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Abstract. The aim of this paper is to study the difference gap (in short, D-gap) function and error
bounds for a class of the random mixed equilibrium problems in real Hilbert spaces. Firstly, we consider
regularized gap functions of the Fukushima type and Moreau-Yosida type. Then difference gap functions
are established by using these terms of regularized gap functions. Finally, the global error bounds for
random mixed equilibrium problems are also developed. The results obtained in this paper are new and

extend some corresponding known results in literatures. Some examples are given for the illustration of
our results.

1. Introduction

In 1976, Auslender [5] first introduced the concept of gap functions for the following variational in-
equality problem:

n(x) = sup{(f(x),x — )},

yeK

where 7w : R” — RU{+o0}, K€ R?,and f : R" — IR". Based on the gap function of Auslender [5], Fukushima
[17] extended it to the concept of regularized gap functions for the following variational inequality problem:

n(x;a) = sul}z{(f(x),x -y —allx -yl
ye

where « is a nonnegative parameter and 7(;0) = 7(). Yamashita and Fukushima [35] developed the
regularized function of the Moreau-Yosida type based on the ideal of Fukushima [17] as follows:

dn(x; @, A) = inf{mi(z; ) + Allx - w|*},
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where A is a positive parameter. By using the strong monotonicity assumptions, they also proposed error
bounds for the variational inequality problems via the regularized gap functions. Error bound is known as
an upper estimate of the distance of an arbitrary feasible point to the solution set of a certain problem. It
plays an vital role in convergence analysis of iterative algorithms for solving variational inequalities. Later,
the regularized gap functions and error bounds have been established by many authors in different ways for
various kinds of variational inequality problems and equilibrium problems, etc., see [1-3, 6, 13-15, 20-25, 33]
and the references therein.

Recently, Peng [31] established the D-gap (Difference gap) functions for unconstrained reformulation
of the variational inequality problem based on the difference of two regularized gap functions given by
Fukushima [17]. Yamashita et al. [36] extended the results of Peng [31] and developed various properties
of the D-gap function. A global error bound result for D-gap functions under the strong monotonicity
assumption was given Peng and Fukushima [32]. Since then, the D-gap function and error bounds have
been studied for various kinds of variational inequality problems and equilibrium problems, see, e.g.,
[9, 16, 28]. Besides, many authors studied various kinds of random variational inequalities and random
complementarity problems for different topics, such as, iterative algorithms, the existence of solutions, etc.,
see [8, 12, 26, 30]. However, to the best of our knowledge, up to now, there is no any work on the gap
functions in terms of Moreau-Yosida regularized and D-gap functions and their error bounds in random
environment.

Motivated by the research works mentioned above, in this paper, we study a class of the random mixed
equilibrium problems (for short, (RMEP)) in real Hilbert spaces. From applying similar to ideas in [28],
the regularized gap function of Fukushima type is established without the projection operator method.
Moreover, we will construct the gap functions in terms of Moreau-Yosida regularized and D-gap functions
by using the regularized gap function of Fukushima type for (RMEP). Further, the global error bounds
for (RMEP) are also obtained the previous gap functions. The results obtained in this paper are new and
extend some corresponding known results in literatures. Some examples are given for the illustration of
our results.

2. Preliminaries

Throughout the paper, unless otherwise stated, we suppose that R denotes the set of real numbers and
(Q, A) is a measurable space, where () is a set and A is a o-algebra of subsets of Q2. Let H be a real Hilbert
space with the norm || - || and inner product (-, -). Let CB(H) be the family of all nonempty bounded closed
subsets of H and K € CB(H). We denote by B(H) the class of Borel o-fields on H.

The following definitions and concepts are needed in the sequel.

Definition 2.1. (See [19])

(a) A mapping x : QO — Kis said to be measurable if, for any B € B(H), {t € Q : x(t) € B} € A.

(b) A mapping S : QO x K — H is said to be a random operator if, for any x € K, S(t, x) = x(t) is measurable.

(c) We say that S : QO x K — H is Lipschitz continuous (resp., convex, monotone, linear, bounded) if, for any
t € Q, the mapping S(t,-) : K — H is Lipschitz continuous (resp., convex, monotone, linear, bounded).

Definition 2.2. A random function F : Q X K X K — R is said to be

(a) a(t)-strongly monotone if there exists a measurable function a : O — R, such that
F(t,x(5), y(®)) + F(t, y(t), x(1)) < —a(®)lix() - y®)IP, ¥t € Q,Vx(t), y(b) € K;

(b) B(t)-strongly convex uniformly in the second arqument if there exists a measurable function §: Q — R,
such that, for any ¢ € ), x(t) € K,

F(t, x(8), y1(£)) = F(t, x(8), (D) = (V3F(E x(0), y2(8)), y1(8) = ya(®)) + BOllya (H) = (DI,
te Q, Vyl(t), yz(t) (S K,’
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(c) (L1(t), Lo(t))-mixed Lipschitz continuous if there exist measurable functions Ly, L, : O — R, such that

IF(t, x(t), z1.()) — F(¢, y(£), z2(E)I] < La(H)llx(t) — yOIl + La(@)l|z1 () — z2 ()],
Vx(t), y(t), z1(t), z2(t) € K.

Note that V;F denotes the partial differential of F with respect to the ith variable of F,i =1,2,3.

Remark 2.3. If F(t,x,y) = F(x,y), Yx,y € K, then the a(t)-strong monotonicity, the f(f)-strong uniformly
convexity and the (L;(t), Lo(t))-mixed Lipschitz continuity reduce to the a-strong monotonicity in [10], the
B-strong uniformly convexity in [34] and the (L;, L,)-mixed Lipschitz continuity in [27], respectively, where
a, ,B/ Ll/ LZ € 1R+-

Picking up the ideas from [15, 29] we propose a concept related to strongly nonexpanding random
operator.

Definition 2.4. A random operator g : Q) X K — H is said to be x(t)-strongly nonexpanding, if for each t € (),
there exists a measurable function x : Q — R, such that

llg(t, x()) — g(t, yO)Il = x®)llx(t) =y, Vx(£), y(t) € K.
Definition 2.5. (See [19])

(a) A multi-valued mapping I' : Q =3 H is said to be measurable if for any B € B(H), T"}(B) = {t € Q :
I'(t)NB # 0} € A.

(b) A mapping u : Q — Kis called a measurable selection of a multi-valued measurable mapping I': Q =3 H
if u is measurable and for any ¢ € Q, u(t) € I'(t).

Definition 2.6. (See [19]) Let Q : Q X K — H be a random mapping, T : Q) X K — CB(H) be a multi-valued
measurable mapping. Then

(a) Qissaid tobe C(t)-strongly g-monotone with respect to T, if there exists a measurable function C : O — R,
such that for any f € Q,

(Q(t wi() — QU wa(1)), g(t, x1(1)) — gt x2(1))) = LB)lIxa (1) — x2(DIP,
Vi (t), x2(t) € K, wi(t) € T(t, x1(t)), wa(t) € T(t, x2(t));

(b) Qis said to be o(t)-Lipschitz continuous, if there exists a measurable function o : Q — R, such that, for
any t € Q,

1Q(E, x() — QE y(W)Il < a®)llx(t) =y, Yx(t), y(b) € K;

(c) Tis said to be H-Lipschitz continuous with measurable function t(t), if there exists a measurable function
7 : Q — R, such that for any t € Q and x(t), y(t) € K,

H(T(, x(1), T(t, y(1))) < T(®)llx(t) — y(B)ll,
where H(:, -) is the Hausdorff metric on CB(H) defined as follows: for any given A, B € CB(H),

H(A, B) = max {sup 11615 llx = yll, sup 116115 [lx — yll} )

xeA Y yeB

Definition 2.7. (See [19]) A random multi-valued mapping T : Q x K =3 H is said to be measurable, if for
any x € K, T(-,x) is measurable. T is said to be H-continuous, if for any t € Q, T(t,-) is continuous in the
Hausdorff metric.
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Note that T is upper semicontinuous if, for each t € Q, the correspondence T(t,-) : K = H is upper
semicontinuous.

