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Abstract. The paper aims to present an advanced algorithm by taking help of the Noor-iteration scheme
along with the inertial technical term for three quasi-nonexpansive multivalued in Hilbert spaces. A weak
convergence theorem under certain conditions has been given and added the CQ and shrinking projection
methods to our algorithm to obtain certain strong convergence results. Furthermore, numerical experiments
are provided by constructing an example and comparison results have also been incorporated.

1. Introduction and Some Basic Notions

Throughout, we assume 1 to be a real Hilbert space, ¥ # 0, a closed convex subset of J, and the non-
empty families of closed bounded, compact and proximinal bounded subsets of 1 shall be denoted by CB(¥),
K(¥) and P(¥), respectively. Further, we use ” — ” and ” — ” to denote weak convergence and strong

convergence, respectively.
Now, if for all k¥ € ], there exists w € ¥ such that

[x — w|| = &(x, ¥) = inf{||x — 7| : T € ¥}

then ¥ C Jis said to be proximinal.
On CB(¥), the Hausdorff metric Tz(= 7) is defined for all E,® € CB(¥), as follows:

T:(E,®) = max {sup &(x, ), sup &(w, E)} ,

KeE we®

where &(x, ©) = infreoillk — ||}
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The nonexpansive (n.e.) conditions of a single-valued mapping J : ¥ — ¥ as well as that of a multi-
valued mapping J : ¥ — CB(Y¥) are given respectively by means of the inequalities HS K- Sw” < k= wl|
and T(Jx, Jw) < ||k — wl|, for all k, w € ¥. Also, an element p € ¥is said to be a fixed point of a single-valued
mapping (multi-valued mappings) if ¢ = T (p € Jp), respectively. We denote by ()(J), the set of all fixed
points for the mapping J.

Suppose that Q(J) # 0, I : ¥ — CB(¥) is a multi-valued mapping and I is the identity mapping. Then,

e J is called quasi-nonexpansive (q.n.e.) mapping if for all x € ¥ and € (),

Tk, Ip) < ik - pll.

e [ — J is called demiclosed at w € ¥ if {xu},, C ¥such that x, — x and {x, — 7,} = w for some 7, € NE
imply ¥ — w € Jx.

Some earlier interesting and useful results related to fixed points involving n.e. single-valued mappings
studied by many researchers are available in [1, 5, 11-13, 16, 24, 27-29]. An important finding by Mann [19]
to approximate fixed point of a single-valued nonexpansive mapping in Hilbert spaces is the following:

Kn+l = SnKn + (1 - SH)SKH/ VYn € IN. (1)

Later, Ishikawa [15] developed a generalization of the above iterative algorithm (1) by Mann as: for an
arbitrary xg € ¥,

Kn+1 = Ik + (1 - Sn)s(Pn, )
¢)71 = 0Ky + (1 - On)SKn, n2 0, ( )

where {9,} and {0,} are sequences in [0, 1].
Ishikawa’s iterative algorithm (2) was further extended by Noor [22] as: for an arbitrary «; € ¥,

Kn+1 = OpKp + (1 - Sn)S(Pnr
an = 0Ky + (1 - O_n)sa)n,
Yn = tnkn + (1 = pn) B, n > 1,

where {8,},{0,} and {u,} are sequences in [0, 1].

Ishikawa iteration method converges weakly even in Hilbert spaces while Mann'’s iteration has the weak
convergence theorem only (see [4]). A strong algorithm for modified Mann algorithm was given by Nakajo
and Takahashi [21], which is called CQ-algorithm: for an arbitrary x, € ¥,

wy = Ik + (1 —9,) Ty,

Co={t €¥:|lwy — 1|l < llxy — 7ll},
Qu={t€¥: (Ko — Ky, Ky — T},
Ku+1 = Pg,nc, (ko).

They proved that if the sequence {9,} is bounded above by 1, then the sequence {x,} converges strongly to
Prixg)(x0).

