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Abstract. For n-normal operators A [2, 4, 5], equivalently n-th roots A of normal Hilbert space operators,
both A and A∗ satisfy the Bishop–Eschmeier–Putinar property (β)ε, A is decomposable and the quasi-
nilpotent part H0(A−λ) of A satisfies H0(A−λ)−1(0) = (A−λ)−1(0) for every non-zero complex λ. A satisfies
every Weyl and Browder type theorem, and a sufficient condition for A to be normal is that either A is
dominant or A is a classA(1, 1) operator.

1. Introduction

Let B(H) denote the algebra of operators, equivalently bounded linear transformations, on a complex
infinite dimensional Hilbert space H into itself. Every normal operator A ∈ B(H), i.e., A ∈ B(H) such that
[A∗,A] = A∗A − AA∗ = 0, has an nth root for every positive integer n > 1. Thus given a normal A ∈ B(H),
there exists B ∈ B(H) such that Bn = A (and then σ(Bn) = σ(B)n = σ(A)). A straight forward application of
the Putnam-Fuglede commutativity theorem ([14, Page 103]) applied to [B,Bn] = 0 then implies [B∗,Bn] = 0.
(Conversely, [B∗,Bn] = 0 implies Bn is normal). Operators B ∈ B(H) satisfying [B∗,Bn] = 0 have been called
n-normal, and a study of the spectral structure of n-normal operators, with emphasis on the properties
which B inherits from its normal avatar Bn, has been carried out in ([2], [4], [5]).

Given A ∈ B(H), let σ(A) ⊆ ∠ < 2π
n denote that σ(A) is contained in an angle ∠, with vertex at the

origin, of width less than 2π
n . Assuming σ(B) ⊆ ∠ < 2π

n for an n-normal operator B ∈ B(H), the authors of
([2], [4], [5]) prove that B inherits a number of properties from Bn, amongst them that B satisfies Bishop-
Eschmeier-Putinar property (β)ε, B is polaroid (hence also isoloid) and limm→∞〈xm, ym〉 = 0 for sequences
{xm}, {ym} ⊂ H of unit vectors such that limm→∞ ‖(B − λ)xm‖ = 0 = limm→∞

∥∥∥(B − µ)ym

∥∥∥ for distinct scalars
λ, µ ∈ σa(B). (All our notation is explained in the following section.) That B inherits a property from Bn in
many a case has little to do with the normality of Bn, but is instead a consequence of the fact that Bn has
the property. Thus, if the approximate point spectrum σa(Bn) = σa(B)n of Bn is normal (recall: λ ∈ σa(Bn) is
normal if limm→∞ ‖(Bn

− λ)xm‖ = 0 for a sequence {xm} ⊆ H of unit vectors implies limm→∞ ‖(Bn
− λ)∗xm‖ = 0;

hyponormal operators, indeed dominant operators, satisfy this property), σ(B) ⊆ ∠ < 2π
n , and {xm}, {ym}
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are sequences of unit vectors in H such that limm→∞ ‖(Bn
− λn)xm‖ = 0 = limm→∞

∥∥∥(Bn
− µn)ym

∥∥∥ for some
distinct λ, µ ∈ σa(B), then

lim
m→∞

λn
〈xm, ym〉 = lim

m→∞
〈Bnxm, ym〉 = lim

m→∞
〈xm,B∗nym〉 = µn lim

m→∞
〈xm, ym〉

implies
(λ − µ) lim

m→∞
〈xm, ym〉 = 0⇐⇒ lim

m→∞
〈xm, ym〉 = 0

(cf. [4, Theorem 2.4]). It is well known that w-hyponormal operators satisfy property (β)ε ([3]). If Bn
∈ (β)ε

(i.e., Bn satisfies property (β)ε) and σ(B) ⊆ ∠ < 2π
n , then [7, Theorem 2.9 and Corollary 2.10] imply that