Lemma 2.8. (See [11]) Let T : Q X H — CB(H) be an H-continuous random multi-valued mapping. Then for any
measurable mapping x : Q — H, the multi-valued mapping T(-,x) : QO — CB(H) is measurable.

Lemma 2.9. (See [11]) Let T,Q : Q x H — CB(H) be two measurable multi-valued mappings, let ¢ > 0 be a
constant and let u : QO — H be a measurable selection of T. Then there exists a measurable selection v : QO — H of Q
such that

llu(t) — ol < A + H(T(,-), Q(t,-), VYEe Q.

Now, we will introduce the model of random mixed equilibrium problems. Throughout the paper, let
F: QO xKxK — R be arandom function such that F(¢, x,x) = 0 for all x € K. Moreover, F is continuously
differentiable and that F(¢, x, -) is convex for each x € K. Let ¢ : K = RU{+00} be a convex continuous but not
necessarily differentiable function and g : QXK — Kbe a random operator with Im(g)Ndom(d¢) # 0, where
dp(x) ={z € K: ¢p(y) = p(x) + (z,y — x), Yy € K} is the subdifferential at x € K and a point z € dp(x) is called
a subgradient of ¢ at x. Moreover, g(t,-) is a continuous affine function, forall t € Q. Let Q : QXK — H
be continuous random single-valued mapping, T : QO X K — CB(H) be a random multi-valued mapping
such that T is upper semicontinuous on ) X K and T(t, -) has compact values on K. By Lemma 2.8, for any
given measurable mapping x : O — K, the multi-valued mapping T(-,x(:)) : Q — CB(H) is measurable.
Hence there exists measurable selection w : QQ — K of T(-, x(-)) by Himmelberg [18]. We now consider the
following random mixed equilibrium problems:
(RMEP) find a measurable mapping x* : O — K such that

Fw: Q- Kw'() € T(t,x' (1)),
F(t, (%' (9), y(®) + (Q(t, w' (), y(t) - g(t,x* 1)) + p(y(®)) - p(9(t, x* (1)) = 0
forallt € Q, y(t) e K
The solution set of (RMEP) is defined by X(t), i.e.
x'(t) € K| Fw: Q - H,w'(t) € T(t,x'(t)) and
() =3 F(t gt 1), y®) + (Q(t,w (1), y(t) - (¢, ' (1))
+o(y(®) - p(g(t, x (1) 2 0, ¥t € Q, y(H) € K.

Throughout this paper, we always assume that X(f) is not empty for all f € Q.
To illustrate motivations for these settings, we provide some special cases of the problem.
(@) If H=K, F =0, Q(t, w(t)) = T(x) is a single-valued mapping and g(¢, x(t)) = g(x) for all (¢,x) € QX H,
then the (RMEP) reduces to the generalized mixed variational inequality problem in deterministic
case (for short, (GMVIP)) studied in Solodov [33], which consists in finding ¥ € H such that

(T(x),y — 9(x)) + p(y) — p(g(x) = 0,Yy € H.

(b) If H =", F =0, Q(t, w(t)) = T(x) is a single-valued mapping, g(t, x(t)) = x for all (f,x) € Q X H and
@ = 0, then problem (RMEP) reduces to the variational inequality problem in deterministic case (for
short, (VIP)) studied in [32, 35, 36], which consists in finding ¥ € K such that

(T(®),y—%) >0,y € K.

3. Difference gap functions

In this section, by using the regularized forms of the Fukushima type in [17] and the Moreau-Yosida
type in [35], we give two kinds of regularized gap functions for (RMEP). Finally, we develop the D-gap
functions for (RMEP) based on these functions.
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Definition 3.1. Let K be the domain of (RMEP). A random function m : QO X K — R is said to be a gap
function for (RMEP), if it satisfies the following properties:

(Ga) m(t, x(t)) 2 0,¥(t,x(t)) € QX K;
(Gp) for any (t,x*(t)) € Q x K, m(t, x*(t)) = 0, if and only if x*(t) € K is a solution of (RMEP).

We now present characterizations of a smooth convex function in real Hilbert spaces. The following
Lemma 3.2 is reformatted from Proposition 17.10 in [7] for the random functions.

Lemma 3.2. For each (t,x) € Q X K, let F(t,x,-) : K = R be a differentiable function on K. Then the following are
equivalent:

(i) F(t, x,-) is convex;
(ii) Forany y1,y2 € K, (V3F(t,x, 1), y2 — y1) < F(t, x, y2) — F(t, x, 11);
(iii) Forany y1,y2 € K, (V3F(t,x, y2) — VaF(t, x, y1), y2 — y1) = 0. In other word, V3F(t, x, -) is monotone.
Picking up the ideas from establishing the regularized gap function of Fukushima type in [28] without
the projection operator method, we develop the notion of regularized gap function of the Fukushima type

for (RMEP).

Lemma 3.3. A measurable mapping x* : QO — K solves the (RMEP) if and only if there exists w*(t) € T(t, x*(t)) such
that forall t € Q, y(t) € K,

(VE(t, gt x (), gt x 1) + Q(t, @' (1)), y(t) = g(t,x' ) + p(y(®) — (98, x'(1))) > 0. (1)

Proof. Suppose that x* solves (RMEP). Then there exists w*(t) € T(t, x(t)) for x*(t) € K such that for all
teQ,yt) €K

F(t, gt x (1), y(®) + (Q(t,w' (1)), y(t) — 9(t, ' (1) + @(y() — (gt ' (1)) 2 0.
That is g(t, x*(t)) solves the following convex minimization problem

min {F(t, g(t, % (1), y(0) + (Q(t, w' (), y(t) - g(t, (1)) + p(y(®))}
such that y(t) € K.

Using the optimality condition for this problem, we have
0 € V3E(t, g(t, x* (1), g(t, (1)) + Q(t, w' (1)) + Iop( (2, x*(1)))
which implies
—V3E(t, g(t, %' (1), g(t, %' (1)) - Q£ w' (1)) € dp(g(t, ' (1)), b))
By the definition of the subgradient, it follows from (2) that for all t € O, y(f) € K,
o(y®) = p(g(t, 1) = (VaF(t, g(t, x (1), g(t, % (1)) + Q(t,w" (1)), y(8) - g(t, x° (1)),

which means that for all t € ), y(t) € K,

(V3E(t g(t,x (1), g(t,x' ) + Q£ w' (1)), y(5) — 9(t, ' (1)) + p(y(®) — p(g(t, x* (1)) = 0.
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Conversely, suppose that x*(t) € Kand w(t) € T(t, x*(t)) solve (1) forall t € Q. By the convexity of F (t, x(t), -),
for any y(f) € K, it follows form Lemma 3.2(ii) that

(VaE(t gk, x* (1), g(t, '), y(8) = g(t, x (1)) <F(t, 9(t, X' (), y(1))
— F(t,g(t, % (1)), 9(t, ' (1)). 3)