Mann’s iteration method (1) was also modified by Takahashi et al. [31] by involving just one closed
convex set for a family of n.e. mappings {x,} as: given x, € J,

¥1 = ¥, K1 = PC1KO

Wy = Oyky + (1 - Sn)ﬁnkn,

Co ={t € ¥ |lwy — 7l < lIrcy — 7ll},
Kn+1 = PCn+l (KO)‘

They were able to establish that if 9, < ¢, for all n > 1 and for some 0 < £ < 1, then the sequence {x,}
converges strongly to Priy(g)(0)-

The notion of nonspreading mappings was given by Kohsaka and Takahashi [17, 18] in 2008 for Banach
spaces, and obtained some interesting results related to fixed points as well as common fixed points for
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single and commutative family of nonspreading mappings, respectively. Let x, w € ¥ be any two elements.
We call a mapping J : ¥ — ¥

¢ nonspreading [17] if
2

7

2 ||5K - 5(»”2 < HK - ficu”2 + ||a) - Jx

¢ nonspreading [14] if and only if

||51< - 5@“2 < |k = wl* + 2(x - 0, w — Fw),

# hybrid [32] if

||51< - 5w||2 <k — 0| + (x = Tk, w — Jw),

or equivalently, a mapping J : ¥ — lis called hybrid iff
3|9 - Joo||" < Il = @lP + || = In[ + ||x = To|.

The results of Kohsaka and Takahashi [17, 18] seems to motivate the works of Ilemoto and Takahashi [14],
Takahashi [32], Cholamjiak and Cholamjiak [6] respectively in Hilbert spaces. A multi-valued mapping
T : ¥ — CB(Y) is called a hybrid if

37(Tx, Jw)? < Ik — wl* + E(w, Fx)? + E(x, Tw)?,

for all x,w € ¥. J is a quasi-nonexpansive, whenever J is hybrid and Q(J) # 0. One can find more
details and counter example in ([7]).

In 2001, the heavy ball method [25, 26] was applied to inertial proximal point algorithm by Alvarez and
Attouch [3] as follows:

€)

Wy = Kn + Pn(Kn — Kn-1),
Kne1 = [+ 7,0 w,, n> 1.
by using the proximal point algorithm for maximal monotone operators. They demonstrate that the
algorithm (3) converges weakly to zero of Y, if {r,} is increasing and {p,} C [0, 1) with

Y oullcn =l < oo. (4)
n=1

Also, the hypothesis (4) holds for ¢, < 1/3, ¢,. The terms ¢,, and ¢, (x, — k,-1) refer to extrapolation
factor and inertia, respectively. The inertial concept is beneficial for improving the efficacy of algorithms as
well as for better convergence properties [2, 9, 10, 23].

The above works inspire us to introduce a more advanced iteration scheme by modifying the scheme of
Noor with the inertial technical term aiming at finding common fixed points of three quasi-nonexpansive
multivalued mappings. We aim to obtain first weak convergence theorems, and then strong convergence
theorems by using CQ and shrinking projection methods in combination with the modified Noor iteration
scheme. We shall also present a comparison between our inertial projection and the standard projection
algorithms. Further, we shall discuss some numerical experiments and examine the convergence rate of
our algorithm.

2. Necessary Lemmas and a Condition

This section of the paper basically recalls some necessary results as lemmas those will be required to
understand the main findings of the paper.
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Lemma 2.1. [32] For each x, w € Jand a real number O, we have
() Ik + w|* < |5l + 2w, k + @),
(ii) |0k + (1 = V)|’ = O Ix|* + (1 - O) [lwll* = OA - O) [Ix - wll*.

Lemma 2.2. [20] For each x, w,v € Jand 8 € R, the following set is closed and convex:

ne¥: ”w - n”z < ”K — 17“2 + (v, 1) + 0.

Lemma 2.3. [21] Let Pc : 1 — ¥ be the metric projection. Then
llw = Pyl + llic = Pyxl® < [l - ]

forallkx € Jand w € ¥.

Lemma 2.4. [3] Assume the sequences {A,}, {v,} and {9,} in R* be such that Vn > 1, Y7 1 vy < +00,
Anir £ Ay + (A = Ap-1) + Vi

If there is a real number 9 satisfy 0 < 9, < < 1. Then the assertions hold:
(i) Zus1[An — Au-1]s < +oo, where [p], = max{p,0};
(ii) AAN* € RY such that lim,_ 100 Ay = A,

Lemma 2.5. [30] Assume that C is a Banach space that satisfies the Opial’s condition and that {x,)} is a sequence in
C. Assume p,vE C are such that limy,_ e ”Kn - p” and 1im,,_,eo ||1<n - p“ holds. If the subsequences {1} and {1}
of {x,} converge weakly to p and q, respectively, then p = r.

Lemma 2.6. [6] Let 3 : ¥ — K(¥) be a hybrid multivalued mapping. Let {x,} be a sequence in ¥ such that xk, — r
and limy,_,e ||k, — wyl| = 0 for some w, € Jx,. Thenr € Jr.

Lemma 2.7. [6] Let 3 : ¥ — K(¥) be a hybrid multivalued mapping with Q(3) # 0, then Q(J) is closed.

