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Employing Kuratowski Measure of Non-compactness for Positive
Solutions of System of Singular Fractional g-Differential Equations
with Numerical Effects

Mohammad Esmael Samei?

?Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan 6517838695, Iran

Abstract. In this work, we investigate the existence of solutions for the system of two singular frac-
tional g-differential equations under integral boundary conditions via the concept of Caputo fractional
g-derivative and fractional Riemann-Liouville type g-integral. Some new sxistence results are obtained by
applying Krattowski measure of non-compactness. Also, the Darbo’s fixed point theorem and the Lebesgue

dominated convergence theorem are the main tools in deriving our proofs. Lastly, we present an example
illustrating the primary effects.

1. Introduction

Fractional calculus and Fractional g-calculus are the significant branches in mathematical analysis. The
field of fractional calculus has countless applications (for instance, see [1-4]). Similarly, the subject of frac-
tional differential equations ranges from the theoretical views of existence and uniqueness of solutions to
the analytical and mathematical methods for finding solutions (for more details, consider [5-16]). Likewise,

some researchers have been investigated the existence of solutions for some singular fractional differential
equations (for example, see [17-25]).

In this article, motivated by among these achievements, we will stretch out the positive solutions for the
singular system of g-differential equations

D?u(t) + g1(t, u(t),v(t)) =0, 1)
Dy*o(t) + ga(t, u(t), v(t)) = 0,

under boundary conditions u(0) = v(0) = 0, fori =2,...,n -1, u®(0) = v?(0) = 0 and

u(@) = [ (@ u®)] o) = [2(watro®)] _,

where a; € (n,n + 1] with n > 3, y; > 1, g; € C(E), g; are singular at t = 0 which satisfy the local
Carathéodory condition on E = (0, 1] x (0, 00) X (0, ), and w; € £ =1'0,1] are non-negative somehow that
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1) @j())i=1 € [0, }) for j = 1,2.

We recall some of the previous works briefly. In 1910, the subject of g-difference equations was introduced
by Jackson [26]. After that, at the beginning of the last century, studies on g-difference equations, appeared
in so many works, especially in Carmichael [27], Mason [28], Adams [29], Trjitzinsky [30], Agarwal [31]. An
excellent account in the study of fractional differential and g-differential equations can be found in [32-34].
In 2012, Liu et al. [35] discussed the singular equation D*x(t) + h(t, x(t)) = 0 under boundary conditions
x(1) = 0 and [I*~%x(t) i—o = 0, where t belongs to [0,1], 1 < @ < 2 and D* is the Riemann-Liouville fractional
derivative. In 2013, Zhai et al. [36] discussed about positive solutions for the fractional differential equation
with conditions

=D%x(t) = g(t, x(t)) + h(t, x(t)),
x(0) = x'(0) = x”(0) = x”(1) = 0,
or x(0) =x’(0) =x"(0) =0, x"(1) =Bx"(n),

where t and a belong to (0, 1), (3, 4], respectively, and D“ is the Riemann-Liouville fractional derivative. In
the same year, the singular problem

D*x = g(t, x(t), DPx(t), D x(t)) + h(t, x(t), DPx(¢), D'x(t)),

under boundary conditions x(0) = x’(0) = x”(0) = x’”’(0) = 0 is reviewed, where «, 8, y belong to (3,4), (0, 1),
(1,2), respectively, D* is the Caputo fractional derivative and function g is a Carathéodory on [0, 1] X (0, o0)3.
Also, Wang in [37] investigated the existence of positive solution for the system

D%x;(t) + hi(t, x1(t), x2(t)) = 0,

for i = 1,2, under boundary conditions x1(0) = x](0) = 0, x2(0) = x5(0) = 0 and

1 1
() = fo a®dn®, o) = fo (),

where t € [0,1], @ € (2,3], h1,hy € C([0,1] X [0,00) X [0, 0),R), D* is the Riemann-Liouville fractional
derivative and fol xi(t)dn(t) denotes the Riemann-Stieltjes integral. In 2014, Yan ef al. [38] studied the
boundary value problems

“D§.u(t) = f(t u(t), ‘Df,u(t),

for t € [0, 1] with boundary conditions u(0) = u’(0) = y(u(t)), fol t(s)dt = mand uP(0) =0for2 <k <n-1,

where Dy, CD§+ are the Caputo fractional derivatives, f : [0,1] X R X R — R is a continuous function,
y : C([0,1],R) — Ris a continuous functionand m e R, n —1 < a <n, (n > 2),0 < f < 1is real number. In
2016, Jleli et al. [8] by using a measure of non-compactness argument combined with a generalized version
of Darbo’s theorem, provided sufficient conditions for the existence of at least one solution of the functional

equation
_ FEuo®)
u(t)—P(t,um(t»,—rq(a) [ =0 gt uds)

tel=10,1], wherea € (1,00),q€(0,1), f,g: IXR—> R, p,y: I > Iand F: IX RXR — R. In 2019, Samei
et al. [7] discussed the fractional hybrid g-differential inclusions

X

Dy f(t, X, I,;”x,'-- ,I;“‘x)

q

] € F(t,x,If;lx,-~- ,ngx),

with the boundary conditions x(0) = xo and x(1) = x;, where 1 < @ < 2,49 € (0,1), xo,x1 € R, a; > 0, for
i=12,...,n,;>0,forj=1,2,... k,nkeN, CDZ‘ denotes Caputo type g-derivative of order a, If; denotes
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Riemann-Liouville type g-integral of order 8, f : ] x R" — (0, ) is continuous and F : | x R* — P(R) is
multifunction. Also, Ntouyas et al. [13] by applying definition of the fractional g-derivative of the Caputo
type and the fractional g-integral of the Riemann-Liouville type, studied the existence and uniqueness
of solutions for a multi-term nonlinear fractional g-integro-differential equations under some boundary
conditions

“DEx(t) = w(t, x(8), (Pr2)(t), (P22)(t), "Dy x(t), ‘Dl x(b), ..., Dy x(1)).