B + N ∈ (β)ε for every nilpotent operator N which commutes with B (cf. [5, Theorem 3.1]). Again, if Bn

is polaroid and σ(B) ⊆ ∠ < 2π
n , then B is polaroid (hence also, isoloid) ([9, Theorem 4.1]). Observe that

paranormal operators are polaroid. Nth roots of normal operators have been studied by a large number of
authors (see [18], [17], [6], [11], [13]) and there is a rich body of text available in the literature. Our starting
point in this note is that an n-normal operator B considered as an nth root of a normal operator has a well
defined structure ([13, Theorem 3.1]). The problem then is that of determining the ”normal like” properties
which B inherits. We prove in the following that the condition σ(B) ⊆ ∠ < 2π

n may be dispensed with in
many a case (though not always). Just like normal operators, nth roots B have SVEP (the single-valued
extension property) everywhere, σ(B) = σa(B), B is polaroid (hence also, isoloid). B ∈ (β)ε (as also does
B∗) and (the quasinilpotent part) H0(B − λ) = (B − λ)−1(0) at every λ ∈ σp(B) except for λ = 0 when we
have H0(B) = B−n(0). Again, just as for normal operators, B satisfies various variants of the classical Weyl’s
theorem σ(B) \ σw(B) = E0(B) (resp., Browder’s theorem σ(B) \ σw(B) = Π0(B)). It is proved that dominant
and classA(1, 1) operators B are normal.

2. Notation and terminology

Given an operator S ∈ B(H), the point spectrum, the approximate point spectrum, the surjectivity spectrum and
the spectrum of S will be denoted by σp(S), σa(S), σsu(S) and σ(S), respectively. The isolated points of a subset
K of C, the set of complex numbers, will be denoted by iso(K). An operator X ∈ B(H) is a quasi-affinity if it
is injective and has a dense range, and operators S,T ∈ B(H) are quasi-similar if there exist quasi-affinities
X,Y ∈ B(H) such that SX = XT and YS = TY.

S ∈ B(H) has SVEP, the single-valued extension property, at a point λ0 ∈ C if for every open discD centered
at λ0 the only analytic function f : D→ H satisfying (S − λ) f (λ) = 0 is the function f ≡ 0; S has SVEP if it
has SVEP everywhere inC. (Here and in the sequel, we write S−λ for S−λI.) Let, for an open subsetU ofC,
E(U,H) (resp., O(U,H)) denote the Fréchet space of all infinitely differentiable (resp., analytic) H-valued
functions on U endowed with the topology of uniform convergence of all derivatives (resp., topology of
uniform convergence) on compact subsets of U. S ∈ B(H) satisfies property (β)ε, S ∈ (β)ε, at λ ∈ C if there
exists a neighborhoodN of λ such that for each subsetU ofN and sequence { fn} of H-valued functions in
E(U,H),

(S − z) fn(z)→ 0 in E(U,H) =⇒ fn(z)→ 0 in E(U,H)

(resp., S satisfies property (β), S ∈ (β), at λ ∈ C if there exists an r > 0 such that, for every open subsetU of
the open disc D(λ; r) of radius r centered at λ and sequence { fn} ofH-valued functions in O(U,H),

(S − z) fn(z)→ 0 in O(U,H) =⇒ fn(z)→ 0 in O(U,H)).

The following implications are well known ([12], [16]):

S ∈ (β)ε =⇒ S ∈ (β) =⇒ S has SVEP; S,S∗ ∈ (β) =⇒ S decomposable.

The ascent asc(S − λ) (resp., descent dsc(S − λ)) of S at λ ∈ C is the least non-negative integer p such that
(S − λ)−p(0) = (S − λ)−(p+1)(0) (resp., (S − λ)p(H) = (S − λ)(p+1)(H)). A point λ ∈ isoσ(S) (resp., λ ∈ isoσa(S))
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is a pole (resp., left pole) of the resolvent of S if 0 < asc(S − λ) = dsc(S − λ) < ∞ (resp., there exists a positive
integer p such that asc(S − λ) = p and (S − λ)p+1(H) is closed) ([1]). Let

Π(S) = {λ ∈ isoσ(S) : λ is a pole (of the resolvent) of S};
Πa(S) = {λ ∈ isoσa(S) : λ is a left pole (of the resolvent) of S}.

Then Π(S) ⊆ Πa(S), and Πa(S) = Π(S) if (and only if) S∗ has SVEP at points λ ∈ Πa(S). We say in the
following that the operator S is polaroid if {λ ∈ C : λ ∈ isoσ(S)} ⊆ Π(S). Polaroid operators are isoloid (where
S is isoloid if {λ ∈ C : λ ∈ isoσ(S)} ⊆ σp(S)). Let σx = σ or σa. The sets Ex(S) = E(S) or Ea(S) and Ex

0(S) = E0(S)
or Ea

0(S) are then defined by

Ex(S) = {λ ∈ isoσx(S) : λ ∈ σp(S)}, and

Ex
0(S) = {λ ∈ isoσx(S) : λ ∈ σp(S), dim(S − λ)−1(0) < ∞}.