Condition(A). Let ¥ be a subset of a real Hilbert space 1. A multivalued mapping J : ¥ — CB(¥) is said
to satisfy Condition (A) if [[x — €|| = d(x, 3¢) for all k € Jand ¢ € Q(J).

Lemma 2.8. [6] Let 3 : ¥ — K(¥) be a hybrid multivalued mapping with Q(3) # 0. If 3 satisfies Condition (A),
then Q(3) is convex.

Remark 2.9. [6] We see that if Jp = {p} for all p € (X(3T), then 3 satisfies Condition (A). It is known that the best
approximation operator Py, which is defined by Pgx = {w € I« : |lw — x|l = &(x, Tx)}, also satisfies Condition (A).

Lemma 2.10. [8] Let J : 1 — CB(J) be a quasi-nonexpansive mapping with Q(J) # 0. Then Q(J) is closed.

Lemma 2.11. [8] Let J : 3 — CB(J) be a quasi-nonexpansive mapping with Q(3) # 0. If I satisfies Condition (A),
then Q(3) is convex.

3. Main Results and Discussion

This section is for stating and proofing the main results of this paper, i.e., the weak and strong conver-
gence theorems.

Theorem 3.1. Let 3,35, 3, : ¥ — CB(Y) be quasi-nonexpansive multivalued mappings with Q(J1) N Q(T,) N
Q(83) # 0 and I — J; is demiclosed at 0 for all i € {1,2,3}. Let {x,} be a sequence generated by

Ko, K1 € ¥ chosen arbitrary,
Cn =Kyt 6‘rz(Kn - Kv'n—l)/

Wn € tnXy + (1 = ) 318Gy,
Ty € 0pky + (1 — 0,)Bowy,
Kn+1 € SnKn + (1 - Sn)SSTn/



foralln > 1, where {3,}, {0,} and {u,} C (0, 1). Assume that the following conditions hold:
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(1) Z:zo:1 Onllicn — 11l < o0;

(i) 0 <liminf, .o 9, <limsup, , 9, <1;
(iii) 0 < liminf, . 0, <limsup, , o, <1
(iv) 0 <liminf, . p, < limsup, ,  u, <1.

If 31, 35 and 35 satisfy Condition (A), then {x,} is weakly convergent to a common fixed point of 31, 3, and Js.

2499

Proof. Let p € Q(31) N Q(T,) N Q(T3). Since J1, I, and J; satisfy Condition (A), for fi, € J1C,, 9n € Jow,
and N, € J37,,, we have

lcne1 = pll

INIA

IA

IN A

IN

IN

INIA

ullic = pll + (1 = 8,18, = pll

Qullrcn — P” + (1= 9,)EN,, z‘:SP)

Sullen = pll + (1 = 9,) Tz, I3p)

Sulln = pll + (1 = 9)llz, — p

Sullv = pll + (1 = 9,)(0ullicn — pll + (1 = 0l = pll)
Sullty = pll + (1 = 8,)(oullcy = pll + (1 = 02)E(9n, I2p)
Sullen = pll + (@ = ) (oullcy = pll + (1 = 6,)A(Taws, I2p)
O+ A =9)ollx, —pll + (1 = 9,)A = op)llws — plI

(
(8 + (1= O)an)llicn — pll + (1 = 8,)(A = 6) (allicy = pll + (A = )l = pll)
O+ (1 =9)on)llx, — pll + (1-9,)1 - Gn)(,urz”Kn - P” +(1- (un)é(hn/ S1}7))

(30 + (1= 8allen = pll + (1 = 8,1 = ) tallcs = pll + (1 = 1) HS1Co, T1p)
S+ (A =3)o, +(1=39,)(1— Gn)Hn)lIKn - P|| + (1 =391 -0,))(1 - .Un)”Cn - P||

[l — P|| + Opllcy, — xu-1ll.