From (1) and (3) noting F(t, g(t, x'(£)), g(t, x'(+))) = 0, we obtain

F(t, g(t,x' (9), y(®) + (Q(t, w' (), y(t) — g(t, 1)) + p(y(®)) - (gt x° (1)) = 0,

forall t € Q, y(t) € K, i.e., x* solves (RMEP). Thus, the proof is complete. m|
Let the function @y : Q x K x KX H — R be defined by

Do, x(0), (1), w(t)) = = F(t, 9(t, x(®), y(t)) + (Q(t, w(t)) gt x(t) = y(6))
~ (1) + p(ot,x0)) = 751t 10 - o

where 0 : Q — (0, +00) is a measurable function. Then, we consider the function I'lgy : Q X K — R defined
by

Mo () = min  max @a(t, x(0), y(6), w (). 4)

Since T(t, x(t)) is compact and r{})aé q)g(t)(f, x(t), y(t), w(t)) is continuous in the fourth argument (Note that
yt)e
Q is continuous.), there exists wy(t) € T(t, x(t)) such that
oy (£x(8)) = max ot (6), y(6), wo(®) (5)
Since (D@(t)(t, x(t),-, we(t)) is strongly concave and continuous, the following inner maximization problem

max q)g(t)(f, x(t), ]/(t)r w@(f))
such that y(t) € K, (6)

always has a unique solution yg(t)(x(t)). The optimality condition for the problem (6) can be formulated as
follows.

Lemma 3.4. Foreacht € Q), x(t) € Kand w(t) € T(t,x(t)),

<V3F (t, 90t x(1)), Yo (x(D)) + Q(t, w(®)) + % (you (x(®)) = g(t, x(®)), y(H) - ye<t)(x<t))>
+(p(y(t)) - (yg(t)(x(t))) >0, Yyt ek (7)
holds.

Proof. For each y(t) € K, noting that yg( (x(t)) is a unique solution of the problem minimize —(I)g(t)(t, x(t), -, w(t))

on K, and —(Dg(t)(t, x(),-, w(t)) is convex, we have

0 & VF (t, gt X(0), you (x(8))) + Q1. w(t)) + 9 (you(x(1)) + 55 L (oo (x() - gt x(1)
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which implies

—~VaF (£, g(t, x(1), you (x(8))) - Q(t w(®) - % (you (x(®)) - g(t, x(1))) € g (you(x(®))) ®)

By the definition of the subgradient, it follows from (8) that
o(y() 2 ¢ (vou (x(®)) - {w(t, gt x(0), yow(x(®)) + Q(t, w(®)
Y50 = (o x(0) — g6, x(0)), y10) - ye<t)(x<t>)>

which implies (7). O

Theorem 3.5. Let x : QO — K be a measurable mapping and 0 : Q — (0, +00) be a measurable function. Then for
each t € Q, the function He(t)(t, x(t)) defined by (4) is a gap function for (RMEP).

Proof. (G;) For each t € Q and x(t) € K, it is easy to see that

max Do (£, (1), y(B), w(B)) 2 0, Vx(t) € K,w(t) € T(t, x(t)).

Suppose on the contrary that there exists x*(t) € K and wy(t) € T(t, x*(t)) such that
max D (1, 2°(8), y(B), wo(9) < 0
Then
0> max (1, ¥ (1), y(0), wo(1) = Dot ¥ (1), y(B), wo(h), V(®) € K
When y(t) = x*(t), we have a contradiction. Hence

max Doy (1, x(1), y(t), (b)) = 0, ¥x(t) € K,w(t) € T(t, x(t)).

Since w(t) € T(t, x(t)) is arbitrary, we have

HG(,)(t,x(t)) w(t)Iel}lPx(t) ;1(})1)12 CDG(,)(t x(t), y(t), w(t)) >0,Vx(t) e K.

(Gp) Suppose that x*(t) is a solution of (RMEP). Then, it follows from (5) that
o, %' () = max g (£ (), y(t), o)) = Dogy (£, (1), Yo (x (), wo(H)). )

Moreover, since x*(t) is a solution of (RMEP), from the proof of Lemma 3.3, there exists w*(t) € T(t, x*(t))
such that

<V3F(t, g(t, x* (1), g(t, x*(t))) + Q(t, w*(t)), ye(t)(x"(t)) —g(t, x*(t)))
+p (yg(t)(x*(t))) - (p(g(t, x*(t))) > 0. (10)

From the result of Lemma 3.4,

<V3F (t,9 2 O), yoo (4®)) + Q6,0 () + == (o (x°(B) — 9t ¥ 1)), 96, % (1)

o)
- ye<t>(x*(t))> + (gt (1)) = ¢ (vow(x(®))) 2 0. (11)
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From (10) and (11), we get

1 2
) ||y9(t)(X*(t)) - g(, X*(f))H
> (VaF (£ g(t, %' (9), you (' (1)) = VaF (& g(t, % (), 9(t, 2 (19) , Yo (x () = 9(t, ")) = 0,
since V3F (t, g (t,x*(t)), ) is monotone (by Lemma 3.2(iii)). Thus, we get g(t, x*(t)) = yg(t)(x*(t)). It follows
from (9) that HQ(,)(t, x*(t)) =0

Conversely, for any t € Q such that x*(¢) € K, He(t)(t, x"(t)) = 0. Then there exists w*(t) € T(t, x*(t)) such
that r{})aﬁ @3(0(1&, x*(1), y(t), w*(t)) = 0. This implies (Dg(t)(t, x* (1), y(t), w*(t)) < 0,Vy(t) e Kor
Yy €

F(t, g(t, % (1), () + (Q(tw (1)), y(®) - g(t, x' (1)) + qo(y(t)) ~ p(g(t,x (1)

*55 t)llga < ®) - yo 2

Then x*(t) solves the following convex minimization problem

F(t, g(t, % (9), () + (Q(L,w' (1)), y(®) - g(t, ' () + p(y() }
+a o ® -yl
such that y(t) € K.

Using the optimality condition for this problem, we get

(VaF(t: gtt,x ®), g(t,x ®) + QL w ®) yH) = 9(t,x°®)) + o(u)
—~o(g(t,x' (1)) 2 0,V € Q y(t) € K.

By Lemma 3.3, this implies that x*(t) is a solution of the (RMEP). Thus, Hg(t)(t, x(t)) is a gap function for the
(RMEP). O

Remark 3.6. Theorem 3.5 extends Theorem 3.1 in [17], Lemma 2.1 in [35] and Theorem 5.1 in [6] in the
following aspects:

(1) The problem (RMEP) is a generalization from the variational ine uality to the mixed equilibrium
problem.

(ii) The problem (RMEDP) is established in random environment.

(iif) Our Theorem 3.5 is established without the projection operator method.
From the result Theorem 1.4.16 in [4], we get the following result:

Lemma 3.7. Letarandom multi-valued mapping T : QxK — CB(H) and a random function f : Graph(T) —
R be given. If f and T are upper semicontinuous and T'(t, -) has compact values on K for all t € €}, then the
random function g : QO X K — R U {+o0} defined by

g(t,x) = max f(t X, W)

weT(t,

is upper semicontinuous.
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Now we consider the gap function Ery,, p) : Q X K — R based on Moreau-Yosida regularization of the
gap function Iy for (RMEP). Then Epy,, o) is defined by

= . 2
g0t () = min { oo 8, 20) + p(8) e, x) - gt 200 | (12)
where x(t) € Kand p : QQ — (0, +00) is a measurable function.

Theorem 3.8. Assume that g(t,-) is x(t)-strongly nonexpanding, for all t € Q. Then En,, o) defined by (12) is a
gap function for (RMEP).

