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Abstract. In this paper, let X be a uniformly convex and g-uniformly smooth Banach space with 1 < g < 2.
We introduce and study modified implicit extragradient iterations for treating a common solution of
a common fixed-point problem of a countable family of nonexpansive mappings, a general system of
variational inequalities, and a variational inclusion in X.

1. Introduction

Multivalued monotone inclusion is an important optimization problem, which can be viewed as a real
mathematical modelling for many engineering design, such as, transportation, single processing and image
reconstruction; see, e.g., [1-3, 5, 14, 24, 27, 35]. There are a huge number of approximation methods for
solving multivalued monotone inclusion problems; see, e.g., [6, 8, 16, 21, 25, 26]. Most efficient one is the
resolvent method, which transfers the inclusion problem into a fixed point problem via an inverse problem;
see, e.g., [12, 13, 26, 30]. Let X be a real Banach space with the dual space X*. Both the norms of X and
dual space X* are presented by || - ||. Let C be a convex and closed setin X. Let T : C — C be a nonlinear
single-valued mapping. From now on, one employs Fix(T) to represent the set of fixed points of T. Recall
that T is said to be strictly contractive iff ||Tx — Ty|| < 0llx — yll, Yx,y € C, where constant 6 € (0,1). T is
said to be nonexpansive iff || Tx — Ty|| < [|x — yl|, Vx,y € C. The theory of nonexpansive mappings, whose
complementary mappings are monotone, is interesting and important in operator theory. Some efficient
approximation methods were studied for fixed points of nonexpansive mappings and their extensions; see
[15, 19, 22, 23, 32] and the references therein. Recall that J(x) := {¢ € X* : (x,¢) = [IxI* = [[9l*} Vx € X,
where (-, -) represents the generalized duality pairing between X and X*. Recall a Banach space X is said
to be smooth (it has Gateaux differentiable norm) if lim;_,¢+ W exists for all [|x|| = [lyll = 1. ] is norm-
to-weak® continuous in such a space. Moreover, the norm of X is said to be Fréchet differentiable, if for
each [|x|| = 1, the limit is attained uniformly for [|y|| = 1. The norm of X is said to be uniformly Fréchet
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differentiable, if the limit is attained uniformly. | is norm-to-norm uniformly continuous on bounded sets
in such a space. A space X is said to be uniformly convex if for each ¢ € (0,2], there exists 6 > 0 such that
for any ||x|| = llyll = 1, ||X+Ty|| >1-06 = |lx—yll <e. Itis known that a uniformly convex Banach space is
reflexive. Let A;, A; : C — X' be two nonlinear mappings. In the framework that ] is single-valued, consider

the following problem of finding (x*, ¥*) € C x C such that

X+ wAy -y, J(x—x)) =20, VxeC, 1)
(V' + Ao —x", J(x—y)) 20, Vxe(

with constants 1, p2 > 0, which is called a general system of variational inequalities (GSVI). In particular,
if X = H a Hilbert space, then GSVI (1) reduces to the following GSVI of finding (x*, y*) € C X C such that

X+ mAy -y, x—x)>20, VYxe(
W'+ wAx —x,x—y)>0, VxeC

with constants 1, yp > 0. The literature on the system of variational inequalities is vast and gradient-like
methods have received great attention; see, e.g., [9-11, 17, 20, 21, 28, 31] and references therein. In addition,
if Ay = Ay = A and x* = y*, then GSVI (1.1) reduces to the variational inequality of finding x* € C such
that (Ax*, J(x — x*)) > 0 Vx € C. In 2006, Aoyama, liduka and Takahashi [4] proposed an iterative scheme
of finding its approximate solutions and proved the weak convergence of the sequences generated by the
proposed scheme.

Recntly Ceng et al. [11] suggested and analyzed an implicit iterative algorithm by the two-step relaxed
extragradient method in the setting of uniformly convex and 2-uniformly smooth Banach space X with
2-uniform smoothness coefficient x,. Let Ilc be a sunny nonexpansive retraction from X onto C. Let
the mapping A; : C — X be aj;-inverse-strongly accretive for i = 1,2. Let f : C — C be a contraction
with constant 6 € (0,1). Let {S,};, be a countable family of nonexpansive self-mappings on C such
that Q = N> Fix(5,;) N GSVI(C, A1, Az) # 0, where GSVI(C, A1, A) is the fixed point set of the mapping
G :=Tlc(I = u1A1)IIc(I — p2Ay). For arbitrarily given xg € C, let {x,} be the sequence generated by

Yn = (1 —-a,)c(I - [JlAl)HC(I - ‘uzAz)xn + Ofnf(]/n), 2
Xn+1 = (l - ;BH)Sn]/n + ﬁnxn/ Vn >0,

with0 < p; < %‘ fori = 1,2, where {a,} and {f,} are sequences in (0, 1) satisfying the conditions: lim, e a; =
0, Yoo @y = oo and liminf, .. B, > 0 and limsup,_, _ B» < 1. They proved the strong convergence of {x,}
to x* € Q, which solved the variational inequality: ((I — f)x*, J(x* — p)) < 0 Vp € Q. Furthermore, let X
be a uniformly convex and g-uniformly smooth Banach space with g-uniform smoothness coefficient «;,
where 1 < g < 2. LetIlc, Ay, Az, G, {S,}) ) be the same mappings as above. Assume that Q = N> (Fix(S,) N
GSVI(C, A1, Ay) # 0. Suppose that F : C — X is a k-Lipschitzian and n-strongly accretive operator with
constants k, 17 > 0, f : C — X is L-Lipschitzian mapping with constant L > 0. Assume 0 < p < %)q%, 0<