From Lemma 2.4 and the assumption (i), we obtain lim,_, ||k, — pl| exists, in particular, {«,} is bounded
and also {t,}, {w,} and {C,}. By using Lemma 2.1 (ii), we have

and

2
e =l

2
e =l

IA

IA

IA

IA

On HK” - PHZ + (1 — 0n) ||w” - P”2 - Un(l - Un) [Kn — 9n

S flin = pl" + @ =9[R = pII" = 91 = Sl = NP

O fln = p|* + (1 = 8.)0ER, Tap)? = 8,(1 = 9,y — Rl
S [icn = p|[* + (1 = 9.)UTst, T3p)? = a1 = @)llcy — Rl

S flin = pl* + @ = 8 [ta = pII" = 91 = Sl = Nl

llow(n = p) + (1 = 0u)(n — P

0l = p” + @ = 0) 9n = PI|" = (1 = 0) licw = 9l
ol = pII* + (0 = 0)E@n, FTap) = (1 = 32) 1 = 9l
0 [icn = P + (1 = 0. (S0, Fop)? = 001 = 0) s = D4l

2
"
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Similarly, we have

tallicn — plI* + (1 = )l = pIP* = pa(l = wa)llicn — ll*
tallicn = pIP + (1 = )&, 31p)* = pn(1 = w)llicn — Hal P
tallicn = pIP + (1= ) US1Cn, F1p)* = (L = pn)llcn — Fll?
tallicn = pIP + (1 = )llCn = pIP = pn(1 = pdllicn — Rl

2
llwn — pll

IANIN A

Applying (6) and (7) in (5), we get

licwss = pI2 < O [icu = p|f" + (1 = 9)(@ullics = pI2 + (1 = 3)llwn — pI?

—0u(1 = 0)llkn = 9all®) = 8u(1 = Sn)llicn — 9l

< B+ (A =9)on)llk, — P”Z + (1 =91 = 0u)(llxy = P”Z
+2(1 = pn)On{kn = Kn-1, Cu = ) = (1 = p)llic — 1l ?)
—(1 = 9)0n(1 = ap)llicy = Null® = 9,(1 = 9)llic, — Nall®

= lcw = pIP +2(1 = 9)(1 = 0)(L = pin) O — K1, Cn — P)
—(1 = 90)(1 = ) ptn(1 = p)llicy — Fl?
—(1 = 9)ou(1 = an)llicy = ull* = 9u(1 = 9p)llicy — Nall”.

This implies that

(1 - ‘911)(1 - On)Hn(l - ,Un)”Kn - hnllz + (1 - Sn)an(l - an)”Kn - 5@11”2 + Sn(l - Sn)”Kn - anlz

<k = P||2 = l%pn41 — P||2 +2(1=39,)(1 -0,)(1 - Hn)9n<Kn — Kn-1,Cn — P)
Then by conditions (i)-(iv) and lim, ”K - p“ exists, we deduce
lim |1, — || = im ||, — @pll = lim [jx, — N[ = 0.
By the assumption (i) and (8), we have

W = Call < Wn = wcall + Il — Call
< N = xall + Oullcn — x01ll = 0,

as n — oo. By the definition of {w,} and (8), we obtain
llwn — xall = (1 = wn)llw, = xull = 0,

as n — co. From (8) and (10), we have
lon — wnll < llpn — Kull + Iy — wpll = 0,

as n — oo. By the definition of {r,} and (iii), we have
lItn = ®all = (1 = 0u)lln — xull = 0,

as n — oo. From (8) and (12), we get

18, = Tall <INy = ®ull + Iy — Tall = O,

Hn”Kn - P||2 +2(1 - Hn)6n<Kn — Kn-1,Cn —p) — [Jn(1 - Hn)”Kn - hnnz-

2500

©)

(10)

(11)

(12)

(13)

as n — oo. Since {x,} is bounded, there exists a subsequence {Kn/} of {x,} such that Kn; — rsomer € ¥. From
(12), we also have 7,, — r. Since I — J; is demiclosed at 0 and (9), we obtain r € J;r. From (10), we know
that w,; — r. Since I — 3, is demiclosed at 0 and (11), we also have r € J,r. It follows from (8) and (9) that
Cn; — 1. Againby I — I3 is demiclosed at 0, we obtain r € J3r. This implies that r € Q(J1) N Q(T,) N Q(T3).
Now we show that {x,} converges weakly to r. We take another subsequence {x,} of {x,} converging

weakly to some 7 € Q(J1) N Q(T,) N Q(J3). Since lim,—eo HKn - pH exists, from Lemma 2.5, ¥ = r. So, we

have reached the end of the proof. O
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The following theorems give the strong convergence of our proposed iteration.