In 2020, Liang et al. [14] investigated the existence of solutions for a nonlinear problems regular and singular
fractional q-differential equation

DIf(t) = w(t, f£), £ (B), “DYF(B),

with conditions f(0) = ¢1 f(1), f/(0) = cchgf(l) and f®(0) =0for2 <k <n-1,heren-1<a <nwithn >3,
B.q,c1 € (0,1), c2 € (0,I4(2 — p)), function w is a L*-Carathéodory, w(t, x1, x2, x3) may be singular and CD;‘
the fractional Caputo type g-derivative. Similar results have been presented in other studies [9, 10,12, 15, 16].

The rest of the paper is arranged as follows: in Section 2, we recall some preliminary concepts and
fundamental results of g-calculus. Section 3 is devoted to the main results, while example illustrating the
obtained results and algorithm for the problems are presented in Section 4.

2. Preliminaries

First, we point out some of the materials on the fractional g-calculus and fundamental results of it which
needed in the next sections (for more information, consider [2, 3, 26]). Then, some well-known theorems of
fixed point theorem and definition are expressed.

Assume that g € (0,1) and a € R. Define [a], = % [26]. The power function (x — y);1 with n € INj

is defined by (x — y),(;l) = [1{5(x — yg*) for n > 1 and (x - y),(;)) = 1, where x and y are real numbers and

Ny := {0} UIN [29]. Also, for @ € R and a # 0, we have

(X _ y)éa) = @ H(x _ qu)/(x _ yqa+k).

k=0

If y = 0, then it is clear that x¥(*) = x% (Algorithm 1). The q-Gamma function is given by

Ty(z) = (1= /1 -g7",

where z € R\{0,-1,-2,---} [26]. Note that, I';(z + 1) = [z],I;(z). The value of q-Gamma function, I';(z), for
input values q and z with counting the number of sentences 7 in summation by simplifying analysis. For
this design, we prepare a pseudo-code description of the technique for estimating q-Gamma function of
order n which show in Algorithm 2. For any positive numbers a and f5, the g-Beta function is defined by
[34],

1
By(a,B) = fo (1-g9)* VP dys. )

The g-derivative of function f, is defined by (D, f)(x) = f((rl):—f;(zx) and (D;f)(0) = lim,_,o(D,f)(x) which is

shown in Algorithm 3 [29]. Also, the higher order q-derivative of a function f is defined by (Djf)(x) =
Dq(DZ’1 f)(x) for all n > 1, where (Dg )(x) = f(x) [1, 29]. The g-integral of a function f defined on [0, b] is
defined by

W50 = [ s =x1=0) Y g s
k=0
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for 0 < x < b, provided the series is absolutely converges [1, 29]. The g-derivative of function f, is defined
by (D, f)(x) = ! (fl):;)(zx) and (D, f)(0) = lim,_,o(D,f)(x) which is shown in Algorithm 3 [1, 29]. If a in [0, b],
then

b o0
[ g =150 - 10 = 0~ 0 Y ¢ [or o) - aftar)],
. k=0
whenever the series exists. The operator I}/ is given by (Igh)(x) = h(x) and (Ifh)(x) = (Iq(I;"lh))(x) forn>1
and g € C([0,b]) [1, 29]. It has been proved that (D,(I;f))(x) = f(x) and (I;(D,f))(x) = f(x) — f(0) whenever
f is continuous at x = 0 [1, 29]. The fractional Riemann-Liouville type g-integral of the function f on | for

a > 0 is defined by (I)f)() = f(t) and

f
(I F)(t) = % fo (- 9@ f(s)dys,

for t € J and a > 0 [39]. Also, the Caputo fractional g-derivative of a function f is defined by
(D2f) () = (@ f)) (9
1 t
- t — gg)lal-a-D(plal £) g4 s,

where t € [ and @ > 0 [39]. It has been proved that (I,l; I3 Nx) = (I;Hﬁ F)x) and (DZ(I7 f))(x) = f(x), where
a,B = 0 [39]. By using Algorithm 2, we can calculate (I f)(x) which is shown in Algorithm 4.

)

Now, we present some necessary notations. Let T = [0,1]. We denote L(J), Cr(]), C]}{(f) by L A, B,
respectively. We say that & satisfies the local Carathéodory condition on T % (0, 00) X (0, 00) and denote it by
Car(J x (0, ) X (0, 00)) whenever has the following properties.

C1) For all (x1,%2) € (0, 00) x (0, ), i(., x1, %) : ] = R is measurable.

C2) Foralmostallt € ], h(t, .,.) : (0,00) x (0, 00) = R is continuous.

C3) For each compact subset C of (0, o) X (0, o0) there exists a function ¢¢ € £ such that [h(t, x1, x2)| < Pc(t)
for each t € J and all (x1, x,) € C.

We denote the set of all bounded subsets of Banach space A by Fa.

