa—1 2 S (s—u)l’l—l
+ 12| 1 f T 7S+ f (I f Tyl

° (s — ! prert

*(s—u
Rty o+ [ C ot opin)aso)

+ |yl

ay
< ellixllAo + pllivallAr + lv2llAz,

where Ay, A and A, given by (22). Thus, ||x]| < |xllx[|Ao + |ulllvillA1 + [v2]lAz for any ¢ € [a1, a2]. So, the set
X is bounded. Thus the conclusion of Theorem 3.5 applies and the operator G has at least one fixed point.
In consequence, there exists at least one solution for the problem (1)-(2) on [a;,4,]. O

Example 3.7. Consider the problem (23) with

Vi2 +23

1538+t |2 cos x| 1
=—- - In(# + 45). 27
h(t, x) = (\/t_5+4)2(2+|2msx|) and g(t, x) = ( = )tan™" x + In(t” + 45) 27)
15¢38+” Tt Vf.‘z + 23

Clearly, |h(t, x)| < e T vi(t) > 0and |g(t, x)| < T +In(#’ +45) = vp(t) > 0. Hence, by the conclusion
of Theorem 3.6, there exists at least one solution for the problem (23) with h(t, x) and g(t, x) given by (27) on [0, £].
4. Uniqueness of solution

In this section, we study the uniqueness of solutions for the problem (1)-(2) by means of Banach
contraction mapping principle.
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Theorem 4.1. Assume that h, g : [a1,a,] X R — R are continuous functions satisfying the Lipschitz condition:
(Ha) : 11(t, x) = h(t, )l < Lalx = yl, 1g(t, %) = g(t, y)l < Lalx = yl, Vi€ [a1,a0], %,y €R,

where L; (i = 1,2) are Lipschitz constants. Then there exists a unique solution for the problem (1)-(2) on [a1,a5] if
A = [klAg + [uIL1Ar + LA, < 1, (28)

where A; (i = 0,1, 2) are given by (22).

Proof. Let us set Ny = sup |h(t,0), No = sup |g(¢ 0)|, and choose

te[ar,a2] telay,a]

0> |uIN1A1 + N2 Ay
T 1-1|klAg — |ulL1A1 — LAy

We define Sp = {x € B: ||x]| < 0} and show that GS¢ C Sp, where the operator G is defined by (21). For any
x € Sy, t € [a1,a5], we have

It x() = |h(t, x(t)) — h(t, 0) + h(t, 0)| < |h(t, x(t)) — h(t, 0)| + |h(t, 0)]
< L1|x(i’)|+N1 SL1||X||+N1 §L19+N1,
lgt, x(®)] =gt x(t)) — g(t,0) + g(£, 0)| < lg(t, x(t)) — g(t, 0)] + |g(£, O)]

< Lyx(f)] + Ny < Ly|lx]l + Na < L0 + No.

Then we have

Gxl < tes[lff;] I« f ¢ r(s); 1|x(s)|ds+|y| f (tr; S):ﬂ s, x(s)lds
+ tﬁlﬁffw@mmm+wanfm@lﬁfw@m
o L1 +p2) ’ ! o I'(p1)

_ o)atpi—1 2 _ L pa—1
+ f (ﬂ; - SJ)r (s, x(s))lds + f %lg(s,x(s)ﬂds]

_ J)atpi—2
e i [ BT [ I i

_ g\tp2—2 Wi —_
@—ﬁiHWﬂWMHthZMI P

o TGr+pa=1) Ty e
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-2 ( )a+ 1-1
oM [ S xo
r=2 _ ptpe-1 2 S (o _ 1\p1—1
- L [T s [ ([ S

i= ay

(S — u)a+p1—1 S (S _ u)p1+pz—1
+ ———— |y, du+ | ————|g(u, du\dB
|l . T@tp) [ (u, x(u))ldu o) lg(ut, x(11))| u) (s)]}
< xlllxllAo + [pl(Lallxll + N1)A1 + (Lalx]l + N2)A>

IN

|x|OA + |[,l|(L]9 + Nl)A] + (Lz@ + Nz)Az <0.

This shows that Gx € Sg for any x € Sg. Therefore, GSg C Sg. Now, we show that G is a contraction. For
x,y € Band t € [a1,a;], we obtain

1G9 - Gyl = sup [(Gx)(t) - G|

telay,a2]

IA

p1—1
sup (I f EZ91s) - yislds

telay as]

Lt — sy

" f ‘tr;;):w’) s, x5 - s, y(s))]ds+ R A

- syl bl [ o - o

il %\h(s x(s)) - G, y(s))jds

- [ 2%g(s,x(s))—g(s,y(s))'ds}

w0 [ BT -yl [ I s 56 s s
- %1% x6)) - 905, y(s))|s]

. |X3(f)|[|K|ZM| f T o) - v

r=2
c ‘r(ﬁ it o) - s s

m
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r—2

i (i — s)PrPel 2 (s —u)p!
o L [ STt o gt v+ [ ([ S - o

i=1

a+p1— Lpa—1
+ Ifl(sr(;l P |h(u x(u)) — h(u, y(u )|alu+fl %g(u,x(u))—g(u,y(u))|du)dB(s)]}

< fxlllx = yllAo + |ulLallx = yllAr + Laflx — yllA2
= Allx-yll,

which, in view of (28), implies that the operator G is a contraction. Hence, we deduce by the conclusion of
contraction mapping principle that the problem (1)-(2) has a unique solution on [a1, 25]. o

Example 4.2. Let us consider the problem (23) with

h(t,x) = L% arc tan x + = +et,
V2 + 4900 V2 + 6400

and

|| cos x

1
+
\/t+400<6 +x 12

Obviously, |h(t, x) — h(t, y)l < Lillx — yll with Ly = 3 and |g(t, x) — g(t, y)| < Lyllx — yl| with L, = 240 Using the
given data, we find that A ~ 0.383648 < 1, where A is defined by (28). Clearly the hypothesis of Theorem 4.1 is
satisfied. Hence it follows by the conclusion of Theorem 4.1 that there is a unique solution for the problem (23) on

[0, 31

g(t,x) = )+27In(t+1), t€ (0, g)

Special cases. For i = 0, our results correspond to the problem consisting of Langevin equation with two
fractional orders and Riemann-Stieltjes integro-multipoint boundary conditions. Letting k¥ = 0in the results
of this paper, we obtain the ones for fractional integro-differential equation:

CDP2<CDP1x(t) + ul®h(t, X(t))) = g(t, x(1)),

subject to the boundary conditions (2). Moreover, our results specialize to any fixed domain by taking the
specific values of a; and a,. Thus our results are not only new in the given configuration but also specialize
to some new cases.
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