Kgp” K1

pi < (%")ﬁl,i =1,2,and and 0 < yL < 7, where 7 = p(n - T)' Song and Ceng [28] proposed and
considered a general iterative scheme by the modified relaxed extragradient method, that is, for arbitrarily
given xg € C, let {x,,} be the sequence generated by

Yn = (1 - ,Bn)xn + ﬁnHC(I - ‘UlA1)Hc(I - [JZAZ)xn/ (3)
Xni1 = Helynxn + (1= yu)l = aupF)Suyn + iy f(x,)] ¥n >0,

where {a,}, {8}, {yn} € (0, 1) satisfying the conditions: (i) limy e @y = 0, Yo @ = 00, Yoo |s1 — @l < o0;
(i) 0 < iminf, o yu < limsup, v <1, Xyt [Vne1 —Vul < 00y and (iii) Y02 [Brs1 —Bnl < 00, liminf, o B, >
0. They proved the strong convergence of {x,} to x* € Q, which solves the variational inequality: ((pF —
yx, Jx*—p))y <0V¥p e Q.

The purpose of this paper is to find a common solution of GSVI (1), a variational inclusion (VI) and
a common fixed point problem (CFPP) of a countable family of nonexpansive mappings in a uniformly
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convex and g-uniformly smooth Banach space where 1 < g < 2. We introduce the modified implicit
extragradient iterations, which are based on Korpelevich’s extragradient method, viscosity approximation
method and Mann’s iteration method. We then prove the strong convergence of the sequences generated
by modified implicit extragradient iterations to a common solution of the GSVI, VI and CFPP, which solves
a hierarchical variational inequality (HVI).

2. Preliminaries

Let X be a real Banach space with the dual X*. For simplicity, the norms of X and X* are denoted by the
same symbol || - ||. Let C be a convex and closed set in X. We write x,, — x (respectively, x, — x) to indicate
the weak (respectively, strong) convergence of the sequence {x,} to x. It is known that the normalized
duality mapping J from X into the family of nonempty (by Hahn-Banach’s theorem) weak" compact subsets
of X* satisfies J(tx) = tJ(x) and J(-x) = —J(x) for allt > 0 and x € X.

Let A : C — 2% be a set-valued operator with Ax # 0 Vx € C. Let g > 1. An operator A is said to be
accretive if for each x, y € C, there exists j,(x — y) € J;(x — y) such that (u — v, j,(x - y)) 20 Yu € Ax,v € Ay.
An accretive operator A is said to be a-inverse-strongly accretive of order g if for each x, y € C, there exist
a > 0and j,(x — y) € J;(x — y) such that (u — v, jy(x — y)) = allAx — Ay|l" Yu € Ax,v € Ay.

An accretive operator A is said to be m-accretive if and only if A is accretive and (I + AA)C = X for all
A > 0. For an accretive operator A, we define the mapping J{' : (I + AA)C — Cby J{ = (I + AA)™ for each
A > 0. Such ]‘;‘ is called the resolvent of A for each A > 0.

Lemma 1. [18] Let X be smooth and uniformly convex, and r > 0. Then there exists a strictly increasing,
continuous and convex function g : [0,2r] — R such that g(0) = 0 and g(||lx — yl|) < |IxI* — 2¢x, J(y)) + ||y|[* for
allx,ye B, ={ye X: |yl <r}.

Let px : [0, 00) — [0, o) be the modulus of smoothness of X defined by px(t) = sup{(llx+yll+|lx—yll)/2—-1:
x € U, |lyll £ t}. A Banach space X is said to be uniformly smooth if lim;_,o+ px(¢)/t = 0. Let g € (1,2] be a
fixed real number. A Banach space X is said to be g-uniformly smooth if there exists a constant ¢ > 0 such
that px(t) < ct? ¥t > 0. It is well known that each Hilbert, L7 and ¢, spaces are uniformly smooth where
p>1

Let g > 1. The generalized duality mapping J, : X — 2% is defined by

Jo() = {p € X" : (x,¢) = llxll" and [lpll = |I”"}  VxeX,

where (-, -) denotes the generalized duality pairing between X and X". Itis easy to see that [,(x) = | (x)]]x]17-2,
and if X = H, then ], = | = [ the identity mapping of H.

Lemma 2. [33] Let g € (1,2] be a given real number and let X be g-uniformly smooth. Then, for any
given x,y € X the inequality holds: [lx + yll7 < [x[|7 + q<y, jo(x + y)) Yjs(x + y) € J;(x + y). Moreover,
llx + yll7 < IIxll7 + q<y, J;(x)) + x4llyllT Vx,y € X, where x; is the g-uniformly smooth constant of X. In
particular, if X is 2-uniformly smooth, then ||x + y|*> < [|Ix[|> + 2(y, J(x)) + x2llyll* Vx, y € X, where «; is the
2-uniformly smooth constant of X.

Let Dbeasetin CandletIl: C — D be a mapping. Then Il is said to be sunny if IT[TI(x) + t(x — IT(x))] =
I1(x), whenever Il(x) + t(x — I1(x)) € C for x € Cand t > 0. A mapping I1 of C into itself is called a retraction
if 1> = I1. If a self mapping IT on C is a retraction, then I'l(z) = z for each z € R(IT). A subset D of C is called
a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction from C onto D. Then the
following are equivalent: (i) ITis sunny and nonexpansive; (ii) [T1(x) - [1(y)|* < (x—y, JAT(x) - TI(y))) ¥x, y €
C; (iii) (x — II(x), J(y = I1(x))) < 0 Vx € C,y € D. It is known that the following statements hold: (i) the
resolvent identity: Jyx = ]y(%x +(1- %)]/\x) YA, u>0, x € X; (ii) if ]‘;e is a resolvent of A for A > 0, then ]f is
a single-valued nonexpansive mapping with Fix(J4) = A~'0, where A~10 = {x € C : 0 € Ax}; (iii) in a Hilbert
space H, an operator A is m-accretive if and only if A is maximal monotone.