Definition 2.1. [40] The positive real-valued function u define on ¥, is measure of non-compactness whenever
u(C) = 0 if and only if C is relatively compact and satisfies the following conditions:

1) IfC1 c C, then ‘Ll(Cl) < M(Qz)

2) u(Conv (C)) = u(C).

3) (€1 U Ca) = max{u(Cy), w(Ca)}-
4) u(Cq + Cy) < u(Cy) + u(Cy).

5) w(AC) = |A|u(C) for all scalar A.

Assume that the sets 51, 5,,...,5, be a cover for C € 4. The Kuratowski measure of non-compactness of
C is defined by
KO = inf €
diam (S;)<e
and denoted by K(C) [40]. Take K(C) = o0, K(C) = 0 whenever C is unbounded, C is empty set, respectively
[40]. Also, for all C € ¥4, we have K(C) < diam (C) [40]. We need next results.
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Lemma 2.2. [41]Ifx € AN L with Dgx € AN L, then [FDgx(t) = x(t) + Y it where [a] < n < [a] + 1 and
c; 1s some real number.

Theorem 2.3. [40] Let a nonempty subset C of a Banach space A is bounded, closed and convex. The self-continuous
operator © define on C has a fixed point whenever there exists a constant 0 < A < 1 such that K(©(Q)) < r.K(Q) for
all Q c C, where K is the Kuratowski measure of non-compactness on A.

3. Main results

In this part, first we provide some lemmas.

Lemma 3.1. The solution of the problem Dgu(t) +o(t) =0 for a > 3 and g € ), under boundary conditions
u(0) = u?@(0) = --- = u"D(0) =0

and u(1) = [Izl/(w(t)u(t))]tzl isu(t) = j(;l G(t, gs)v(s) dys where v, w € Z y = 1land

1
G(t,gs) = a1(t,s, ) + ﬁ fo (1 = g Dw(t)ar(t,s, a) dyt, (4)

whenever t < s,
; 1
Gt g9 =ty 5,00+~ [ (0= aty oot @), )
v Jo

whenever s < t for s, t € J, here u(y) = Ty(y) — fol t(1 — gt)0Vw(t) dyt, and

tH(1 — gs)@D
rq(a) ’
H(1 = gs) @) = (t - gs)* "
rq(a) .

am(t,s,a) =

aZ(tl S, CY) =

Proof. First, note that Lemma 2.2 implies u(t) = —Igou(t) + Y., cit!, for some real constants c;. Also, By using
the condition u(0) = u)(0) = 0 for i > 2, we obtain ¢; = 0 for 0 < i < n. Thus, u(t) = ~I7o(t) + c1t. Since

1

1
- —gs)r-b d
T,() fo (1= o) ) das,

|1} @iou@)],_, =

by using the boundary condition at t = 1 we have —If;v(l) +c = ;/w(l). Therefore ¢; = I;;‘v(l) + I;/w(l).
Hence u(t) = —I‘;v(t) + If;v(l) + I;/w(l) and so u(t) is equal to

1
fo a(t,s, a)o(s)dys + I (wBu®)] _
and

1/

1
f ax(t,s, a)u(s)dgs + t [Ig (w(if)u(t))]t=
0
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when t < s and s < t, respectively. This implies that
[ @®um)],_, = ¢ (y f f (1= g0 VBt 5,0)0(5) dys)
. f (1 = gty Vot [ otu)],_, ot
[ @®um)],_, = ¢ (y f f (1= g0 VBt 5, 0)0(5) dys)
o fo (1 = g0 Dto(t) [E oiut)] ., dot
for t <s,s < t, respectively. On the other hand

|7 wdue))], f |1 ou] _, dot,

then we have

1
If,’ (w(l)f al(t,s,a)v(s)dqs),
0

1
Ig (w(l)f az(t,s,a)v(s)dqs),
0

1
-1 V
fo (1 - ( )(1 gt)0 tw(t)[[ w(t)u(t))]

1
_ (-1 V
fo (1 e )(1 gt) tw(t)[[ w(t)u(t))]

fort <s,s < t, respectively. Hence,

1
[I;/(W(t)u(t))] (1 — m (1 — qt)(y_l)tu)(t) dqt) = I;/ (W(l) f al(t/ s, O()U(S) dqs) ’
0
1
[I;’(w(t)u(t))] (1 _ m f (1 qt)()/ 1)tw(t) ) = I;/ (w(l)f(; az(t, S, OZ)U(S) dqs),

whenever t < s, s < t, respectively, and so

1
1 @uy)]_, = — L I (w(l) f al(t,s,a)v(s)dqs),
L)1 = 5 = a0 Do | 0

1
[IZ;,(ZU(t)u(t))]t=1 = 1 1 I (w(l)f ay(t, s, a)o(s) dqs),
L) [1 ~ 5 Jy A= g)0 Db dqt] 0

for t <s, s < t, respectively. This implies that u(f) is equal to

! 1
f a1(t, s, a)v(s) dgs + T t I;’ (w(l)f a(t, s, a)v(s) dqs) ,
0 T,(») — [, (1= gt)0=Dtaw(t) dyt 0

! 1
f as(t, 5, a)o(s) dys + __t I (w(l) f wa(t, 5, 2)0(5) dqs),
° Ly(y) - j(; (1 = gt)0=Vtw(t) dyt 0

for t <s,s < t, respectively, which are same as (4) and (5), respectively. So the proof is complete. [
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By employing simple calculations for G(t, gs) in (4) and (5), we conclude that