Theorem 3.2. Let J,3,,3, : ¥ — CB(Y) be quasi-nonexpansive multivalued mappings with Q(J1) N Q(T,) N
Q(83) # 0 and I — 3, is demiclosed at 0 for all i € {1,2,3}. Let {x,} be a sequence generated by

Ko, K1 € ¥, ¥ =Y
Chn=%xu+ Qn(Kn - Kn—l)r
Wy € UpXp + 1- [vln)slgw
Tn € 0Ky + (1 - Un)SZCUn/
Un € SnKn + (1 - ‘971)83Tn1
¥ui1 = {p € %, : |0, = plPP < I = pIP + 260311k — 1pa|P
=20,(1 = 9,)(1 —0,)(1 - Hn)(Kn — P, Kn-1— Kn)},
K1, foralln > 1,

Kn+1 = Py

n+1

where {9,}, {0,} and {u,} C (0,1). Assume that the following hold:

(1) 220:1 Onllicn — 11|l < oo;

(ii)) 0 <liminf, e 9, <limsup, , 9, <1

(iii) 0 < liminf, .. 0, <limsup, , o0, <1;

(iv) 0 < liminf, e ty < lim sSup,,_,. tn < 1.

If 31, 3, and 33 satisfy Condition (A), then {x,} is strongly convergent to a common fixed point of 31, I, and J.

Proof. We will divide the proof into the following steps:

Step 1. We show that {k,} is well-defined. Since J1, 3, and J; satisfy Condition (A), from Lemmas
2.10-2.11, Q(31) N Q(J2) N Q(T3) is closed and convex. Firstly, we show that C, is closed and convex for all
n > 1. By induction on n that ¥, is closed and convex. Forn =1, ¥; = ¥is closed and convex. Assume that¥,
is closed and convex for some n € IN. From the definition ¥,.,; and Lemma 2.2, we have that ¥,,,1 also closed
and convex. Hence ¥, is closed and convex for all n € IN Next, we show that Q(J1) N Q(J,) N Q(J3) C ¥,
for each n > 1. Since J;, J, and 33 satisfy Condition (A), for each p € Q(J1) N QA(T2) N Q(T3), iy € T1Cy,
on € Jow, and N, € J31,, we get

[O: =Pl = [[9uta—p)+ A = 80X —p)|°

S0 [lew = plf* + @ = ) [0 =l

= Sn ”Kn - P”z + (1 - Sn)é(xnr 53}7)2

Sn ”Kn - P”z + (1 - Sn)-i(SSTn/ SBP)Z

‘911 ”Kn - P||2 + (1 - Sn) “Tn - p”2

S [[icn = p|[" + (1 = 8,)(@ullics = pIP + (1 = 0.l — pIP)
(On + (1 = S)an)llcy = plF + (1 = 92)(1 = 31)&(Pn, J2p)
On + 1 =9l = pIF + (1 = 9,)(1 = 0,) W(Tawy, Iop)
(S + (1 = S)on)llKc, — P||2 +(1=9,) - op)llws — P||2
(Ou + (1= )l — pI?

+(1 = 9,1 = 0) (Wallicn — pI? + (1 = i, — pl)

On+ 1A =9)on+(1-9,)1 - Un)[vln)“Kn - P||2

+(1 =91 = 0,)(1 = )&, 31p)?
Bn+(1=9)0,+(1-9,)(1 - Gn),un)”Kn - P”z

+(1 = 9:)(1 = 0,)(1 = ) HT1 Gy, T1p)?

On+ 1 =39)on+(1-9,)1 - O'n)[vln)“Kn - P”Z
+(1=9)1 —0n)(1 - [Jn)”Cn - P||2

IN

IN A

IA

INIA A

IA Il

IA



W. Cholamjiak et al. / Filomat 34:8 (2020), 2495-2510 2502
IC =PI +2(1 = 9,)(1 = 0,)(1 = ) Bnicn = K1, Cu = p)
I = pI? + 2631w = ten-1ll = 26,(1 = 8,)(1 = 62)(1 = pt)icn = P, K1 = Kn)-

Therefore, p € ¥,, n > 1. This implies that Q(J1) N Q(J,) N Q(T3) C ¥, for each n > 1 and so ¥, # 0. Hence
{x,} is well-defined.

INIA

Step 2. We show that k, — a € ¥as n — o. From x, € Pyx1, ¥41 € ¥, and x,41 € ¥, we
have

i< = xall < llKpner —1all, Y 21, (14)
On the other hand, since Q(J1) N Q(J,) N Q(T3) C ¥, we get

i<y — xall < lla —wall, Yn =1, (15)
foralla € QO(J1)NQ(J,) NQ(T3). The inequalities (14) and (15) imply that the sequence {x, — 1} is bounded
and nondecreasing, hence lim,,_,« ||« — x1]| exists.
For m > n, by the definition of ¥,, we have k,, € Py, x1 € ¥, C ¥,. By Lemma 2.3, we obtain that