Proof. (G,) For any measurable functions 0,p : Q — (0, +c0) and x(t) € K, since Iy (£, x(f)) > 0 for all

x(t) € K, we conclude that Zp,, o1 (£, x(t)) > 0 for all x() € K.
(Gp) Suppose that x*(t) € Z(t). Theorem 3.5 implies that Ilg((t, x*(t)) = 0, Vt € Q. Moreover, we have

it () = i (a1, 20) + p() ot 1) = gt 200

< Tlog(t, 2 (1) + p(b)||g(t, < (1)) — g(t, x*(t))||2
= 0.

Moreover, Ep,, o(t, X()) = 0, we conclude that Ep,, o (£, X)) = 0, ¥t € Q.
Conversely, if Ep,, o (t, X*(t)) = 0, i.e.,

min {He(t)(t,z(f)) + p®)at, ' ®) - W'Z‘f”“z} =0

Thus, for each n, there is z,(t) € K such that
. 2 1
o (t, za(1) + p(8)||g(t, x* (D) = g(t, za))|| < o (13)
Since g(t, -) is x(t)-strongly nonexpanding, it follows from (13) that

0 < Mg (t, za(8)) + p(B)2 ()| () = zn(t)HZ < %

and hence, ITg((t, z4(t)) — 0 and [|Ix*(t) — z,(t)I| — 0, Vt € Q. So z,(t) — x*(t). We now prove that ITg is
lower semicontinuous on K. In fact, since F, Q and g are continuous and ¢ is lower semicontinuous, it is
clearly that

Do (£, x(t), y(8), w(t)) = = F(£, g(t, x(1)), y(B)) + (Q(t (), gk, x(8)) = ()
~ () + o{att, 0) = 55 It x) = o

is lower semicontinuous in the second and fourth arguments for each ¢t € Q, y(f) € K. So the mapping
max q)g(t)(t, x(t), y(t), w(t)) is lower semicontinuous. Hence, — max q)g(t)(t, x(t), y(t),w(t)) is upper semicon-
y(heK y(heK

tinuous. Moreover, as T is upper semicontinuous with compact values, from Lemma 3.7 we get that

Il t, x(t)) = i Dol t, x(t), y(t), w(t
oot ¥(0) = min - max Do (1,100, y(0), (1)

— max —max Dgplt, x(t), y(t), w(t
w(t)ET(t,x(t)){ y(t)eK G(t)( ( ) y( ) ( ))}
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is lower semicontinuous. Moreover, g (t, ) is nonnegative. Hence, we get

0 < TIlgp(t, x*(t) < lim+inf Iow (t, za(t)) = 0,

which yields that g (t, x*(t)) = 0. Applying Theorem 3.5, we have x*(t) € X(t). This completes the proof.
O

Next, we will establish D-gap functions for (RMEP) by using the regularized gap functions of the
Fukushima type and the Moreau-Yosida type given above.

Let the gap functions Iy and Epy,, o) be defined by (4) and (12), respectively. Now, we will consider

the functions D)5, Dé(t),p(t),&(t),@(t) : A X K — R defined by

DQ(t),S(t)(t/ X(f)) = He(t)(t, X(f)) - HS(t)(t/x(t))} (14)
Digey 0,50, g(f)(t x(t)) = EHem,p(t)(t/ x(t)) - EHsm,Q(t)(t/ x(t)). (15)

where 6,9, p, 0 : Q — (0, +00) are measurable functions satisfying 0(t) > 9(t), p(t) > o(t) for all t € Q2. Then
we obtain the following properties of Dg(t),s(t)(t, x(t)), Dl 05,98 é)(t)(t, x(t)).
Lemma 3.9. Forall t € Q and x(t) € K, we have

20(H)9(t)

00 — s Dewsotx®) < [lot ) - you ()| 16)

gt x(®) — s (x®)|[" <

Proof. By the definitions of the gap functions H@(f)(t, x(t)) Hs(t)(t x(t)) and the function Dg), s (t x(t))
(14), we get

Do)t x(8) = maXCD@(t)(t x(8), y(b), wo(t)) - maxfl)s(t)(t x(), y(8), ws (b))

= (De(t)(t, x(t), ye(t)(x(f))/ we(t)) - q)S(t)(t/ x(t), ]/S(t)(x(t))r ws(t))
< Doy (£ x(8), Yo (¥(B), ws (1)) = Py (£, x(8), Yoo (x(1)), ws (1))
< Dy, X(8), yorn (x(1)), wo (1)) = Doy (£ X(), Yoo (x(B), ws (1))

1
e ey

Hence, the right-hand-side inequality in (16) holds. Similarly, we obtain the left-hand-side inequality in
(16). O

Theorem 3.10. Let x : QQ — K be a measurable mapping and 0,9 : QO — (0, +00) be measurable functions such that
O(t) > 3(t) for all t € Q. Then for each t € Q and x(t) € K, the function De(t),sa)(t, x(t)) defined by (14) is a gap
function for (RMEP).
Proof. (G,) It is clearly follows from (16) that DQ(t)ls(t)(t, x(t)) >0, for all x(¢) € K.

(Gp) Suppose that x*(t) is a solution of (RMEP). It follows from Theorem 3.5 that He(t)(t, x*(t)) =0and
Hs(t)(t, x*(t)) = 0. Hence DG(t),S(t)(t/ x*(t)) =

Conversely, for any t € Q such that x*(f) € K, Dg(t)ls(t)(t, x*(t)) = 0. From (16), we have g(t,x*(t)) =
ys(t)(x*(t)). Then there exists w*(t) € T(t, x*(t)). It follows from (7) that

(VaF(t gt @), 9t @) + QL ®), y() = 90t x'@)) +(u(0)
—p(gt,x' (1)) 20, Vy@) K.
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Hence, by Lemma 3.3, we get that x*(¢) is a solution of the (RMEP). Thus, Dg(t),s(t)(t, x(t)) is a gap function
for (RMEP). |
Define the function Agg,p) : Q2 X KX K — R as

Aotwpin(t, x(8), 2(8)) = ot 2(6) + p®)|lg(t, (1) - gt 2|

Then, by (12), we have
Etg o)t X(1)) = Zr(nt)IEIIl( Ao, o (t (1), z(1)).-

When the function Ag o) (£, x(t), ) is assumed to attain its minima uniquely on K, we have the following
result.

Theorem 3.11. Lef x : QO — K be a measurable mapping and 6,9, p, 0 : Q — (0, +00) be measurable function such
that O(t) > S(t) and p(t) > o(t) for all t € Q. If the function Ao (t, X(t),) (resp. Asq,om(t, X(t), ) attains its
unique minimum Ze p(r) (X(t)) (resp. zs(, o) (x(t))) on Kand g(t, -) is w(t)-strongly nonexpanding on K, for all t € Q,

x(t) € K. Then the function Db (8,505,000 defined by (15) is a gap function for (RMEP).