Let A : C — X be an a-inverse-strongly accretive mapping of order g and B : C — 2% be an m-accretive
operator. In the sequel, we will use the notation T := J5(I - AA) = (I + AB)™'(I - AA) VA > 0. From [4], one

has Fix(T;) = (A + B)"10 VA > O and || Tax = Tyyl| < [lx -yl if 0 < A < (g)#
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Lemma 3. [4] Let X be g-uniformly smooth. Let the mapping A : C — X be a-inverse-strongly accretive of
order q. Then the following inequality holds: for A > 0,

(I — AA)x — (I - AA)yl" < |lx — y||" — A(ga — Kqufl)Ile -Ayl! Vx,yeC.

In particular, if 0 < A < ( )Wlﬁl, then I — AA is nonexpansive.

qa
K
Lemma 4. [28] Let X be g-uniformly smooth. Suppose that I'lc is a sunny nonexpansive retraction from
X onto C. Let the mapping A; : C — X be a;-inverse-strongly accretive of order g for i = 1,2. Let the

mapping G : C — C be defined as Gx := Ic(I — i A)IIc — upAp) Vx € C. If 0 < p; < (qK—‘:“)fl1T1 fori=1,2,

then G : C — C is nonexpansive. For given (x*, y*) € C X C, (x*, y*) is a solution of GSVI (1.1) if and only if
x* =Ie(y" — p1A1y") where y* = Ilc(x* — poAzx"), that is, x* = Gx™.

Lemma 5. [7] Let X be strictly convex, and {T,}}’ ; be a sequence of nonexpansive mappings on C. Suppose
that N Fix(T,) # 0. Let {A,} be a sequence of positive numbers with };2, A, = 1. Then a mapping S on C
defined by Sx = ¥.;2y A, T,x for x € C is well defined, nonexpansive and Fix(S) = N?* Fix(T,) holds.
Lemma 6. [28] Let {S,}*  be a sequence of self-mappings on C. Suppose that Y2, sup{||S,x — S, 1| : x €
C} < co. Then for each x € C, {S,x} converges strongly to some point of C. Moreover, let S be a self-mapping
on C defined by Sx = lim,,, Syx Vx € C. Then lim,,_, sup{||S,x — Sx|| : x € C} = 0.

Lemma 7. [34] Let {a,} be a sequence of nonnegative real numbers satisfying the conditions: a,+1 <
(1 —=Apa, + Ayyn Yn = 1, where {A,} and {y,} are sequences of real numbers such that (i) {A,} < [0,1] and
Yoe1 A = 00, and (ii) limsup,_, vu < 0o0r Yo7 [Ayyul < co. Then lim, e a, = 0.

3. Iterative Algorithms and Convergence Criteria

Theorem 1. Let X be uniformly convex and g-uniformly smooth with 1 < g < 2. Let Ilc be a sunny
nonexpansive retraction from X onto C. Assume that for i = 1, 2, the mappings A, A; : C — X are a-inverse-
strongly accretive of order g and a;-inverse-strongly accretive of order g, respectively. Let B : C — 2X be
an m-accretive operator, and let {S,}’ ; be a countable family of nonexpansive self-mappings on C such
that Q = N> Fix(5,) N GSVI(C, A1, A2) N (A + B)™'0 # 0 where GSVI(C, A1, A,) is the fixed point set of
G = Ilc( = AN — ppAy) with 0 < py; < (%")%1 fori =1,2. Let f : C — C be a 6-contraction with
constant 6 € (0, 1). For arbitrarily given xq € C, let {x,,} be a sequence generated by

vy = e = A = p2A2)xy,
Yn = (1 - an)Snv, + anf(]/n)/ 4)
Xn+1 = (1 - ﬁn)]lj” (]/n - /\nA]/n) + ﬁnxnr n>0,

where {A,} C (0, (%)q%l), and {a,,}, {6} C (0, 1) satisfy the following conditions:

(1) Yo &y = o0 and limy, e vy = 0;

(ii) limsup,_,  B» < 1and liminf, .. 8, > 0;

(iil) 0 < 1 < A, V1 > 0 and limyoee Ay = A < (%)q—%.
Assume that ), sup, .. [1Sx — Sy-1x]| < oo for any bounded subset D of C and let S be a self-mapping on C
defined by Sx = lim;,, Syx Yx € Cand suppose that Fix(S) = N7 Fix(S,). Thenx, - x* € Q & x,~y, — 0,
where x* € Q) is a unique solution to the variational inequality: ((I - f)x*, J(x* —p)) <0 Vp € Q.