It is clear that
Πx(S) ⊆ Ex(S) and Πx

0(S) ⊆ Ex
0(S)

(where Πx
0(S) = {λ ∈ Πx(S) : dim(S − λ)−p(0) < ∞}).

The quasi-nilpotent part H0(S) and the analytic core K(S) of S ∈ B(H) are the sets

H0(S) =
{
x ∈ H : lim

n→∞
‖Snx‖

1
n = 0

}
, and

K(S) = {x ∈ H : there exists a sequence {xn} ⊂ H and δ > 0 for
which x = x0,Sxn+1 = xn and ‖xn‖ ≤ δ

n
‖x‖ for all n = 1, 2, · · · }

([1]). If λ ∈ isoσ(S), then H has a direct sum decomposition H = H0(S − λ) ⊕ K(S − λ), S − λ|H0(S−λ) is
quasinilpotent and S − λ|K(S−λ) is invertible. A necessary and sufficient condition for a point λ ∈ isoσ(S) to
be a pole of S is that there exist a positive integer p such that H0(S − λ) = (S − λ)−p(0).

In the following we shall denote the upper semi-Fredholm, the lower semi-Fredholm and the Fredholm
spectrum of S by σus f (S), σls f (S) and σ f (S); σuw(S), σlw(S) and σw(S) (resp., σub(S), σlb(S) and σb(S)) shall
denote the upper Weyl, the lower Weyl and the Weyl (resp., the upper Browder, the lower Browder and the
Browder) spectrum of S. Additionally, we shall denote the upper B-Weyl, the lower B-Weyl and the B-Weyl
(resp., the upper B-Browder, the lower B-Browder and the B-Browder) spectrum of S by σubw(S), σlbw(S) and
σbw(S) (resp., σubb(S), σlbb(S) and σbb(S)). We refer the interested reader to the monograph ([1]) for definition,
and other relevant information, on these distinguished parts of the spectrum; our interest here in these
spectra is at best peripheral.

3. Results

Throughout the following, A ∈ B(H) shall denote an n-normal operator. Considered as an nth root of
the normal operator An, A has a direct sum representation

A =

∞⊕
i=0

A |Hi=

∞⊕
i=0

Ai, H =

∞⊕
i=0

Hi,

where A0 is n-nilpotent and Ai, for all i = 1, 2, · · · , is similar to a normal operator Ni ∈ B(Hi). Equivalently,

A = B1 ⊕ B0, B0 = A0 and B1 =

∞⊕
i=1

Ai,

where Bn
0 = 0 and B1 is quasi-similar to a normal operator N =

⊕
∞

i=1 Ni ∈ B
(⊕n

i=1Hi

)
. Quasi-similar

operators preserve SVEP; hence, since the direct sum of operators has SVEP at a point if and only if the
summands have SVEP at the point, A and A∗ have SVEP (everywhere). Consequently ([1]):

σ(A) = σ(B1) ∪ {0} = σ(N) ∪ {0} = σa(A) = σsu(A),
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Ea(A) = E(A), Ea
0(A) = E0(A), Πa(A) = Π(A), Πa

0(A) = Π0(A);

furthermore:

σ f (A) = σus f (A) = σls f (A) = σw(A) = σuw(A) = σlw(A) = σb(A) = σub(A) = σlb(A),

σb f (A) = σbw(A) = σubw(A) = σlbw(A) = σbb(A) = σubb(A) = σlbb(A).