I = 1ull® < llicm = reall” = Il — 1|l (16)
Since lim,—e |l — k1| exists, it follows from (16) that lim, ;e [[Km — k4|l = 0. Hence {x,} is a Cauchy
sequence in ¥ and so that x, — a € ¥asn — oo.
Step 3. We show that

lim ||z, — Cull = lim 9y — wull = lm |IN, — 7|l = O,
n—oo n—oo n—oo

From step 2, we have that lim,,_, ||Ks+1 — &5l| = 0. Since k41 € ¥,, we have

15y — xall
< Gy = xpall + 1 — wall
<l = Kl + 202 — Kt P~ 20,1 = 9,)(1 = 0)(1 — pe)0s — Koo, Kt — Ko

Hllxner — xnll. (17)

By the assumption (i) and (17), we obtain

lim [[O,, — x| = 0. (18)
n—oo

Since J,, satisfies condition (A), by Lemma 2.1, we have

[0, =Pl < Sl =" + 0= 918 = pIP = 9,(1 = 9y — NP
= O =Pl + (1 = 9)ER, Tsp)? = 91 = 9.l — Ryl
< Ol —p|f + A = 97Tt Tap)? = 94(1 = S)llkcw — NP
< Sullin = p|f" + (1 = 9l = pIP = 91 = 8.)l1cs — Nl (19)

Replacing (6) and (7) in (19), we get

O, =P < [ = pl" + 21 = )1 = 0,)(1 = O = K1, Cu = P

_[ln(l = 9)(1 -0, - [Jn)“Kn - hn”2 = (1 =9)0,(1 = op)llcn — pn“z
=9, (1 = 9 )llxn — Nn”z-
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This implies that
[Jn(1 - 9)(A -0, - ,Un)”Kn - hnuz + (1 =3)0,(1 = o)l — @n”z + (1 = I)llxcn — an|2
2
< lew =l = 100 = pIP + 201 = 8,)(0 = 64)(1 = )01y = Kn-1, Cn = P)- (20)

By our assumptions (i)-(iv), (18) and (20), we obtain

i i, = Fll = 1im [, = @)l = im ey = Nyl = 0. @)
From (9)-(13), by the same proof in Theorem 3.1, we obtain

Tim [, = Gyll = Lim [lw, = 16,1 = im llpy = @, = lim flz, = )| = lim ¥, = 7, = 0. 22)

From Step 2, we know that x, — a € ¥. It follows from (21, 22) that {, — a. Since [ — J; is demiclosed
at 0, we obtain a € Q(J;). Similarly, we obtain that a € Q(J,) and a € Q(J3). This implies that a €
Q(81) N Q(T2) N Q(T5).

Step 4. We show that a = Pqg,)na@,)na@,) k1. Since a € Q(J1) N Q(J2) N Q(J3). Form (15), we have

lla = x| < llo - x1ll, Yo € Q1) N QT,) N QT5).

By the definition of the projection operator, we can conclude that a = Pqg,)nqs,)na, k1. This completes
the proof. O

Theorem 3.3. Let 3,3,, 3, : ¥ — CB(Y) be quasi-nonexpansive multivalued mappings with Q(J1) N Q(T,) N
Q(83) # 0 and I — J; is demiclosed at 0 for all i € {1,2,3}. Let {x,} be a sequence generated by

Ko, K1 € ¥, ¥1 = ¥,
Cn=%n+ Qn(Kn - Kn—l)/
Wy € Unxn + (1 - ,un)51Cn/
Ty € Ok + (1 = 04)Jowy,
O, €8xy + (1= 9,)Ts1,
¥, = {P €¥, 0, - P”z <lky — P||2 + 29%”’@1 - Kn—1||2
=20,(1 = 9,)(1 —0,)(1 - ,Un)<7<n =P, Kn-1 — K},
Qn ={we¥: (K1 — 1y Ky _P> >0},
Kn+1 = Py,ng,x1, foralln > 1,

where {9y}, {on} and {u,} € (0, 1). Assume that the following hold:

(i) 2130:1 Onllicn — K1l < 00;

(i)) 0 <liminf, ¥, <limsup, , 9, <1

(ii1) 0 <liminf, e 0, <limsup, o0, <1;

(iv) 0 <liminf, e gy <limsup, |, <1.

If 31, 3, and 33 satisfy Condition (A), then {x,} is strongly convergent to a common fixed point of 31, I, and J3.