Proof. Set u,, = Ilc(x, — u2Azx,). It is easy to see that scheme (4) can be rewritten as

Yn = (1 - Oén)SnGxn + anf(]/n)/ (5)
a1 = (1= Bu)Tuyn + Puxn, Y20,
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where T, := ]ﬁn (I = A4A) Vn 2 0. Now, we claim that the necessity of the theorem is valid. Indeed, if
xp — x° € Q= N7 Fix(S,) N GSVI(C, A1, A2) N (A + B)7'0, then S,x* = x*, Gx* = x* and T, x* = x*. Also,
according to Lemma 4, we know that the mapping G : C — C is nonexpansive. So it follows from (5) that

lyn = xall - < llyn = XN + 1" — x|
< (1= an)lISuGxy — x| + aull f (yn) = x°1l + lloxn — x7]
< IfCen) = x°1) + (1 = an)llxn = X711+ an(llf (yn) = f )l + 12w — 27l
< 2llx = X1+ anOllyn — xull + 11 £ (xn) — x7[)),

which immediately yields

* dn .
llen = x7|| + If(n) =Xl >0 (1 — o0)

— <
Wy =25all < 3=05 1— a0

(due to x, — x*, a,;, — 0 and the boundedness of {f(x,)}).

Next we show the sufficiency of the theorem. To reach the aim, we assume x, — v, — 0 and divide the
proof of the sufficiency as follows. Pick a fixed p € Q = N Fix(S,) NGSVI(C, A1, A2) N (A + B)'0 arbitrarily.
Then S,p =p, Gp = p and T,,p = p. Moreover, by Lemma 5 we have

”yn =pll =1 - a,)(5,.Gx,, — P) + an(f(yn) -pll
< (1= apliSnGxn — pll + anll f(yn) — fP)I + anll f(p) — pll
< (1= ap)llxy = pll + andlly, = pll + all f(p) — pll,

which hence implies that

anllf(p) = pll. (6)

-
1= anéan)llxn - pll+

1
— < —
Iy = pll < 1 T

Thus, from (5) and Lemma 5, one has

IXpe1 = pll - < (A =BIITnyn = pll + Bullx, = pll
< (1 =Bllyn = pll + Bullx, = pll

< (1= B = 5 @)l = pll + =5 anllf(p) = pll} + Ballx, = pll

1-B,)(1-6 1-B,,)(1-0 —
— [1 _( 1‘3_32‘5 )an]”xn _p” + ( 1’[_;"5 )an IIf(ll’_)BPII.

By induction, we get {x,} is bounded, and so are the sequences {u,}, {v,}, {1}, {(Gx4}, {Snvu}, {Trnyn} due to (6)
and the nonexpansivity of I — p1A1, I — u2A,, G, Sy, Ty. Using (5), we have

Yn = (1 - a,)5,Gx,, + anf(]/n)/
Yna1 = (1 - an—l)sn—lcxn—l + an—lf(yn—l) Yn>1.

Simple calculations show that

||yn - yn—lu <la, — an—l”lf(yn—l) = S5u-1Gxp|l + an”f(yn) - f(yn—l)”
+ (1 - an)”SnGxn - Sn—lGxn—lu
< |an - D‘n—l“lf(yn—l) - Sn—lGxn—lll + an(S“]/n - ]/n—1||
+ (1 - an)”SnGxn - Sn—lcxn—l“
< lan = an-alllf (Yn-1) = Sn-1Gxnall + @ndllyn — yull
+ (1 = an)lllSnGxy — 5,Gxpall + 115:Gx—1 — Su-1Gxyall]
< |an - an—l”lf(]/n—l) - Sn—lcxn—lll + a’né”yn - ]/n—l”
+ (1 - an)[”xn - xn—l” + ”SnGxn—l - Sn—lcxn—1||]/

which hence yields

Yo = ynall < (1= 222 @)l — x|l + 2222 £y, 1) — S,y Gl
1-a,0 1-a,0
1- 1
+ 1_;15 |SnGxn—1 - Sn—lcxn—ln-
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From Lemma 2 and Lemma 5, one deduces that

ITwyn — Tn-1Yn-1ll < N Tuyn — TuYnall + ITayn-1 — Tn-1Yn-1ll

< ”]/n - yrhl” + “]ﬁn I- /\nA)ynfl - ],I{H {I- /\n—lA)]/rkl”

< My =yl + 172 = AuAygs = 120 = Ay
I 0= Aer = B (= Ay s AYgal

=y~ Yl #1784 (1= S8 YT = A, Ayt = JB (I~ MYyl ®
+ ”]iH (I - AnA)yn—l - iil (I - /\n—lA)yn—lu

< ”]/n - ]/n—l” +1]1- A;”\—;lllUfn (I - /\nA)]/n—l - (I - /\nA)]/n—lll + A, - An—l”lA]/n—l”

< “]/n - ]/n—l” + [An = ApaalMy,

where supnzl{%\lljﬁn (I = AA)Yua1 — (L = AwA)Ynll + |Ays-all} £ M for some M; > 0. This together with (7),
implies that

ITutn = Tuayuall < (1= 225 @)l — xooall + 52221 f (1) = Sua Gl
+ 102]1S4 Gt — Su-1 G- 1||+|A — Ap1lMy
< bt = 2l + 22222l £ (Y1) = o1 Gl
+ ”SnG-xn—l - Sn 1Gxn—1” + |/\ - /\n—1|M1

So it follows that
||Tnyn - n 1Yn- 1” ”xn — Xpn- 1”
< Bl £y, 1) = Sy G ll + 184G = Sua Gl + 1Ay = Aya M.