The point spectrum of a normal operator consists of normal eigenvalues (i.e., the corresponding eigenspaces
are reducing): This fails for the operator A ([4, Remark 2.17]), and a sufficient condition is that σ(A) ⊆ ∠ < 2π

n
(for then (A − λ)x = 0 =⇒ (An

− λn)x = 0 =⇒ (A∗n − λ̄n)x = 0⇐⇒ (A∗ − λ̄)x = 0).
The polaroid property travels from An to A, no restriction on σ(A). (This would then imply that

Ea(A) = E(A) = Π(A) = Πa(A) and Ea
0(A) = E0(A) = Π0(A) = Πa

0(A).) We start by proving that the
quasi-similarity of B1 and N transfers to the Riesz projections PB1 (λ) and PN(λ) corresponding to points
λ ∈ isoσ(B1) = isoσ(N). Let Γ be a positively oriented path separating λ from σ(B1) and let X,Y be
quasi-affinities such that B1X = XN and YB1 = NY. Then, for all µ < σ(B1),

PB1 (λ) =
1

2πi

∫
Γ

(µ − B1)−1dµ⇐⇒ YPB1 (λ) = Y
{

1
2πi

∫
Γ

(µ − B1)−1dµ
}

⇐⇒ YPB1 (λ) =

{
1

2πi

∫
Γ

(µ −N)−1dµ
}

Y = PN(λ)Y.

A similar argument proves
PB1 (λ)X = XPN(λ).

Theorem 3.1. A is polaroid.

Proof. Continuing with the argument above, the normality of N implies that the range H0(N − λ) of PN(λ)
coincides with (N − λ)−1(0). Hence (N − λ)PN(λ) = 0, and

Y(B1 − λ)PB1 (λ) = (N − λ)YPB1 (λ) = (N − λ)PN(λ)Y = 0
=⇒ (B1 − λ)PB1 (λ) = 0⇐⇒ H0(B1 − λ) = (B1 − λ)−1(0).

Since λ ∈ isoσ(B1),

∞⊕
i=1

Hi = H0(B1 − λ) ⊕ K(B1 − λ) = (B1 − λ)−1(0) ⊕ K(B1 − λ)

=⇒

∞⊕
i=1

Hi = (B1 − λ)−1(0) ⊕ (B1 − λ)
∞⊕

i=1

Hi,

i.e., λ is a (simple) pole. The n-nilpotent operator B0 being polaroid, the direct sum B0⊕B1 is polaroid (since
asc(A − λ) ≤ asc(B0 − λ) ⊕ asc(B1 − λ) and dsc(A − λ) ≤ dsc(B0 − λ) ⊕ dsc(B1 − λ) for all λ ([20, Exercise 7,
Page 293] )).

Theorem 3.1 implies:

Corollary 3.2. A is isoloid (i.e., points λ ∈ isoσ(A) are eigenvalues of A).

More is true and, indeed, Theorem 3.1 is a consequence of the following result which shows that
H0(A − λ) = (A − λ)−1(0) for all non-zero λ ∈ σ(A).

Theorem 3.3. H0(A−λ) = (A−λ)−1(0) for all non-zero λ ∈ σ(A) and H0(A) = A−n(0). In particular, A is polaroid.
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Proof. Following the same notation as above, the normality of N implies H0(N − λ) = (N − λ)−1(0) for all
λ ∈ σ(N) (= σ(B1)). Since

NY = YB1 ⇐⇒ (N − λ)Y = Y(B1 − λ), all λ,

it follows that
‖(N − λ)nYx‖

1
n = ‖Y(B1 − λ)nx‖

1
n ≤ ‖Y‖

1
n ‖(B1 − λ)nx‖

1
n → 0 as n→∞

for all x ∈ H0(B1 − λ). Consequently,

Yx ∈ H0(N − λ) = (N − λ)−1(0) =⇒ Y(B1 − λ)x = (N − λ)Yx = 0⇐⇒ x ∈ (B1 − λ)−1(0),

and hence
H0(B1 − λ) = (B1 − λ)−1(0)

for all λ ∈ σ(B1). Evidently,

H0(A) = H0(B1 ⊕ B0) = B−1
1 (0) ⊕ B−n

0 (0) ⊆ A−n(0).

Argue now as in the proof of Theorem 3.1 to prove that A is polaroid.

The Riesz projection PA(λ) corresponding to points (0 ,) λ ∈ isoσ(A) are, in general, not self-adjoint.
Since σ(A) ⊆ ∠ < 2π

n ensures (A − λ)−1(0) ⊆ (A∗ − λ̄)−1(0) for all 0 , λ ∈ σp(A), σ(A) ⊆ ∠ < 2π
n forces

PA(λ) = PA(λ)∗ for all λ , 0.