Proof. By the same method of Theorem 3.2 step by step, we can conclude the proof by replacing ¥,+1 by ¥,
expect in Step 1. Showing that {x,} is well-defined and F(T;) N F(T;) N F(T3) € C, for each n > 1. Next we
show that Q(J1) N Q(J,) N Q(TJ3) € Q, for all n € IN. Also by mathematical induction. For n = 1, we have
Q(T1) NQ(T) N Q(J3) C ¥ = Q1. Assume that Q(T1) N Q(T,) N Q(T3) € Q,, for all n € IN. Since x4 is the
projection of x; onto ¥, € Q,, we have

(K1 = Knt1, Kne1 — @) 2 0, Yw € ¥, N Q.

Thus Q(J1) N Q(T2) N Q(T3) € Qui1- So Q(T1) N Q(T2) N Q(T3) € ¥, N Q. This implies that {k,} is well-
defined. We next show that x, — % € ¥as n — oo. From the definition of Q,, we get x, = Pg,«x;. Since
Kn1 € Qp, we have

Iy — k1l < |l — xa1ll, Vi > IN. (23)
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On the other hand, we obtain
llcn = xall < Il = xall, Ve € Q(T1) N Q(T2) N QT3). (24)

The inequalities (23) and (24) imply that the sequence {x, — 1} is bounded and non-decreasing, hence
limy, e |lcn — %1l exists. For m > n, by definition of Q,, we have x = Py, k1 € Qy € Q,. By Lemma 2.3, we
obtain that

1 = teall® < N — re1ll? = Il = . (25)

Since lim, .« ||k, — %1 exists, it follows from (25) that lim, ;e [l — x|l = 0. Hence {x,} is a Cauchy
sequence in ¥ and so k, — % € ¥ as n — oo. In particular, we have lim,_, [|k;+1 — k5|l = 0. By the same
proof of Step 3-4 in Theorem 3.2, we obtain x = Pqg,)nq@,)na@,)k1. O

Remark 3.4. Let Q(3) # 0, then a hybrid multivalued mapping 3 : 3 — K(J) is quasi-nonexpansive, by Lemma
2.10-2.11, () is closed and convex, also by Lemma 2.7, 1 — 3 is demiclosed at 0, where I is the identity mapping.
Now, we can finish Theorems 3.1-3.3 by another methods as follows:

(a) If we take 31, 3, 3, : ¥ — K(¥) be hybrid multivalued mappings.

(b) If we put 31p = {p}, Jog = {q} and Isr = {r} for all p € QT1), q € Q(Ty) and r € QIT3) and
31,82, 35 ¥ > K(¥) be hybrid multivalued mappings.

(c) Since Py satisfies Condition (A), by taking 31,35, 3, : ¥ — P(¥) be hybrid multivalued mappings, hence
Py, , Py, and Pg, are too. In this case, we can write

T, — N, €Pg,1, C 31y,
Wp — Pn € PSz(Un C Sowy,
Cn - hnEP31Cng51Cn'

Remark 3.5. It may also be remarked that the condition (i) can be implemented easily in numerical computation
since the valued of ||k, — k-1l is known before choosing 6,,. In fact, 6,, can be so chosen that it satisfies 0 < 6, < 6,,,
where

. @y )
0, = mm{nm,—xnfllve} if Kn # Kn-1,
6 otherwise,

where {@,} is a positive sequence such that ), @, < oo.

4. Numerical Results and Comparisons

This section is for numerical experiments supporting our main findings and comparison between our
proposed inertial projection method and the standard projection method.

Exampled.1. Let ¥ = 1 = R3, ¥ = {k = (x1,xk2,x3) € R® : |jxll1 < 2}, ¥ = {x = (k1,%2,%3) € R3 :
[ic1] + [1a] + 3| < 2} and ¥3 = {x = (x1, K2, k3) € R3 : max{|x1|, k2], [k3l} < 2). Let 31, T,, I3 : R* — CB(R®) be
defined by

g0 | 00,0 if ke,
k= {w = (w1, w2, w3) € R3: o> < ﬁ} otherwise,

S _ {(0/ 0/ 0)} lf K € ¥2,
2k = {a) = (wl, w2, 0)3) eR3: |w1| + |wa| + lws| < Wm} otherwise

and
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Sy = { {(0,0,0)} if k¥,

1 .
{a) = (a)l, w?, a)3) (S ]R3 : max{la)ll, |a)2|, Ia)3|} < m} otherwise.

We see that 31, 3, and 33 are quasi-nonexpansive and Q(J1) N Q(TJ2) N Q(T3) = {(0,0,0)}. Let 8, = 0, =
Pn = 557 and

. 1 .
Gn _ mm{m, 05} ZfKn * Kn-1,
0.5 otherwise.