(1- qs)(a_l) 1 ! )
6 < [0 oty (1 [ -]

forallt,s e 7 At present, for n > 1, consider the map g;,(t, u, v) = gi(t, x»(1), xn(v)), Wwhere

Xnl) = { Yol

n’

AN IV
: |H3 |=

Here, we first investigate the regular system

D‘;lu + gia(t,u,0) =0,
D‘;Zu + gon(t,u,v) =0,

under some conditions in the problem (1). For i = 1,2 and each n belongs to IN, define the function

1
Fot, 0)(E) = fo Gt 45)ns (5, 1(5), 0(5)) dis,

where G, (t,gs) is the q-Green function in Lemma 3.1 which replaced a and y by «a; and y;, respectively.
Also, we take O, (1, v)(t) = (Fp1(1t, v)(t), Fu2(u, v)(t)) and

18 (1, 0)(B)Il. = max {Fy1(u, 0)(t), Fuo(u, 0)(t)} -

Since g, and P2 € Car ( ] x R?), by simple review we conclude that g, 1, In2 € Car (] x IR?) and so there exist
Y1 and ¢, € L such that |g,,i(t, u(t), v(t))| < Pi(t) for n € N, t belongs to Jand i = 1,2. We denote the set of

all (u,v) € .?l such that [|(u, v)|l. < |[Yll, by D, where [[¢|[5, = max{l|1]le, [[iP2]le}. One can check that, D is
closed, bounded and convex.

Lemma 3.2. Let n € IN. For each bounded subset of C(J,R) x C(J,R), the self-map O, defined on D is equi-
continuous.

Proof. Assume that (u,v) € D be given, i = 1,2 and n > 1. We can see that,

1-— (ai—1) 1
Fui, 0)(t) < f ( ZS)_ 7l y(ly) fo (1= gt 200) dyt g 5,109, 09) s

Thus,

L1 - gD

Fyi(u,0)(t) < . Fq(oz,'—l)[ u(yi)

f(l gtH)Vi D (t)dt](p,(s)dqs )

On the other hand, [I}' (wi(t))]i=1 € [0, 3), then % fol(l — g Dwi(t) dyt € [0, 3). Also, we get

1
o | - < 5 [,

Therefore,

- (% f (1= gp)0! twl(t)dte[ ;)
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andso1-— fo (1 - gty Vtw(t)dyt € [0, 1). Indeed,

@ =g Dat) dt
Ly(yi) = fol(l — 0D tw;(t) dgt
1 _
) Jy @ =g Dw(t)d,t

B 1! €[0,1)
1- b5 [ (1= g0 Dwi( dt

00 f (1= gt) Vwy(t) dyt =

andso 1+ }%%) fol(l — gt)Dw,(t) d,t < 2. By applying the previous inequality and (7), we obtain

1
F,i(u, 0)(t) < ﬁf (1= g5)“ Dpi(s) dys

2”([71”00 (@-2
‘ma,—l)f(l )

= llpille < llpilleo < lllle
q( a;)

and so [|©,(u, v)|l. < ll¢ll;,. Hence, ®, maps D into D. Assume that B C C(f, R) x C(f, R) is bounded. Also,
let {(ug, vk)};:‘;l be a bounded sequence in B and t4, t; € ] with t; < t,. Then, we have

|Fi,n (1, 0x) (t2)—F i (i, vk ) (£1))]

< rq(lai)[ fo 1[(tz—qs><“f‘”—(tl—qs)“*f-”]gn,xs,uk(s),vk(s))dqs

15)
f (2= 9 g, 105), 06y

1 — gs)@i-1
(- t) f ( ”’(S)) + G215, 189, o) s
q a;j

<= ty — gs) @™ — (t1 — g9) V| i(s) dys
rq<a,->fo[‘2 39 — (1 - 9] is)
+ (t2 — qt) il + (t2 — t)llill

where fori = 1,2, G1,(t,s) is equal to a1 (t, s, ), ax(t, s, a) whenever t < s, s < t, respectively which is obtained
by replacing a; by a in (4) and (5), respectively, and G, (s) is equal to

1 (" 1 [
—_— 1 —gt)rwi(Bay (4, s, o) dyt, —f 1—gt) " wiB)as(t, s, o) d,t,
5 | a-arwenesady s [ 0= e s o,

fort <s,s <t, respectively. Let € € [ be given, 1,1, € fsuch thatt; < f and s € [0, t1]. We choose 6 > 0 such

that t; — t, < § implies (to — s)%™1 — (; —s)*~! < €. Also, suppose thatk € [1,c0)and 0 < t; < t, < 1 with
t; — t, < min{§, €} be given. Then we get

1
|Finuti, 1) (t2) = Fin (g, ) ()| < e||(p1||1(ﬁ + ﬁ fo (1 — gty wi(t) dqt)
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and so limy, y, [|®y (ug, vk)(t2) — O (uk, vk)(f1)ll- = 0. Also, we have

1 1-— (-1)
194, 2Dl < max f QB (4 (o) 1) dys,

0 rq(al -1)

j: % (1 + Gzrz(s))(p2(5) qu}

s 1 -
< rnax{rq(a1 my (1 + o) fo (1 —gh" wi(t) dqt),

llp2ll 1 1 .
Ly(az - 1)(1 " 1(y2) fo (1 = gt)* " wa(t) dqt)}_

Let {(u, vk)},‘z"=1 be sequence in B and (ux, vx) — (1,v). Hence, uy — u, v — v. Note that,