Corollary 3.4. If σ(A) ⊆ ∠ < 2π
n , then the Riesz projection corresponding to non-zero λ ∈ isoσ(A) is self-adjoint.

Remark 3.5. Theorems 3.1 and 3.3 generalize corresponding results from [2], [4], [5] by removing the hypothesis
that σ(A) ⊆ ∠ < 2π

n , and, in the case of Theorem 3.3, the hypothesis on the points λ being isolated in σ(A). Recall
from [1, Page 336] that an operator S ∈ B(H) is said to have property Q if H0(Sλ) is closed for all λ: Theorem 3.3
says that the nth roots A have property Q. Another proof of Theorem 3.3, hence also of the fact that the operators
A satisfy property Q, follows from the argument below proving the subscalarity of A.

Property (β)ε (similarly (β)) does not travel well under quasi-affinities. Thus CX = XB and B ∈ (β)ε does
not imply C ∈ (β)ε (see [7, Remark 2.7] for an example). However, C ∈ (β)ε implies B ∈ (β)ε holds, as the
following argument proves. If { fn} is a sequence in E(U,H) such that

(B − z) fn(z)→ 0 in E(U,H),

then
X(B − z) fn(z) = (C − z)X fn(z)→ 0 in E(U,H).

Since C ∈ (β)ε and X is a quasi-affinity,

X fn(z)→ 0 in E(U,H) =⇒ fn(z)→ 0 in E(U,H).

Thus B ∈ (β)ε.

Theorem 3.6. A and A∗ satisfy property (β)ε.

Proof. Recall from [7, Lemma 2.2] that a direct sum of operators satisfies (β)ε if and only if the individual
operators satisfy (β)ε. The operator A being the direct sum B1 ⊕B0, where B0,B∗0 being nilpotent satisfy (β)ε,
to prove the theorem it will suffice to prove B1,B∗1 ∈ (β)ε. But this is immediate from the argument above,
since normal operators N satisfy N,N∗ ∈ (β)ε and since there exist quasi-affinities X and Y in B

(⊕
∞

i=1Hi

)
such that N∗X∗ = X∗B∗1 and NY = YB1.

A ∈ (β)ε implies A ∈ (β), and A,A∗ ∈ (β) implies A is decomposable ([16]). Hence:
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Corollary 3.7. A is decomposable.

We consider next a sufficient condition for the operator A to be normal. However, before that we
point out that the operator A satisfies almost all Weyl and Browder type theorems ([1]) satisfied by normal
operators.

Weyl’s theorem An operator S ∈ B(H) satisfies

generalized Weyl′s theorem, S ∈ gWt, if σ(S) \ σBw(S) = E(S);
a − generalized Weyl′s theorem, S ∈ a − gWt, if σa(S) \ σuBw(S) = Ea(S)

(see [1, Definitions 6.59, 6.81]). Let S ∈ Wt,S ∈ a −Wt,S ∈ gBt,S ∈ a − gBt,S ∈ Bt and S ∈ a − Bt denote,
respectively, that

S satisfies Weyl′s theorem : σ(S) \ σw(S) = E0(S),
S satisfies a −Weyl′s theorem : σa(S) \ σaw(S) = Ea

0(S),
S satisfies generalized Browder′s theorem : σ(S) \ σBw(S) = Π(S),
S satisfies generalized a − Browder′s theorem : σa(S) \ σuBw(S) = Πa(S),
S satisfies Browder′s theorem : σ(S) \ σw(S) = Π0(S),
S satisfies a − Browder′s theorem : σa(S) \ σaw(S) = Πa

0(S),

(see [1, Chapter 6]). The following implications are well known ([1, Chapters 5, 6]):

S ∈ a − gWt =⇒

{
S ∈ a −Wt
S ∈ gWt =⇒ S ∈Wt =⇒ S ∈ Bt,

S ∈ a − gWt =⇒

{
S ∈ a −Wt
S ∈ a − gBt =⇒ S ∈ a − Bt =⇒ S ∈ Bt,

S ∈ a − gBt⇐⇒ S ∈ a − Bt, S ∈ gBt⇐⇒ S ∈ Bt.