Proof. (G,) By the definitions of the gap functions E,, o) and Er, 4, We get

D G(f)rP(f),S(t),g(t)(tr X(t))

= min A o (£, X(8), 2(5) — min A 0 (b X(E), 2(t
Zr{tl)l& oot (t, x(t), z(t)) Zf(nt)ler% 3,00 (t, x(t), z(t))
= Ao, o)t X(t), Zor),pr) — Noy,om(E X(E), Z8(),000)

= Ny, pn (E X(E), Zetw) o) = Aoty o0 (8 X(E), Zo(e),p(r))
= o (1, 26,00 (1) + pO||g(E, %) = 9 (£, z000,000 (E) ||
~ sy (£ zo0,p0 (X)) = 089t x(8) = 7 (£ zo00,000 ) ||
= De(t»sm(f/ Z0(t)p(t) (X(t))) + (p(H) — o()||9(t, x(V) - g (trZG(f),p(t) (X(f))) ||2

2
> Do, 50)(E 20w, o0 (x(D) ) + (0(8) = 0(E)*(B)||x(t) = zo, 00 E)) || (17)
By Theorem 3.10, Dg(t),s(t)(t, Z(),p(t) (x(t))) > 0. Thus, D;(t),p(t),S(t),g(t)(t’ x(t)) >0forallteQ, x(t) € K.
(Gp) Suppose that x*(t) is a solution of (RMEP). It follows from Theorem 3.8 that Eng(t>,p(t)(t, x*(t)) =0and
EHS(,),g(t)(t, x*(t)) = 0. Hence DE(t),p(t),S(t),g(t)(t' x*(t)) =0.
Conversely, for any ¢t € Q such that x*(t) € K, D;(t),p(t),S(t),@(t)(t’ x*(t)) = 0. From (17), we have ||x*(t) -

Zow o) (1) || = 0 and DG(t),S(t)<t/ Zo(),p() (X*(f))) =0, i.e., zog,p (¥'(f)) = x*(t) and hence DE)(t),S(t)(t/ x*(f)) =0.
By Theorem 3.10, we get that x*(t) is a solution of the (RMEP).

Thus, Dg(t),p(t), S(t)/g(t)(t, x(t)) is a gap function for (RMEP). |
Remark 3.12. As mentioned in Introduction, up to now there is no any paper devoted to the regularized
gap functions of Moreau-Yosida type, D-gap functions for mixed equilibrium problems in random envi-
ronments. Thus, our results, Theorems 3.8, 3.10 and 3.11 are new. However, if the problem (RMEP) is not
random environment, then Theorem 3.8 extends Theorem 2.4 in [35], Theorem 3.10 extends Theorem 3.2
in [36]. Moreover, our results are established without the projection operator method. Note that, Theorem
3.11 is new.

The following example shows that all assumptions imposed in Theorems 3.5, 3.8, 3.10 and 3.11 are
satisfied.
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Example 3.13. Let (QQ, A) be a measurable space, where QQ = [0,1], A is o-algebra of subsets of [0,1]
and H = R, K = [0,3]. The random multi-valued mapping T : [0,1] x [0,3] — CB(R) is defined by
T(t, x(t)) = {2x(t)}. The random single-valued functions g : [0, 1] X [0, %] — [0, %],F : [0,1]x][0, %]X[O, %] - R,
Q:[0,1]1x [0, ] — R and the function ¢ : R = R U {+0co} are defined by

g (t,x(t)) = x(t),
F(t,x(b), y(t) = (£ + D2 (t) + 3x(t)y(t) — 4x*(1)),
Q(t, w(t) = 2tw(t),
@ (x(t)) = (1), ¥ (x(t), y(), w(t)) € R

We consider (RMEP): find a measurable mapping x : QO — K such that
dw:Q — H, wt)eT({tx(@)),
F(t, gt x(), y®) + (Q(t, w(®)), y(t) - (¢, x(1)) + (y() — p(g(t, (1)) = 0

for all t € Q,y(t) € K. That is, find a measurable mapping x : [0,1] — [0, %] such that for all t € [0,1],
y(t) €0, 3],

(2 + 1) (y2() + 3x(t)y(t) — 422(1) +{4tx(8), y() — x(B)) + ¥2() - 2(8)
= (4% + 4t + 5)x(t) + ( + 2)y(t))(y(t) — x(t)) = 0

It follows from a direct computation that x(t) = 0, ¥t € [0, 1], that is X(t) = {0}
It is easy to verify that the assumptions of Theorems 3.5, 3.8, 3.10 and 3.11 are satisfied with x(t) = 1.

We now compute the functions [, [Ts), Ery,p(), Enq“),@(t), Do(),s and Dy, 0(0),0(0,3(8)) for (RMEP).
Forany t € [0,1], 0(t) =2,9(t) = 1,p(t) = 1, 0(t) = 5 we have
Hg(t)(t, X(i’)) = w(t)eTg‘gc(t)) ;g)ae)lg q)g(t)(t X(i’) y(i’) W(t))
1
= max {(@F + 46+ 5)x(0) + (2 + DyO)x() - y(®) - 30 - yOF)
y(Helo, 3] 4

_ }Lyénax [t = y(e) [(162 + 16t +19) x(t) + (422 + 9) y(®)])

1
=1 (168 + 16t + 19) 22(1);

g0t () = min { ooy ¢, 20) + p(8) (e, x() = gt z0)] |

_ 162 4161419 5

" 162 + 16t +23 (®).

Computing [y and Ep, o) similar to Tlp) and Ep,, o), respectively, we obtain

o, x(t)) = (8t2 + 8t +9) X*(t);

82 +8t+9

2
O FRET 2.
Ter+ 16120~ ®

El’lg(f),p(t) (tl x(t)) =
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Then
DG(t),S(t)(x(t)) = He(t)(t, x(t)) - HS(t)(f, x(t))
_ L1 2 1iop 2y _ Lo
=1 (168 + 16t + 19) 22(t) - §(8t +8t+9)x%(t) = 700,
D, 00 ¥(9) = Bt ot 5(0)) = B 08 2(0)

_128t* + 2561° + 42412 + 296t + 173 20)
T (1612 + 16t + 20)(16£2 + 16t + 23) '

*

Hence, TToq), [s(), Erty o), Ertsy 00, Do, and Dy ) 3 o)

are gap functions for (RMEP).

4. Global error bounds

In this section, we establish error bounds for (RMEP) based on the gap functions studied in Section 3.

Let the mappings Q, A, H, K, F, Q, T, T, ¢, g be defined as in Section 2. To obtain the result of error bounds
for (RMEP), let us introduce the following additional conditions:

(A1) g(t,-) is k(t)-strongly nonexpanding on K;

(A2) g(t,-)is u(t)-Lipschitz continuous on K;

(A3) F(t,-,-)is a(t)-strongly monotone on K X K;

(A4) Foreachx €K, F(t, x,-) is f(t)-strongly convex uniformly on K;

(As) V3E(t,-,-)is (Li(t), L(t))-mixed Lipschitz continuous;

(Ag) Q(t,)is o(t)-Lipschitz continuous on K;

(A7) Q(t,)is C(t)-strongly g-monotone with respect to T on K;

(Ag) T(t,-) is H-Lipschitz continuous with measurable function A(t) on K.

Using some necessary conditions above, we show that (RMEP) has a unique solution.

Lemma 4.1. Let (QQ, A) be a measurable space. Suppose that the conditions (A1), (Az) and (Ay) hold. Then (RMEP)
has a unique solution.

Proof. Suppose that x1(t) and x»(t) € L(f) are such that x;(f) # x,(t), for all t € Q. Then there exist
wi(t) € T(t, xi(t)), i = 1,2, such that for any ¢t € Q), y(t) € K,

F(t, g(t, x1(5), y(®) + (Q(t, w1(8)), y(®) - g(t, x1(£)) + @ (y(®) — @ (9(t, x1 (1)) = 0, (18)

F(t, g(t, x2(5), y(0)) + (Q(t, wa()), y(B) = g(t, 22(£)) + 9 (y(1) = @ (g(t, x2(¢))) = 0. (19)
Taking y(t) = g(t, x2(#)) in (18) and y(t) = g(t, x1(¢)) in (19), adding the resultants, we have
F(t, gt x1 (1), 96, xa(6) )+ E(t 9, 22(0), (¢, 3:1(9))
+(Q(twi()) - Qt wa(h), g(t, xa(8) = 9(t, 11 (1)) 2 0. (20)
Since F(t, -, -) is a(t)-strongly monotone and g(t, -) is x(t)-strongly nonexpanding, we have
F(t, g(t, x1(8), g(t, x2(0) + F(£, g(t, %2(0), (¢, 11(£))) < =a(®)llgt, x:1(5) = g(t, x2(E)I?
< —a(t)i()|lx1(t) — xa ().