1©5 (ux, V) () —On (u, V) (D)l
1
< max { f Ga, (t,49)191,1(8, 1k (s), k() — g1,n(s, u(s), v(s))| dys,
0

1
fo Gt 1019206, 1405), 04(5) = G205,1(5), (5 s

. 1+ AM
< -
- 2”(””1(rq(am - 1))’

where «,,, = min{ay, a,} and

1 1
A =max{ fl— tyf_lwitdt}.
w=max{ o5 | A=,

Since for i = 1,2, |gin(s, uk(s), vk(s)) = gin(s, u(s),v(s))l — 0 and by employing the theorem of Lebesgue
dominated convergence, we conclude that ©,, is equi-continuous on B for eachn € N. O

Theorem 3.3. Assume that g1,g, € Car (7 x (0, 00)?) and for n > 3, ay, a2 € (n,n + 1]. Then for each n > 1 the
system

D;‘lu + g1u(t,u,v) =0 ®)
D3?v + gau(t, u,0) =0

under conditions u(0) = v(0) = 0, u®©0) = v(0) = 0 for i = 2,...,n =1, u(l) = [I[' (Wi (t)u(t)]i=1 and
(1) = [Iz;z(wz(t)v(t))]tzl has a solution, whenever the following assumptions hold.

1) There exist y1,y> 2 1 and nonnegative functions wy, w, € L such that
) 1
(1" (@w1(£)]i=1, 1} (w2 (1) ]i=1 € [0, E)'
2) There exist hy,hy € L such that 2||hilly < Ty(a; = 1) for almost all t € jand i=1,2.
3) For any bounded subset Q ofﬁz, K(gi(t, Q) < hi(h)K(Q) fori=1,2.

Proof. Let Q be a bounded subset of A forn >1andi=1or2. We choose bounded subsets A and B of A
such that Q = (A, B). We take the sets A; and B; of all u € A and u € B, respectively, such that u > % Then,
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K(gin(t, Q) = K(gin(t, A, B)) = K(gi(t, xu(A), xn(B))) < K (xn(A), xu(B))
=Ko fheof)

= k(@ By (5,41 u (1))

(i} 2 ).

Let K(B1) = d. Then there exist C; C A and m € N such that B; U, C; and diam (C;) < d. Hence,
(%/ Bl) - U:il (%/ Ci)r
()= Gov)
n’ n'y

and K(%,B1) < K(B1). By employing a similar technique, we will have K(B;) < K(%,Bl). Thus, K(B1) =

K(%,Bl) and K(A;) = K(A1, %). Hence, there exist my > 1 and (Y;, Z;) C ﬁz such that (A1, SB1) C U;’f‘l(Yf, Z))
and diam (Y}, Z;) < dy whenever K(A1, B1) = dy. This implies that

diam (l,Ci) = sup
n x,y€C;

= sup |x - y| = diam (C),
* x,yeC;

sup {ll(v,2) = (v, 2l : (v, 2), (v, 2") € (Yi, Zi)} < do
and so
supimax{ly —y'|,1z=2'l} : v,y €Y, 2,2 € Z;} < dy.

Hence, sup, .y |y — y'| < do and

sup |z —z'| < dy.
z,2'€Z;

Thus, A; ¢ UX Y; with diam (Y;) < dp and By ¢ U, Z; with diam (Z;) < d for each i. Indeed, K(A;) <
K(A1, B1) and K(B1) < K(A1, B1). Hence,

max {K(as, B, K{Ay, 2 ) K 31 )| = Ko, By)
and so for i = 1,2, we get K(g;,(t, Q)) < hi(t)K(A1, B1) < hi(H)K(Q). As well, we obtain

1

1
K@) = K( [ Gult1901,65,Q s, [ Gt 195, Qs

For eachs € J,n > 1and i = 1,2, we take di(s) := K(gin(s, Q) < hi(s)K(Q). Choose ky € IN and bounded
subsets X; ; of ﬁz fori =1,2 somehow that g;,(s, Q) € U]]fozl Xi ;. Then, we have diam (h; ;) < d;(s) < hi(s)K(Q)
and

LR (- gs) 1
Ga,(t,95)gin(s, Q) C (1+ fl— t”"‘lwitdt)Xilds
(t45)910(5, Q) fojzqumi—l) 5 | a-ar e de,

ko 1 ) 1
_ (1 —gs)™ 1 o )
_,-g fo Fq(a,-—1)(1+ 207 fo (1—qt) wl(t)dqt)x,,]dqs

fori=1,2, here
1 ; 1
(1—gs)~ ( 1 f .
1+ 1—qgt) w,ltdt)Xilds
o Dyl =1) w(yi) Jo (-a () gt iy
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is the set of all

t (g9 T ;
o Tglai— 1)(1 " u(y:) fo (A = gty wi(t) dqt)X(S) dys

where x € X; ;. Thus,

diam (g(;iqj)il) 0o f (1— gty wi(t)d t)X,]d s)

(1_(15)&1 — gt)Vi~
0 rq(ai—l) 00 f (1-qb) wz(t)df)X(S)ds

sup
x,x'€X; i

1 (1 _ qs)a, |
_j; T - 1) H(Vz f (1 - gty w, i(t)dy t)x (s)dys

1 (1 _ oo
sup (1 -49) 1 + w00 j(; 1 —qt)y’%lwi(f)dqt)u(s)—xl(s)mqs

x,x'€X;; JO rq(ai - 1)
1 ; 1
(1 - gs) ( 1 f . ) .
< 1+ 1 —gt)""" wi(t) dgt |diam (X; ;) d,s
forq(ai_l) o | @ ar o dye)diam ()4,