Since Y, sup,p ISsx — Sy—1x|| < oo for bounded subset D = {Gx,, : n > 0} of C (due to the assumption), we
know that lim,, .« |15,Gx—1 — S—1Gx,—1]] = 0. Note that o, » 0 and [, — A,,_1] = 0 as n — co. Thus, from
the boundedness of {f(y,)} and {S,Gx,} we get

lim Sup(”Tnyn - n—l]/n—l” - “xn - xn—l”) < 0.

n—oo

Using Suzuki’s lemma [29], one yields that lim,,—,c | T Y» — x|l = 0. Hence
31_{{}0 [1Xp+1 = x4ll = ’}1_1;1;10(1 - 5n)||Tnyn = x4l = 0. )

We next denote p := Ilc(I — upAs)p. Note that u, = Ilc(I — ppAz)x, and v, = Ilc(I — y1A1)u,. Then v, = Gx,,.
From Lemma 4, we have

llun = plT - < 11U = p2A2)xn — (I = p2A2)pll?

< Il — Il — 1aqtz — g Az, — Agpll, (10)
and
l[ow = plIT < T = paAr)uy — (I = A
< ity — I = 11 (qaes — requt® WAty — AsplF. )
Substituting (10) into (11), we obtain
l[ow = plIT < 1l = plIY = pra(qas = rgud DI Azx, — Agpll? 12

— (gan = kopd Ol Aruy — Arpll.

According to Lemma 1, we have

Iy, —pllT < (@ = an)llShvn = pl7 + qanlf(p) = p, Jo(yn — ) + aullf (yn) — fF(PII
< (1= anllv, = pll7 + gaall £ () — plllyn =PI~ + @udllyn — pllY,
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which hence yields

1-
Iy =Pl < (= 3= IIf(P) pllly, = plT.

q
anéan)llvn pll + 7

That together with (12) and the nonexpansivity of T, leads to

[1Xp41 — P”q = ”ﬁn(xn - P) + (1 - ﬁn)(Tn]/n - P)”q
< Bullxn = pl7 + (1 = B)llyn — Pll"
< Bullxu = plI7 + (1 = Bu){(1 - 1 = = an)lon — pllt + 22511 (p) = pllllya — pllt)
< ,Bn”xn P||q + (1 ,Bn)(l 1 —a, 50571)[”9‘771 P||q
— ta(qan = o] Ao, = Azpll? — pr (o ~ g} OllA, - APl + Mo (13)
= (1= S )l = pll? = (1= B)(1 = 7525 (g — gl A2, — Aopl?
+ i (qan — kgl OIA U, — AplT] + auMa
<lxw —pllT = (1 - ﬁn)(l Tz o) [p2(Gag — 1,45 lAzx, — Agpllt
+ pa(gan —1qud” YNl = Arplli] + auMa,

q(l Bn)

1-a,0

where sup,. { =If() —pllly, — pll=~ 1} < M, for some M, > 0. So it follows from (13) and Lemma 2 that

(1= - 13;;360‘:1)[#2(‘7042 - Kq}lzfl)HAzxn = Aopll? + pi(gan — Kq#?71)||A1Mn — A1p|l7]
< e = pllf = lxnsr = plI7 + @My
< qllxn = xpaallllie — P”q_l + xqllxn — xp1all? + @My,

Since (%)(q%) > pp and (%)(ﬁ) > 1y, we get from conditions (i), (ii) and (9)

lim [|A2x, — Aopll=0 and  Lim [|Aqu, — Aypl| = 0. (14)
n—oo n—oo

Utilizing Lemma 4, we have

uy = PI* = eI = paA2)x, — (I — pA)pll?
(I = p2A2)xy — (I = p2A2)p, J(1n — P))

<
= (xn = p, J(un = P)) + p2Aop — Agxy, J(tn = P))
< 3lllx = pIP + Ny = PIP = g1l =t = (p = PID] + p2llAzp = Aoxallllie, — pll,
which implies that
=PI < 1w = I = g1 (1w = 1t = (p = PII) + 2p2llAzp — Apxlllley — pll- (15)

In the same way, we derive

2o, —pIF <21 = AUy — ([ = 1 A)p, J(vn — p))
<l =PI + llow = pI* = g2(litn — 0 + (p — P)I) + 2u1llA1fp — Avullllo, — pll,

which implies that
100 = pIP < llits =PI = g2(llutn = 00 + (p = ) + 201l Asp = Avuglllo, = pll (16)

Substituting (15) into (16), we get

llon = pI* < Ik = pIP = g1(llxn = tn = (p = PII) = g2(llitn = 0w + (p = PI) (17)
+ 212l Azp — Aoxullllien — pll + 2u1[lA1p = Avutllllo, = pll.
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Furthermore,

yn = pIF = llan(f(ya) = f(P)) + A = @)(Suvn = p) + au(f(p) = p)I
< llan(f(yn) = £(p)) + (1 = @)(Snvn = P + 225 f (p) = p, [y — P))
< anllf () = FOIP + (1 = allSuon — pIF + 20, f(p) — P, J(Yn — P))
< audllyn — plIP + (1 = an)llo, — pl* + 2a,llf (p) — plllly. — pll,

which together with (17), leads to

Ny — pII2 < (1- =5 an)llon = pIP + 2251£ () - plilly, - pll

< (1= =5 )b, = pIP = g1(llxn = tn = (0 = P)I) = g2(llutn = v + (p = P)
+ 2H2||A2P Apxullllun = pll + 2p1llA1p — Arugllllo, — pll] + 1f‘;'j,bllf(p) = plllly. = pll (18)
< (1= =5 )b = pIP = g1(llxn = tn = (0 = PI) = g2l = 00 + (p = PI]
+ 212l Azp = Agxylllley — pll + 2ullAsp — Ayuallilon — pll + 2222511 £(p) — pllly — pll