Since Q(t, -) is C(t)-strongly g-monotone with respect to T, we obtain

(Q(twi(H) - Q(t,wa(h)), g(t, x2(8)) = gt x1(£))) < =B IIxa (8) = x2(BP-
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Hence,
F(t, g(t, x1(8), 9(t, x2(t))) + F(t, g(t, x2(8)), (¢, 31(1)))
+(Q(twi() = Qt, wa(®), g(t, x2(8)) = gk, 31(5)) < (L) + aEyE )i () = xa (B2, (21)
From (20) and (21), we get that x; (f) = x,(t), Yt € Q, the uniqueness of the solution of (RMEP). This completes
the proof. O

Lemma 4.2. Let (Q, A) be a measurable space. Suppose that x* : QO — K is a solution of (RMEP) and the conditions
(A1)-(Ag) hold. Then for any t € Q, x(t) € K,

(La(8) + 2La(8) u()B() + S (HAB B + &) + u(t)
S(t)(altye(t) + 2B(Eye(t) + (1))

le(t) = x Il < llgt, x(5) = you(x))|. (22)

Proof. For each t € Q, since x'(F) € K is a solution of (RMEP) and ys(x(+)) € K for every x(¢) € K, we add (1)
with y(t) = yse(x(H)) and (7) with 6(f) = (), y(t) = g (¢, x'(t)) and get
0 < (VaF (¢, g(t, (1)), (¢, " (1)) = VaE (£, g(t, x(1)), ys(o (x(1))), ysqy (x(B)) — g(t, %" (1))
+(Q(tw ) = QL w()), ysiy (x(1) - glt, X" (1))
55 (0 () = 90 X0, 90,70 = v (<0)
= (VaF (£, g(t, X" (1)), 9(t, X" (1)) = V3F (£, 9(t, X(1), 9 (£, (1)), s (x(8)) = g(t, X" (1))

+ (V3F (£, g(t, x(8)), g (&, (1)) = V3F (£, 9(t, X(1)), yse (x(D)), yscy (D) — g, X' (1))

+{Q(t,w' () - Qt, w(®), ysq (x(t) — g(t, x(1)))

+{Q(tw () - Qt, w(®), g (£, x(1) — g(t, x" (1))

+ % (yow (x() = g(t, x(1), g(t, ') - g(t, x(1))

* 30 s (¥ (0 = 630, 96, X))~y (9. (23)
It is clear that
3G = (s (60) = 906, 00, 9 X(6) — yay (209) <0 (24)
Using (A4), we have

F(t, g(t, x(t)), g(t, x"(1))) — F (¢, g(¢, x()), g(¢, x(£)))
> <V3F (i’, g(t/ x(t))/ g(t/ x(t))) s g(t/ X*(t)) - g(f/ x(t)» + ﬁ(t)”g(t/ x(t)) - g(f/ X*(t))llz

and
E(t, gt x" (), g(t, x(¥))) — F (¢, (¢, x"(t)), g(t, x*()))
> (V3F (t, g(t, x"(£)), g(t, X (1)), g(t, x(1)) — g(t, (1)) + BDNlg(t, x(t)) — g(t, x* ()|
Note that F(t, x,x) = 0, Vx € K, adding the above inequalities together, we have

E(t,g(t,x(D), g(t, X (1)) + F (£, g(t, % (1)), g(t, x(D)) = 2B()llg(t, x()) = g(t, % (¢
+(VaF (£, g(t, x(1)), g(t, x(£))) = V3F (t, g(t, X (1)), (L, %" (1)), 9(t, X" (D) = 9(t, x(£)))- (25)
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As F(t,-,) is a(t)-strongly monotone on K X K, we get
E (¢, g(t, x(D), g(t, X" (1)) + F (£, g(t, x (1)), g(¢, x(D)) < —a(®)llg(t, () = g(¢, " {)I.
Hence, it follows from (25) that
(a(t)+2BE)llg(t, x() = g(t, X D)IP
<(V3E (8, g(t, x' (1)), g(¢, x'(1))) = VaF (£, g(t, x()), 9(t, x(£))) , 9 (£, X" (D) = 9(£, x()))

=(V3F (¢, g(t, X (1)), g(t, X (1)) — V3F (£, g(t, x(1), g(t, x(£))) , g(t, X" (1)) = Y (x(D))
+(V3F (¢, g(t, x" (1), g(t, x" (1)) = VaF (£, g(t, x(1)), g(t, x(£))) , sy (x() = g(t, x(1)))

or
<V3F (t/ g(tr X*(t))/ g(t/ X*(t))) - V3F (t/ g(tr x(t))/ g (t/ x(t))) Y (x(t)) - g(t/ X*(t))>
<(VaF (8, g(t, x*(1)), g(t, x" (1)) — V3F (¢, g(t, x(1)), g(t, x(1))) , sy (x(t)) — g(t, x(£))
= (at) + 28)llg(t, x(D) = g(t, " DI (26)

Moreover, we have
(V5F (&, g(t, x(1)), g (£, x(1))) = V5F (£, 9(t, (D), ys (x(1)), yse (D) = (&, x' (1))
= (VaF (t, g(t, x(8)), g (¢, X(1))) = VaF (£ g(t, x(8)), yscy (x(1))), 9 (&, X(1)) — g(t, X' (1))}
+(V3F (t g(t, x(1), g (t, x(1))) = VaF (£ g(t, x(D), Yoy (x(8))), yseo (<(B) = g (&, x(8)))
Since V3F(t, x(t), -) is monotone on K,

(V5F (&, g(t, x(1)), g (£, x(1))) = V5F (£, 9(t, X(B), yow (1)), s (x(5) = g (¢, x(5)) < 0.

Hence,

(V3F (t, g(t, x(1)), g (¢, x(8))) = V5F (£, g(t, x(8)), ysw (x(E)), ysw (x(8) = g(t, X' (1))

< (VF (t, g(t, x(1)), g (t, x(1) = V5F (£, g(t, (1), yscy (1)), 9 (¢, x(H) = g(t, x°() (27)
Applying (A7), we have
(Q(tw ®) - Qt, w®), g (¢, x(1) - g(t, x* (1)) < =L (t) = x(OIP. (28)

It follows from (23) — (28) that
(at) + 281))lg(t, x()) = gt,  EDIP + Ol @) = x(E)IP
<(VF (£ g(t, % (1)), g(t, ' (1)) = VaF (£ g(t, x(8), g(t, x(1))) , ys () = g(t, x(1)))
+(VaF (t, g(t, x(1), g (¢, x(1))) = V3F (£, g(t, x(8)), ys (x(2))), g (¢, () = g, ' (1))
+{(Q(tw' (1) = Q(t w(®), ysey (x(H) - g(t, x(1))
i % (ysw &) = g(t, x(®), g(t, ' (1) = g(t, x(1)) - (29)
By (A;) and (As), we obtain
(V3 (t,g(t, " (1)), g(t, X' (1)) = V3F (&, 9(t, x(1)), g(¢, X)) , ys (x() = g(t, x(B)

< Ly (1) + La(®)||gt, 2 (1)) = gt x@)|||[ys x(t)) = gt x(2))||
< (Ly(t) + Lo u® || ¢) = xO|[[ys x®) — gt x®)|| (30)
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and