A has SVEP (guarantees A ∈ a−gBt ([1, Therem 5.37])) and σ(A) = σa(A) guarantee the equivalence of a-gBt
and gBt (hence also of a-gBt with a-Bt and Bt) for A. The fact that A is polaroid and σ(A) = σa(A) guarantees
also that E(A) = Ea(A) = Πa(A) = Π(a) (and E0(A) = Ea

0(A) = Πa
0(A) = Π0(a)). Hence all Weyl’s theorems

(listed above) are equivalent for A and :

Theorem 3.8. A ∈ a − gWt

Normal A. For the operator A = B1 ⊕ B0 to have any chance of being a normal operator, it is necessary
that (either B0 is missing, or) B0 = 0. The hypothesis (B0 is missing, or) B0 = 0 is, however, in no way
sufficient to ensure the normality of A. Additional hypotheses are required. An operator S ∈ B(H) is said
to be dominant (resp., classA(1, 1)) if to every complex λ there corresponds a real number Mλ > 0 such that
‖(S − λ)∗x‖ ≤ Mλ ‖(S − λ)x‖ for all x ∈ H (resp., |S|2 ≤

∣∣∣S2
∣∣∣) ([19], [15]). Recall from [10, Lemma 2.1] that if a

dominant or class A(1, 1) operator A ∈ B(H) is a square root of a normal operator, then A is normal. The
following theorem, which uses an argument different from that used in [10], proves that this result extends
to nth roots A.

Theorem 3.9. Dominant orA(1, 1) nth roots of a normal operator in B(H) are normal.

Proof. Recall that the eigenvalues of a dominant operator are normal (i.e., they are simple and the corre-
sponding eigenspace is reducing). Hence if our nth root of A = B1 ⊕ B0 is dominant, then A = B1 ⊕ 0 is a
dominant operator which satisfies

A
(
Y ⊕ I |Ho

)
=

(
Y ⊕ I |Ho

)
(N ⊕ 0).
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The operator N ⊕ 0 being normal and the operator Y ⊕ I |Ho being a quasi-affinity it follows from [19], [8]
that A is normal (and unitarily equivalent to N ⊕ 0). We consider next A ∈ A(1, 1).

It is well known that A(1, 1) operators have ascent less than or equal to one. (Indeed, operators
S ∈ A(1, 1) are paranormal: ‖Sx‖2 ≤

∥∥∥S2x
∥∥∥ ‖x‖ for all x ∈ H , hence asc(S) ≤ 1.) Hence if A = B1 ⊕ B0 ∈ A(1, 1),

then B0 = 0 and A ∈ B
(
A−1(0) ⊕ A−1(0)⊥

)
has an upper triangular matrix representation

A =

(
0 A12
0 A22

)
.

Let N1 = N ⊕ 0 |H0 have the represenation

N1 = 0 ⊕N22 ∈ B
(
N−1

1 (0) ⊕N−1
1 (0)

⊥
)
,

and let Y1 = Y⊕ I |H0∈ B
(
N−1

1 (0) ⊕N−1
1 (0)⊥,A−1(0) ⊕ A−1(0)⊥

)
have the corresponding matrix representation

Y1 =
[
Yi j

]2

i, j=1
.

Then, given that Y is a quasi-affinity satisfying B1Y = YN, Y1 is a quasi-affinity such that AY1 = Y1N1.
Consequently, A22Y21 = 0. The operator A22 being injective, we must have Y21 = 0 (and then Y11 is
injective and Y22 has a dense range). The operator A being an nth root of a normal operator, An is normal.
Applying the Putnam-Fuglede commutativity theorem to (AY1 = Y1N1 =⇒) AnY1 = Y1Nn

1 , it follows that
A∗nY1 = Y1N∗1

n, and hence Y12N∗22
n = 0. Since the normal operator N∗22

n has a dense range, Y12 = 0 (which
than implies that Y11 and Y22 are quasi-affinities). But then A∗22Y22 = Y22N∗22 and A22Y22 = Y22N22 imply
that A22 is quasi-affinity. Hence, since (AnY1 = Y1Nn

1 implies also that) A12An−1
22 Y11 = 0, A12 = 0. Thus

A = 0 ⊕ A22, where A22 ∈ A(1, 1), A−1
22 (0) = {0} and A22Y22 = Y22N22. Applying Proposition 2.5 and Lemma

2.2 of [10], it follows that A22 and N22 are (unitarily equivalent) normal operators. Conclusion: A = 0 ⊕ A22
is a normal nth root.
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