Thus, we obtain from (4) and (18) that

(141 _PHZ = ||Bu(xn —p) + (1 = ﬁn)(Tnyn - p)Hz

< Bullz = pIF + (1= Bu)llya = pIF

< Bullen = pIP + (1 = B){(1 = 1220l = pI? = g1l = e = (0 = P)I)

= g2(ltn — 00+ (9~ PID] + 23]l Asp — Asxallis — pi

+ 24| Asp — Asitllllo, — p||+12§:;5||f<p> plllly = pll

< (1= LD 0 )My = pIP = (1= Bu)(1 - a1l — 1 — (= P)

+ g2l = 00 + (p = PID] + 2p12llAop — Aol — pll

+ 241l Asp — Aitllllo, — p||+12f§”b||f(;7) plllly - pl

<l = pIP = (1 = B = 225 a)[g1(xn = 1ty = (p = PI) + g2(llitn = 04 + (p = P)I)]
+2102llA2p = Axxalllien — pll + 2p1llA1p = Avtalllon = pll + 2251 £) = plllys = pl,

which hence yields

(1-B)1 - — =) g1l =ty — (p = D) + g2(lltn — v + (p — P
< 2u||Aap — Apxalllluy — pll + 2t1llA1p — Aqug|lllo, — pli

+ 221 £(p) = plllyn = pll + lxw = pIP = llxaes = pIP
< Pen = xnsall(lxn = pll + lIxXus1 = pl) + 2u2llA2p — Azxalllluy, — pli

2ay,

+2ullArp — Avuallllon — pll + 72511 () — pllllys — pll.

Utilizing conditions (i), (ii), (9) and (14), we have
lim gi(llxy —un = (p=p)l) =0 and  lim ga(llw = v + (p = P)Il) = 0.
Utilizing the properties of g; and g, we deduce that
lim |, —u, = (p=pI=0 and  lim [ju, = v, + (p —p)ll = 0. (19)
From (19) we obtain
ll¢n = Gull = {10 = Oall < llotw — sty = (p = P + llttw =00 + (P =PIl = 0 asn — co. (20)

Next, we claim ||x;,—Sx,|| = O, ||x,—Trx,|| = 0and ||x,—Wx,|| = 0asn — oo, where Sx = lim,,_,o, S;,x Vx €
C, T, = ]ﬁ([ — AA) and Wx = 0:15x + 6,Gx + 03T \x Vx € C for constants 01,0,,0; € (0,1) satisfying
01 + 02 + 03 = 1. Indeed, since y, = a, f(ys) + (1 — a,)S,Gx,, leads to [|S,Gx, — yull = “” ||f(yn) yall, we
deduce from (20), a, — 0 and x,, — y, — 0 (due to the assumption of the sufficiency) that

(1Snxn = xull - < NSnxyn = SuGxall + 152 Gxy — yn” + ”yn — Xl
< Ml = Gaull + 1251 f (W) = yull + llyn = xall > 0 (1 > 00),
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which ensures that
ISxn = 2ull < 11Sx = Spxull + ISy = Xull = 0 (1 — o0). (21)
Furthermore, utilizing the similar arguments to those of (8), we obtain

”Tn]/n - TA]/nH < |1 - %”Ui}([ - AnA)yn - (I - /\nA)yn” + Mn - /\HlAyrl”
< 1= £ Ty = T = AnA)yall + 140 = AlllAY.ll.

Since limy—,.o A, = A and the sequences {y,}, {T1yn}, {Ay,} are bounded, we get
,}glc;lo ”Tn]/n - T/\]/n” =0. (22)

Taking into account condition (iii), i.e., 0 < A < A, ¥n > 0 and lim,e Ay = A < (i—j)ﬁ, we know that
0<A<Ac< (%)‘71Tl So it follows that Fix(Ty) = (A + B)™'0 and T, : C — C is nonexpansive. Since
Xp+1 = Puxn + (1= Bu)Tuyn leads to || Ty, — x|l = 1+ﬁ”||xn+1 — x|, we deduce from (19), (22), x, — y» — 0 and
liminf, (1 = B,) > O that

ITaxy —xall < Tax, — T/\]/n“ + ”T/\]/n - Tn]/n” + “Tnyn — Xyl

< 1% = yull + 1T = Tutall + s = 2all = 0 (1= o). 23)

We now define the mapping Wx = 0;5x + 0,Gx + 05T x Yx € C for constants 01, 0,, 03 € (0,1) satisfying
01 + 02 + 03 = 1. Then by Lemma 5 we know that Fix(W) = Fix(S) N Fix(G) N Fix(T») = Q. Observe that

llxy — Wxnll = 1101(xn — Sxu) + 02(xn — Gxn) + O3(xy — Tl (24)
< Onllxen — Sxull + Oallxn — Gxull + Osllxy — Taxall.
From (20), (21), (23) and (24), we get
Tim flx, — W, || = 0. (25)
Next, we focus on
lim sup(f(x*) — x*, J(x, —x*)) <0, (26)

n—oo

where x* =s-lim,,_, x; with x; being a fixed point of the contraction x; — tf(x) + (1 — t)Wx for each t € (0, 1).
Indeed, one guarantees that for each t € (0,1), x; solves the fixed point equation x; = tf(x;) + (1 — t)Wx;.
Hence |lx; — x,ll = [I(1 — £)(Wx; — x,,) + tH(f(x) — x,)|l. By Lemma 1, we conclude that

llxe — xal* = II(1 = O)(Woxy — x) + E(f (xe) — x|
< (1= 12IWaxy — xall* + 26F (x2) = x, J (1 — X))
< (1= 12(IIWxy — Wal| + [[Woxy, = xull)? + 28 f (1) — X, J(x — X))
< (1= 2(lxee = xall + [[Woxy, = x4ll)* + 28 F(x2) = X, J (X — X)) (27)
= (1= [l = xall® + 2lIx: — x4 llllWx, = xll + [[Woxy, — x4]1]
+ 28 f (o) = xp, JOxr = x0)) + 28 — X, J (X1 — X))
= (1 =2t + )l — xallP + full) + 26 () — x2, J (v — X)) + 28||xy — %1%,

where
fa®) = (1= 02QIxe = x4l + [l = WaalDllxy = Waall = 0 (2 = o). (28)
It follows from (27) that