(V5F (£, g(t, x(1)), g (£, x(8))) = V5F (£, 9(t, X(1)), ys (1)), g (&, x(5) = g(t, %' (1))
a(t, xO)|[[[yse ) — gt x(®))|
< Ly@®)u®|x* () = x®)||[|yse @®) - g, x®)]- (31)
Moreover,
(Q(tw (M) = Q(t, w(®)), sy (x(t)) = g(t, x(¢)))
<|la(t, w'®) - Q(t, w®))|[[vse) C®) — gk, x(®))|
< o(t)|[w* (8) — w(t)|[[[yse ) — gt x(®)|| by (Ae))
< o(B)(L+ e)H (T(tx" (1), T(E x(1) ||ysy (1) = (¢, x(®)||  (by Lemma 2.9)
< a(OABA + &)x'(t) = x()]|ysy (x(1) = g(t, x(®)]| by (Asg). (32)
Also, it is clear that from (A;)

(s ((8) - g, X(9), 908, %' (1) - 90, (1)

D)
= S(t)”g(t X' () = gt x(®)|ysr @) = g0t x(1))|
< gzt;”x (t) = x(t)|||| s () — g(t, x(®))|| )

From (29) — (33), we have
(a(f) + 2ﬁ(t))|lg(t x(t)) = g(t, " O + Bl (t) = x(OIP

((m(t)+2Lz<t)>u(t)+o<tm<t>u+ 9+ 50 )le (1) = x(®)[[yseo (x®) = (¢, x(e)||

By (A;), we have
k()llx() — 2" (Ol < llg(t, x(£)) — g(&, X D)II.
Therefore,
(L1 (#) + 2Lo(8)) p(H)S(F) + a(HA(E)(E)(1 + €) + p(f)
8(t) (a(Be() + 281 () + C(1))

i.e., inequality (22) holds. O
From Lemma 4.2, we get the following global error bound for (RMEP) by using the regularized gap
function of Fukushima type Ilg.

Ilx(t) - x*(B)]l < llgt, x(5) = yoe(x®)|

Theorem 4.3. Suppose that x* : QO — K is a solution of (RMEP) and the conditions (A1)-(Ag) hold. Then for each
t € Q, we can get the following global error bound by Hg(t)(i’, x(t)) for (RMEP):

Il(H) = 2 ()] < Ex(t) y[Togo (£, x(1)) (34)

where
VOO (L1 (D) + 2La () p(HO(t) + o(HAR)O(E)(L + €) + u(t))

&) =
Q(t)(a(t)K(t) +2B(t)x(t) + C(f)) BHO(t) -

and B()O(t) > 1, (35)

forall x(t) € K.
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Proof. For any x(t) € K, taking y(t) = g (t, x(t)) and w(t) = wp(t) in (7), we have
<V3F (190t x(®), yoo(x()) + Qlt wo(®) + 55 L (o0 (x()) - gt x(1), 9t x(®)

= v (¥®)) + (3, 309) = 9 (o (x(9)) 2 0

or
(Qt, ws(f)) 9(t,x(®) = o (x(1))) = ¢ (vew (x(1))) + @ (g(t, x(1))
- 50 gt x9) ~ oo (x0)]

> (VaF (t, g(t, x(t)), you (x(1))) , Yoo (x() - 9(t, x(¢))) .
This implies

H@(t) (i’, X(t)) > - F (t, g(t, X(i’)), yg(t)(x(t)))
+ (VaF (£, g(t, (1), Yo (x(1))  yoo (x(t)) - (¢, x(1))
- %IIg(t, £(8) = you (x|

As F(t, g(t, x(t)), g(t, x(t))) = 0, from (A4), we have

Tlagy (6, x(8) 2 BO]|a(t, x(8) — vour (xO))[ = = |, %6 = o (x60)) -

o(t)
Hence,
o)
ll9t, x(8)) = you (x))|| < ‘/W Mo (¢, x(2)). (36)
From taking 9(t) = 0(t) in (22) and (36), we obtain the inequality (34). |

Without using the Lipschitz continuities of V3F, Q and T, we can also derive the global error bound for
(RMEP).

Theorem 4.4. Suppose that x* : (3 — K is a solution of (RMEP) and the conditions (A1)-(Az) and (A7) hold. Then
for each t € 3, we can get the following global error bound by Hg(t)(t, x(t)) for (RMEP):

() = x°(B)] < Ea(t) A Tlogo (£, x() (37)

1A (t)
20()

where

Ext) = ! and a(t)k3(t) + C(t) >

2
\/aa)xz(t) v - Y

20(t)
for all x(t) € K.

Proof. For each t € (), fix an arbitrary x(t) € K. Since x*(t) € X(t), x*(t) € K. From (5), for w(t) € T(t, x(t)) we
have

o, x(t)) = Dot x(8), 9 (1, x' (), w(t))
= —F(t, g(t, x(V), g(t, ' (1)) + (Q(t w(t)), g(t, x(1)) - g(t, %" (1))
= p{gtt,x@0) + (g0, 30) = 5505 l9tt ¥) - g, x 0§

(38)

29(t
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Moreover, since x*(t) € X(t), there exists w*(t) € T(t, x*(t)) such that

F(t, g6, ), g(t, x) + (Q(E '), g(t, x(1) = g(t, x° (1)) + (9, x(8)) = p(9t, ")) = 0.
Thus
F(t, g(t, x()), g(t, % (1)) + F(£ 9(t, X' (1), 9(t, x(1)))
+(Q(t,w ) - Q(t, w®), gt, x(1) - g(t, x°(1)

1
* f(t)Hg(b x(t) = gt x O = ~Togo (1, x(1)).

Using (A3) and (A7), we have

1
~a®lote x) = gt O - COle - 2 O + 3555]l9¢ x0) - g6 @I = =Ty (1,109,
Moreover, since g(t, -) is x(t)-strongly nonexpanding and u(t)-Lipschitz continuous, i.e.

k(Ollx(®) = (Bl < llg(t, x() = g(t, X (O)I < p@®)llx(E) = 2" (DIl

Hence, we get

2
(a(t)Kz(t) + () - 56_8 |Jx(t) - x*(f)”2 < Toq(t, x(8)).

Therefore, we obtain inequality (37). ]
Next, we give two global error bounds for (RMEP) by using the regularized gap function of the Moreau-
Yosida type E, o) and the results of Theorems 4.3 and 4.4.

Theorem 4.5. Assume that x* : Q0 — K is a solution of (RMEP) and all the conditions of Theorem 4.3 hold. Then
for any measurable function p : QO — (0, +00), we have

lle(t) — x| < V2 JE (& X(E), Ve Q,x(H) € K. (39)

1
in ¢ ——, p(t)%(t)
mm{aim p(t)x

Proof. 1t follows from Theorem 4.3 that

g0t () = min { ooy ¢, 20) + p(8) (e, x() = gt z0)] |

. 1.
> min { i 20 + por oo - z(t)Hz}

. 1 . .
> mm{ F0 p(twm} min (Il (1) ~ 2P + lx() =0
> 2/

. 1 .
min { Tk p<t>1<2<t>} () — x°(8)

NI~

where the following inequality is used:

(e —zll + lx = 2l)? [l — 22
2 =72

Ix = z|? + |]x — z|]* > Vx,x*,z € H.
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Ity - )| < V2 /Bt oy (£, X(D),
. 1
\/mm {%, p(t)Kz(t)}

which implies that the proof is completed. O

Therefore,

Theorem 4.6. Assume that x* : QO — K is a solution of (RMEP) and all the conditions of Theorem 4.4 hold. Then
for any measurable function p : QO — (0, +00), we have

lIx(t) — x| < V2 Bt x(B), Ve Qx(b) € K. (40)

. 1
\/mm {%, p(t)K3(t)

Proof. From the result of Theorem 4.4, by the same proof as in Theorem 4.5, we obtain Theorem 4.6. m]
Finaly, we get the global error bounds for (RMEP) by using the D-gap functions in Section 3.