T-gi 1 (7
< fo F 1)(1+u(%) fo (1 - gty w1yt i) dys

and so
1
K( fo Go,(t,95)gin(s, Q) dqs)
1 1- Qi 1 1 _

0 rq(ai -1)
1 (1—gs)™ 1 1 . |
: o Dylai— 1)(1 ’ p(yi) fo‘ (1 =gty wilt) d”’t)h’(s)K(Q) dys

(1 - qs)“f 1 1 -
Tyl — 1)(1 i L(y:) j; (1 =gty wit) dqt) )

By simple review, we can conclude that

(1 —gs)™ 1 1 L
Tyl = 1)(1 NTen) fo (1= wi®) dfft) -

fori =1,2. So, by applying last result, we obtain

Ai = |hilly € [0,1)

max (K f Ga (1, 390in(5, D)} < AK(Q)

here A = max{A1, A,}. At present, consider the space ﬁz endowed with norm
G Ml (1, y2)llee = max{llyalls, ly2ll}-

It is proved in first part, if Y and Y’ C ﬁz then K(Y), K(Y") < K(Y,Y’) , where Y, Y’ are bounded sets. We
know that (ﬁz, [I(., Jll) is a Banach space. Suppose that K(Y), K(Y”) are equal to r, r’, respectively and
r:= max{r,7’}. We choose n,n’ > 1such thatY c |Ji_; Z;and Y’ C U;’;l Z;., where Z;, Z;. C ﬁz, diam (Z;) < r
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and diam (Z;.) <r'fori=1,...,nand j=1,...,n". Letn>2n'’. Put 2, , =2/, ,=- =12, :=Z, Then,
(LY c UL, (Z;, Z')and foreachi=1,...,n, we have

diam (Z;, Z})

sup  ||(z1,2) - (z2,23)
zl,zzezi,zi,z;ezlf

*%

/7 ’
sup H(21 —2Z,72 — Z3)
zl,zzez,,zi,zéezlf

stk

sup  fmax {1 - 2l Iz - )11}

1,22 eZ,-,z; ,zéeV,

<max{r, 7'} =1

Hence, K(Y;Y’) < max{K(Y), K(Y”")} and so K(Y, Y’) = max{K(Y), K(Y")}. Thus,

1

1
K©,(Q) = K fo Gan (b, 9)710(5, Q) dys, fo Gaslt,1924(5, ) )

=12

< AK(Q).

1
= max {j(; Gui(t,95)9in(s, Q) dqs}

Therefore, by using the Darbo’s fixed point theorem, ®, has a fixed point in D for all n. This implies that
the system has a solution (u,,, v,) € D, that is,

1 1
u,(t) = f Gu, (8, qs)gl,n(s, (), v,,(s)) dys, vu(t) = f G, (t, qs)gz,n(s, (), vn(s)) dys.
0 0
Then the proof is complete. [
Now, we provide result for the singular system.

Theorem 3.4. Let g1,9, € Car (7 x (0,0)?), a1, ap € (n,n + 1] with n > 3. Then the singular system

DY'u+ g1(t,u,v) =0
{ Dzzu g1(t, u v)_ 0 (9)
g U+ go(t,u,0) =
with boundary conditions u(0) = v(0) = 0, u®(0) = v(0) = 0 for i = 2,...,n =1, u(1) = [I}' (w1 (t)u(t))]i=1 and
o(l) = [If;z(wz(t)v(t))]tzl has a solution, whenever the following assumptions hold.

1) There exist y1,y2 = 1 and non-negative functions wy, w, € L such that
" 1
1" (@1 () ]i=1, 1 (w2 (1)) ]i=1 € [0, 5)-

2) There exist hy,hy € £ such that 2[|hilly < Ty(a; = 1) for each t € fand i=1,2.

3) For any bounded subset Q of ﬁz, K(gi(t, Q) < hi(t)K(Q) where i = 1,2 and K is the Kuratowski measure of
non-compactness.

Proof. By applying Theorem 3.3, we conclude that the problem (1) has a solution (u,,v,) € O for all n.
Also, there is (u,v) € D such that lim,_,.(u,,v,) = (4,v), because D is closed. By simple check, we
conclude that (1, v) satisfies the boundary condition of the problem (1). On the other hand, we obvious that

limy, 0 gin(t, un(t), va(t)) = gi(t, u(t), v(t)) for almost all t € Jand i = 1,2. Thus, we obtain

1

Ga,(t,99)9i n(s, un(s), vu(s)) < —(L fl(l — gty lwi(t) d t) i(s)
a;i\t,45)Gin(S, Un(S), Un _F(ai—l) [J()/z) 0 q i q Pis),
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fori=1,2, each n and all (¢,s) € 72. Now, by applying the Lebesgue dominated convergence theorem, we
get

1

1
u(t):f0 Gal(t,qs)gl,n(s,u(s),v(s))dqs, v(t):jo‘ Gaz(t,qs)gzm(s,u(s),v(s))dqs.

This implies that, (¢, v) is a solution for the problem (1). O

4. Example illustrative for the problem with algorithms

Here, we provide an example to illustrate our main result. In this way, we give a computational
technique for checking the problem (1) in Theorem 3.4. We need to present a simplified analysis could
be executed values of the g-Gamma function. To this aim, we consider a pseudo-code description of the
method for calculation of the g-Gamma function of order n in Algorithm 2 (for more details, see the link
https://en.wikipedia.org/wiki/Q-gamma_function).