1

(= £, T = 1)) < S = 3l + 32 ). 9)
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Letting n — oo in (29) and noticing (28), we derive

lim sup{x; — f(xy), J(xr — xp)) < %M3, (30)

n—oo

where SUP;e(0,1) 120 [lx; = xu]|? < Mj5 for some M3 > 0. Taking t — 0 in (30), we have

lim sup lim sup{x; — f(x¢), J(x: — x)) < 0.

t—0 n—oo
On the other hand, we have
f) =2, J(en — x7)) = (f(x) = x7, J (o — X)) = (f(x7) —x7, J(xn — x1))
+ () = x5, Jen — x)) = (fF () = x, J (0 — x0)) + (f () — xp, J (0 — x1))
= (fxr) = xp, J(on — x2)) + (F(x) — x4, J (20 — xp))
= (f(x) = x, JQon = x7) = J(on = x0)) + o — X7, J (2 — x1))
+(f () = flxn), JOen = x0)) + (f (xr) = xp, J (2 = X1))-

So it follows that

lim sup(f(x*) - ", J(x, — 7)) < limsup(f(x") = ", J(xp — x) = J(xn — x¢))

+(1 + 0)lx; — x*|[lim supllx, — x|l + limsup(f (xt) — x¢, J(xn — x1))-

Taking into account that x; — x* as t — 0, we have

lim sup(f(x*) — x*, J(x, — x*)) = lim sup lim sup{ f(x*) — x*, J(x,, — x*))

o < limsuplim sup(f(xn)_)io * ] — x*) = J(xn — x4))- (31)

t—0 n—o0

Since X is uniformly smooth, the normalized duality mapping J is norm-to-norm uniformly continuous on
bounded subsets of X. Therefore, the two limits are interchangeable and hence (26) holds. According to
the assumption x, — y, — 0 of the sufficiency, we get J(y, — x*) — J(x, — x*) — 0. Thus, we conclude from
(26) that

lim sup(f(x*) — x*, J(y, — x*)) = im sup{{f(x*) — x*, J(x, — x*))

+{FO) = 2, T = %) = J0on = ¥ W] = lim sup(f() = 2, [, — 1)) < 0. (32)
Finally,
”yn - X*”2 =1~ an)(SnGxn -x")+ an(f(X*) -x")+ an(f(yn) - f(x*))Hz
< ”an(f(yn) - f(X*)) + (1 - an)(SnGxn - x*)Hz + 2“n<f(X*) -x7, ](yn - x*)>
< aullf (yn) = FEONP + (1 = anllSuGxy — x*I* + 2, f(x*) = x*, J(yn — X7))
< @ulllyn — X1 + (1 = an)llxy — x°IP + 20, (f(x*) = X%, J(y — X°)),
which hence yields
a( 0) an(1-0) 2(f(x") —x", ](}/n—x»
Iy = 1P < (1= Sl =P+ G R 3)

By the convexity of || - ||, the nonexpansivity of T, and (5), we get

1 = XIP < Bullxn = 1P + (1 = Bl Tayn = X°IP
< Ballen = 1P + (1 = Budllyn — xI,
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which together with (33) leads to

* * n 1-6 *
ner =212 < Bullitn = 21 + (1 = B (1 = Sy — x|

1-a,0
an(1=6)  2(f(x)=x" J(yn—x"))
' b E)(l O ! (1-B)1=0)  2(f()x"J(yu=2")) 9
Ap(1—=Ppy )(1— % Ay (L—py )(1— X)=X", J\Yn—X
=[1- =5 lllxn—x I + T ot .

Since liminf, 14020 0, {(Pﬁ”)(l*é)} c (0,1) and Y7, = o0, we know that {M} c (0,1) and

1-a,0 1-a,0 1-a,0
Yoo Ml;f%z:(;*m = oco. Utilizing (32) and Lemma 7, we conclude from (34) that ||x, —x*|| = 0 as n — co. This

completes the proof.

Remark 1. The problem of finding an element of ﬂ;":OFix(Sn) N GSVI(C, A1, Ay) in [20, Theorem 3.1] is
extended to develop our problem of finding an element of N° Fix(S,) N GSVI(C, A1, A2) N (A + B)~'0 where
(A + B)710 is the solution set of the VI: 0 € (A + B)x. The implicit (two-step) relaxed extragradient method in
[28], Theorem 1 is extended to develop our modified implicit extragradient method (4). Thatis, two iterative
steps ¥ = anf(yn) + (1 — a,)Gxy, and x,41 = Buxy + (1 — B1)Snyy in [20], Theorem 1 is extended to develop
our two iterative steps ¥, = a f(yx) + (1 — a4)S,Gx, and x40 = Buxn + (1 = 1) Tnyn, where T), = ]fn (I - ALA).
In addition, the uniformly convex and 2-uniformly smooth Banach space X in [20], Theorem 1 is extended
to the uniformly convex and g-uniformly smooth Banach space X in our Theorem 1, where 1 < q < 2. The
problem of finding an element of N;” Fix(5,) NGSVI(C, A1, Az) in [28], Theorem 1 is extended to develop our
problem of finding an element of N7 Fix(S,) N GSVI(C, A1, A2) N (A + B)~'0 where (A + B)~'0 is the solution
set of the VI: 0 € (A + B)x. The modified relaxed extragradient method in [28], Theorem 1 is extended to
develop our modified implicit extragradient method (4). That is, two iterative steps y, = (1 — )X + fnGxn
and x,.1 = Icla,y f(xn) + Vuxn + (1 = yu)] — aypF)Syy,] in [28], Theorem 1 is extended to develop our two
iterative steps v, = auf(yn) + (1 — @n)SnGx, and x,01 = Buxn + (1 — Bu) Tnyn, where T, = ]f” (I-ALA).