Next, we give a numerical comparison between our inertial forward-backward method (defined in
Theorem 3.2) and a standard forward-backward method (i.e. 8, = 0). The stooping criterion is defined by
Ik — Kl < 1077

The different choices of xy and x; are given as follows:

Choice 1: kg = (-5,1,3) and x; = (70,-5,-1);
Choice 2: ko = (0,0.21,-3.15) and x; = (0.22,-5.10, 3.21).

Table 1: Comparing the methods in Theorem 3.2 for 0,, # 0 and 0,, = 0 in Example 4.1

Random | No. of Iter. cpu (Time).

Wy, Ty, Oy 0,#0 0,=0 6,%0 0,=0
Choice 1 1 45 81 0.986159 1.234107
Ko =(-5,1,3) 2 45 81 1.563857  4.783340
x1 = (70,-5,-1) 3 45 81 0.786085 2.385316
Choice 2 1 44 72 0.016749 0.024109
xo = (0,0.21,-3.15) 2 44 72 0.015076 0.024412
x1 = (0.22,-5.10,3.21) 3 44 72 0.016659 0.072746

Figures 1-3: The error plotting E,, of 0, # 0 and 0,, = 0 for each randomization of choice 1 in Table 1 is
shown in the following figures, respectively.

X107 Figure1 : Comparision of Random 1 for Choice 1 in Theorem 3.2
T T T T T T T T T
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3 Figure2 : Comparision of Random 2 for Choice 1 in Theorem 3.2
T T T T T T
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< Figure3 : Comparision of Random 3 for Choice 1 in Theorem 3.2
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30 32 34 36
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Figures 4-6: The error plotting of E,, of 0, # 0 and 0,, = 0 for each randomization of choice 2 in Table 1
is shown in the following figures, respectively.

Figure4 : Comparision of Random 1 for Choice 2 in Theorem 3.2
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IIx
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Figure5 : Comparision of Random 2 for Choice 2 in Theorem 3.2
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Figure6 : Comparision of Random 3 for Choice 2 in Theorem 3.2
T T T T T T

30 35 40 45 50
Number of Iterations

Similarly, we compare (Table 2) a numerical test between our inertial forward-backward method defined
in Theorem 3.3 and a standard forward-backward method (i.e. 0, = 0). The valued ||x,.1 — k,|| < 107 is
used for the stooping criterion.

The different choices of xp and x; are given as follows:

Choice 1: ko = (10,-13,7) and x; = (-8,-50, -3);
Choice 2: k¢ = (0.12,-5.78,1.20) and x; = (-8.20,-5.11,-0.91).

Table 2: Comparison the methods in Theorem 3.3 of 6, # 0 and 6, = 0 in Example 4.1

Random | No. of Iter. cpu (Time).

Wn, Tn, Oy 0,+#0 0,=0 0,+0 0,=0
Choice 1 1 43 80 0.444689  0.704305
xo = (10,-13,7) 2 41 80 0.306636  0.362682
11 = (=8,-50,-3) 3 41 80 0.448037 0.647477
Choice 2 1 37 74 0.015117  0.032576
Ko = (0.12,-5.78,1.20) 2 35 74 0.013289  0.028377
x1 = (-8.20,-5.11,-0.91) 3 37 74 0.017730  0.024601

Figures 7-9: The error plotting E,, of 0, # 0 and 0,, = 0 for each randomization of choice 1 in Table 2 is
shown in the following figures, respectively.

c10° Figure7 : Comparision of Random 1 for Choice 1 in Theorem 3.3
10 T T T T T T L
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8| T T T

©10° Figure8 : Comparision of Random 2 for Choice 1 in Theorem 3.3
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10° Figure9 : Comparision of Random 3 for Choice 1 in Theorem 3.3
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Figures 10-12: The error plotting of E,, of 0,, # 0 and 0,, = 0 for each randomization of choice 2 in Table
2 is shown in the following figures, respectively.

X107 Figure10 : Comparision of Random 1 for Choice 2 in Theorem 3.3
T T T T
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©10° Figure11 : Comparision of Random 2 for Choice 2 in Theorem 3.3
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3 Figure12 : Comparision of Random 3 for Choice 2 in Theorem 3.3
T T T T

30
Number of Iterations

Remark 4.2. It is observed for Figures 1-12 that our inertial forward-backward method with the inertial technique
term has a better convergence speed and requires small number of iterations than the standard forward-backward
method.
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