Table 1 shows that when q is constant, the g-Gamma function is an increasing function. Also, for smaller
values of x, an approximate result is obtained with less values of n. It has been shown by underlined rows.
Table 2 shows that the g-Gamma function for values q near to one is obtained with more values of # in
comparison with other columns. They have been underlined in line 8 of the first column, line 17 of the
second column and line 29 of third columns of Table 2. Also, Table 3 is the same as Table 2, but x values
increase in 3. Similarly, the -Gamma function for values q near to one is obtained with more values of n
in comparison with other columns. Furthermore, we provided algorithms 3 and 5 which calculated Dy f(x)
and I7 f (x), respectively.

Example 4.1. We define the singular fractional system similar to the problem (1) by

DEu(t) + #(%u(t) + %v(t)) — 0,

) (10)
D u(t) + ﬁz(}lu(t) + gv(t)) 0,

under boundary conditions u(0) = v(0) = u’(0) = v’(0) = w”’(0) = v”(0) = 0 and

u = |17 @] .o = |1 ¢ow)

t=1 t=1

By comparison with problem (1), we can consider the maps

(tuv)—L(lu+10)
91// 5\/22 3 7

ga(t, u,v) 3 (1u+3v)

2\t U, = —F\= = .

JORYZAS

Also, by definition of functions gy and g, we consider hy(t) = 5%&, hy(t) = ﬁft’ x(u,v) = Ju+ 3vand y(u,v) =
Tu+ %v._Put a=%am=2y=14 Y2 = L wi(t) = t, wa(t) = VL. It can be seen that g1, g» € Car (] X (0, %0)?),
hy, hy € L are non-negative and wy, w, € L. Also, we have

y, “[Fe] =2 f g ®sds = L WAL )1
el =[], =g | 0o pgr ety <0a)

16 1 13 3 2
[ o], =1 (VD] = 1 fo (1—qs)(3>\£dqs=rq1 rq<2)rq(3>€[0,%)

= T(R) () TG+ %)

(11)
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and

1
1 1 7 1

lh1lls = fo 5—\/2 dt=04< Erq(i - 1) = §1“67(,;41 -1),

(12)

1 10 1

1
3
lhalh = fo T T3 —1)= 5Tz - 1)

Tables 4 and 5 show the values of [I,;1 (wl(i.‘))]t=1 and [Igz(wz(t‘))]t=1 in inequalities (11) for some different values of q,
respectively. Also, we get

K((Q) = K, N)) = K(3M + 3N)

= max{K(M), K2 ) = K2 ) < k()

foreach Q = (M,N) C ?{2. Since g1(t, u, v) = h(t)x(u, v), we conclude that

K(g1(t, Q) = K( ()x(Q)) = l(HK(x(Q)) < h()K(Q).

Therefore, by employing a similar technique, we have

K(ga(t, Q) = K(h2())y(Q)) = M (HK(y(Q)) < hi(HK(Q).

Theorem 3.4 implies that the system (1) has a solution.
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Algorithm 1 The proposed method for calculated (a — b)

(@)
q

Input: a,b,a,1,q
I:se<1
2: if n = 0 then

fork=0tondo
se—s+(@—b*a")/(a—b=qgh)

end for

p «— all %8

9: end if

Output: (a —b)@

Algorithm 2 The proposed method for calculated T';(x)

Input: 1,9 € (0,1), x e R\{0,-1,2,---}
l:pe1

2: fork=0tondo

3 pepl-g"hH-gh

4: end for

5: Ty(x)  p/(1- )"

Output: Ty(x)

Algorithm 3 The proposed method for calculated (D, f)(x)

Input: g € (0,1), f(x), x
1: symsz
2: if x = 0 then

30 g < lim((f(2) - flg+2)/((1 - 9)2),2,0)

4: else

5 g (f(0) - flg*x)/(A - q)%)
6: end if

Output: (D, f)(x)

Table 1: Some numerical results for calculation of I';(x) with q = % that is constant, x = 4.5,84,12.7andn =1,2,...,15

of Algorithm 2.

n x=45 x=84 x =127 n x=45 x=84 x =127
1 2472950 11.909360  68.080769 9 2340263 11.257158 64.351366
2 2383247 11.468397  65.559266 10 2.340250 11.257095 64.351003
3 2354446 11.326853  64.749894 11 2340245 11.257074  64.350881
4 2344963 11.280255 64.483434 12 2340244 11.257066  64.350841
5 2341815 11.264786  64.394980 13 2340243 11.257064  64.350828
6 2340767 11.259636  64.365536 14 2.340243 11.257063  64.350823
7 2340418 11.257921  64.355725 15 2340243 11.257063  64.350822
8 2340301 11.257349  64.352456
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Algorithm 4 The proposed method for calculated (I7 f)(x)

Input: g€ (0,1), a, 1, f(x), x
l:s<0

2: fori=0tondo

3: Pf — (1 _ qz+1‘)u—1 )
4 ses+pfeqsfxq)
5: end for

6 g (*+ (1 - ) #5)/(Ty()
Output: (I f)(x)