Letg : H — Rbe a convex smooth functionand & : H — Rbe a proper convex and lower semicontinuous
function. The convex minimization problem is to find x* € H such that

g(x") + h(x") = rgi}rll{g(x) + h(x)}.

By Fermat’s rule, we know that the above problem is equivalent to the problem of finding x* € H such that
0 € Vg(x*) + dh(x*), where Vg is the gradient of g and Jh is the subdifferential of 4. It is also known that if
Vg is 1-Lipschitz continuous, then it is also a-inverse-strongly monotone. From Theorem 1, we can obtain
the following result.

Theorem 2. Let g : H — R be a convex and differentiable function with %—Lipschitz continuous gradient
Vgand h : H — R be a convex and lower semicontinuous function. Let the mapping A; : C — H
be aj-inverse-strongly monotone for i = 1,2. Let S be a nonexpansive self-mapping on C such that
Q = Fix(S)NGSVI(C, A1, A2) N (Vg +9h) ™10 # @ where (Vg + dh)~10 is the set of minimizers attained by g+ 5,
and GSVI(C, A1, Ap) is the fixed point set of G := Pc(I — u1A1)Pc(l — ppAr) with 0 < p; < 2 fori =1,2. Let
f : C — CDbe a 0-contraction with constant 6 € (0,1). For arbitrarily given xg € C, let {x,} be a sequence
generated by

Oy = Pc(l — p1A1)Pc(xy — poAzxy),
Yn = (1 — ay)Svy + anf(yn),
Xpe1 = (1= ﬁn)]iz(]/n - Anvg(yn)) + ﬁnxn/ n=>0,

where {1} C (0,2a), and {a,}, {Bx} C (0, 1) satisfy the following conditions:

(1) Yo &y = o0 and limy, e vy = 0;

(ii) limsup,_, fn» < 1 and liminf, .. B, > 0;

(i) 0< A <A, Vu>0and lim,_e0 A, = A < 2a.
Thenx, — x* € Q & x, —y, — 0, where x* € Q is a unique solution to the variational inequality: ((I —
X, x"—=py<0 ¥peQ.



L.-C. Ceng, Q. Yuan / Filomat 34:9 (2020), 2939-2951 2950

Let C and Q be nonempty closed convex subsets of Hilbert spaces H; and H», respectively. Let T : H; —

H, be a linear bounded operator with its adjoint T*. Consider the split feasibility problem (SFP) of finding

a point x* with the property that x* € C and Tx" € Q. The SFP can be used to model the intensity-

modulated radiation therapy. It is clear that the set of solutions of the SFP is CN T~'Q. To solve the SFP, we

can rewrite it as the following convexly constrained minimization problem: min,ec g(x) := %IlTx - PQTxllz.

Note that the function g is differentiable convex and has a Lipschitz gradient given by Vg = T*(I — Pg)T.
1

Further, Vg is W—inverse—strongly monotone, where ||T||? is the spectral radius of T*T. Thus, x* solves the

SFP if and only if x* solves the variational inclusion problem of finding x* € H; such that

0 e Vg(x*) +dlc(x") & x*—AVg(x") € (I + Adlc)x*
= ]jlc (x* = AVg(x")) =x*
& Pc(x" = AVg(x")) = x".

From Theorem 1, we can obtain the following result.

Theorem 3. Let C and Q be nonempty closed convex subsets of H; and H,, respectively. Let T : Hy — H, be
abounded linear operator with its adjoint T*. Let the mapping A; : C — H; be a;-inverse-strongly monotone
fori = 1,2. Let S be a nonexpansive self-mapping on C such that Q = Fix(S)NGSVI(C, A1, A2)N(CNT1Q) # 0
where GSVI(C, A1, Ay) is the fixed point set of G := Pc(I — p1A1)Pc(I — ppAr) with 0 < p; < 2a; fori =1, 2.
Let f : C — C be a 0-contraction with constant 6 € (0,1). For arbitrarily given xq € C, let {x,} be a sequence
generated by

vy = Pc(l = pu1A1)Pc(xn — poAoxy),
Yn = (1 - ay)Sv, + anf(yn)/
Xpp1 = (1 — ,Bn)PC(yn — AT — PQ)Tyn) + Buxy, n =0,

where {A,} C (0, ﬁ), and {a,}, {8} € (0, 1) satisfy the following conditions:
(1) Z;:O:O ap = and limn_,oo ay = O,
(ii) limsup,_, . B» < 1 and liminf, . B, > 0;

(i) 0 < A < A, Y1 > 0 and limyeo Ay = A < 5.

Thenx, - x* € Q & x, -y, — 0, where x* € Q) is a unique solution to the variational inequality: (I —
fx,x*=p)y<0 VpeQ.
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