Theorem 4.7. Suppose that x* : Q — K is a solution of (RMEP) and the conditions (A1)-(Asg) hold. Then for
O(t) > 3(t), we can get the following global error bound by Dg(t),s(t)<t, x(t)) for the (RMEP):

ke (t) = X' (Bl < Es(t) /Do, 500, (1) (41)

where

E(h) = V20($)9(t) ((La(t) + 2L (1)) p(H)S() + o(HABIB)(L + €) + u(t)) (42)

() =
3(t) (a(Bye() + 28(1)x(t) + C(1)) /OB = S(E)
forallt € Q, x(t) € K.
Proof. From (16) and (22), we obtain inequality (41). O
Theorem 4.8. Suppose that x* : QO — K is a solution of (RMEP) and the conditions (A1)-(Asg) hold. Then for
O(t) > 3(t) and p(t) > o(t), we can get the following global error bound by D;(t),p(t), S(M(t)(t, x(t)) for the (RMEP):
V2

() — (1) < \/D;(t)/p(t)rs(t),g(t)(t, x(t), Ve Qx(t) K. (43)

. 1
min {(%/ (p(t) - Q(f))Kz(f)}
Proof. We rewrite (17) as follows

Dixy 30100t X(8)) = Doy st 2ot 00 (6(8) )
+ (p(t) — o)D) = zow, piy <D |-

From the error bound of the D-gap function Dg s in (41), we obtain

1
DQ(t),S(t)<t/ Zo(r)p(t) (X(1)) ) > |lz6,p000 Cx () — X*(f)Hz-

~ &)
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Hence,

. 1 2
Dity it 0,000t X(1)) 2 %Hzempa) (x(t) —x'(t)|
+ (p(t) — o)) | = zow,pi <t |
. 1
> min {%, (p(t) - Q(f))Kz(t)}

X ([lzat 0 (e0) = @ + (0 = zo00,00 ) [

> 2 min {% (0= dpo} o - x 0.
Therefore,
It) = 0)] < 1 e \/D b o000 XO):
min {(%, (p(t) = Q(f))Kz(f)}
The proof is completed. o

Remark 4.9. (a) Error bounds in Theorems 4.3 and 4.4 are established by using the regularized gap
functions of Fukushima type in Theorem 3.5. Hence, Theorem 4.3 extends Lemma 4.1 in [35] (see
Remark 3.6).

(b) From Remark 3.12, the regularized gap functions of Moreau-Yosida type, D-gap functions for mixed
equilibrium problems in random environment are new. On the other hand, error bounds in Theorems
4.5, 4.6, 4.7 and 4.8 are established by using the regularized gap functions of Moreau-Yosida type,
D-gap functions. Thus, Theorems 4.5, 4.6, 4.7 and 4.8 are new.

The following example shows a case where all assumptions imposed in Theorems 4.3, 4.4, 4.5, 4.6, 4.7
and 4.8 are satisfied.

Example 4.10. Let O, A, H,K,F,Q,T,,g and the gap functions Ilgg), [Ts(), Ergg pt), Etse.et), Dew,s and
D’é(t),p(t)ls(t)/g(t) be defined as in Example 3.13. By Example 3.13, Z(¢) = {0}.

It is easy to verify that the conditions (A1), (Az), (A¢) - (Ag) hold with «(t) = u(t) = 1, o(t) = 2t,{(t) = 4t
and A(t) = 2. Now, we check the conditions (Aj3) - (As).

o Vx(t), y(t) € [0, 3], we have

F(t,x(t), y(t)) + F (£, y(t), x(t)) = (* + D)(A(t) + 3x(t)y(t) — 4x*()) + (£ + 1)(x3(t) + 3x(B)y(t) — 4y2(t))
= —(3 + 3)(x(t) — (1)

Hence, F(t, -, -) is a(t)-strongly monotone with a(t) = 3> + 3.
o Vx(t), y1(t), y2(t) € [0, 3], we have

F(t,x(t), y1(5) = F(t, x(1), y2(5) = (V3E(£, x(8), y2(0), y1 () — y2()
= (2 + 1)(y1 (1) + 3x()y (1) — 4%(1) = (7 + 1(y5(8) + 3x(D)ya(t) — 4 (1))
—((# + 1)y +3x(1), y1 () — y2(H)
= ( + 1) () - ya(t)*.

Hence, F(t, x(t), ) is B(t)-strongly convex uniformly in the second argument with () = > + 1.
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o Vxi(t), x2(t), y1(t), ya(t) € [0, %], we have

||V3F(t, x1(t), ya(t)) — F(t, x1(t), yz(f))H < 3(# + D)llxa () — ()l + 2(F + Dllya(H) — y2(DI-

Hence, V5F(t, -, ) is (L1(t), La(t))-mixed Lipschitz continuous with L1 () = 3t>+3 and L,(t) = 2¢*+2. Therefore,
the conditions (A3) - (As) hold. Thus, all the conditions (A;) - (Ag) hold, and so the inequalities (34), (37),
(39), (40), (41) and (43) hold.

For example, let O(t) = 2,9(t) = 1,p(t) = 1, 0(t) = %,e — 0 for all f € [0,1]. Then with &;(t), E(t) and
&E;(t) defined by (35), (38) and (42), respectively, we have
141> + 8t + 15

&) = ;

(5t2 At + 5) Vatz 12
2

&E(t) = ;
V1212 + 16t + 11
1412 + 8t + 16

&)= —— -7 2

0= Srraes

Then, for any ¢ € [0, 1], x(¢) € [0, %], we get [|x(t) — 0l| = [x(t) — 0 = x(¢) and

_ 14P+8t+15 \/1 5 ,
o &) Hop(t,x() = RTINS o 7 (1682 + 16t +19) 22(1)
3734
56

)
>
. 82(t) \[Hg(t)(t, x(t)) = \/utz—i_zlm \/}L (16t2 + 16t + 19) Xz(t)

> \/gx(t) ~ 1.14x(t) = x(t).
V2

o By, o0 (¢, X(1))

1
min{ —, (t)Kz(f)}
\/ {8%(0 §

V2 \/16t2+16t+19 ,

X

(5f2 T+ A + 5)2(4t2 +2) 16#2 + 16t + 23

min ,
{ (14£2 + 8t + 15)? }

x(t) = 3.85x(t) > x(t).

(®)

. V2 ~ o, 000 (£ X(2))
. 1
\/mm {%, P(t)KZ(t)}

s V2 \/gx(t) ~ 1.29x(f) > x(t).

/min {14—1, 1}
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[ 142 +8t+16 |1 19
L] 83(t) Dg(t)/S(t)(t, X(t)) = m sz(t) > ﬂX(t) > X(t)

vz *
) \/De(t),p(t),S(t),g(t)(t/ x(t))

1

V2(14£2 + 8t +16)  |128t4 + 256£° + 42412 + 296t + 173

> x(t)
512+ 4t+5 (16£2 + 16t + 20)(16t2 + 16t + 23)
19 [173
> — — X 2. > .
> — 530 2.35x(t) > x(t)

Thus, the inequalities (34), (37), (39), (40), (41) and (43) hold.
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