Algorithm 5 The proposed method for calculated L ! f(rdyr

Input: g€ (0,1), o, n, f(x),a,b

1: s<0

2: fori=0:ndo

30 ses+q(bxfbrq)—axflaxq))
4: end for

5: g (1-¢q)=*s

output: [* f(r)d,r

Table 2: Some numerical results for calculation of I';(x) with g =

n___q=3 9= 9=3 n___q=3 9=3 =3
1 3.016535 6.291859 18.937427 18 2.853224 4921884  8.476643
2 2906140 5548726  14.154784 19 2.853224 4921879  8.474597
3 2870699 5222330 11.819974 20 2.853224 4921877 8.473234
4 2.859031 5.069033 10.537540 21 2.853224 4921876  8.472325
5 2855157 4.994707 9.782069 22 2.853224 4921876 8.471719
6 2.853868 4.958107 9.317265 23  2.853224 4921875 8.471315
7 2.853438  4.939945 9.023265 24  2.853224 4921875 8.471046
8 2.853295 4.930899 8.833940 25 2.853224 4921875 8.470866
9 2853247 4.926384 8.710584 26 2.853224 4921875 8.470747
10 2.853232  4.924129 8.629588 27 2.853224 4921875 8.470667
11  2.853226  4.923002 8.576133 28 2.853224 4921875 8.470614
12 2.853224  4.922438 8.540736 29 2.853224 4921875 8.470578
13 2.853224 4922157 8.517243 30 2.853224 4921875  8.470555
14  2.853224 4922016 8.501627 31 2.853224 4921875 8.470539
15 2.853224  4.921945 8.491237 32 2.853224 4921875 8.470529
16 2.853224 4921910 8.484320 33 2.853224 4921875 8.470522
17  2.853224  4.921893 8.479713 34 2.853224 4921875 8.470517

3,3, x=5andn=1,2,...,35 of Algorithm 2.
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Table 3: Some numerical results for calculation of Ty(x) withx = 8.4, 9= 1,3, 5 and n = 1,2,...,40 of Algorithm 2.

_ 1 _ 1 2 _ 1 _ 1 _ 2

n =3 9=3 =3 n 9=3 =3 =3
1 11.909360 63.618604 664.767669 21 11.257063 49.065390 260.033372
2 11.468397 55.707508  474.800503 22 11.257063  49.065384  260.011354
3 11.326853 52.245122  384.795341 23 11.257063  49.065381  259.996678
4 11.280255 50.621828  336.326796 24  11.257063 49.065380  259.986893
5 11.264786 49.835472  308.146441 25 11.257063  49.065379  259.980371
6 11.259636  49.448420  290.958806 26  11.257063  49.065379  259.976023
7 11257921 49.256401  280.150029 27  11.257063  49.065379  259.973124
8 11.257349  49.160766  273.216364 28 11.257063  49.065378  259.971192
9 11.257158 49.113041 268.710272 29  11.257063  49.065378  259.969903
10  11.257095 49.089202  265.756606 30 11257063  49.065378  259.969044
11  11.257074  49.077288  263.809514 31 11257063  49.065378  259.968472
12 11.257066  49.071333  262.521127 32 11.257063  49.065378  259.968090
13 11.257064 49.068355 261.666471 33  11.257063 49.065378  259.967836
14 11.257063 49.066867  261.098587 34 11.257063  49.065378  259.967666
15  11.257063 49.066123  260.720833 35 11.257063 49.065378  259.967553
16  11.257063 49.065751  260.469369 36 11.257063  49.065378  259.967478
17  11.257063 49.065564  260.301890 37 11.257063 49.065378  259.967427
18  11.257063  49.065471  260.190310 38 11.257063  49.065378  259.967394
19 11.257063 49.065425 260.115957 39  11.257063  49.065378  259.967371
20 11.257063  49.065402  260.066402 40  11.257063  49.065378  259.967357

t=1

17
Table 4: Some numerical results of [I:’{’(t)] inequality (11) in Example 4.1 for q € {%, %, g}. One can check that [Lf (t)] e[o, %)
t=1

9=5 9=3 9=% ,

n | T, Lie+yn) 0], L, Le+yn) [T, LR ety [To),

T 1.002  2.0979 04776 11429 383805 0.0298 33594  140964.0908 0

2| 1.0002  2.0938 04777 1.0667  33.6243 0.0317 26617  61731.7617 0

30 1 2.0933 04777 10323 31.5422 0.0327 22468 324236282  0.0001

40 1 2.0932 0.4777 10159  30.5659 0.0332 19734  19319.8718  0.0001

50 1 2.0932 04777 1.0079  30.0929 0.0335 17808  12631.2336  0.0001

6| 1 2.0932 04777 1.0039  29.8601 0.0336 16387 8865.5569 0.0002

71 1 2.0932 04777 1.002  29.7446 0.0337 15301  6579.6665 0.0002

8| 1 2.0932 04777 1001 29.6871 0.0337 1445 51070357  0.0003

9] 1 2.0932 04777 1.0005  29.6584 0.0337 13769 4111.7549 0.0003
0] 1 2.0932 04777 10002  29.6441 0.0337 13216 34121729 0.0004
1 1 2.0932 04777 1.0001  29.6369 0.0337 1276 29041757  0.0004
40| 1 2.0932 04777 1 29.6297  0.0337 10072 943.649 0.0011
41 1 2.0932 04777 1 29.6297  0.0337 1.0064  939.9897 0.0011
2| 1 2.0932 04777 1 29.6297  0.0337 1.0056 9367508 0.0011
s3] 1 2.0932 04777 1 29.6297  0.0337 1.005  933.8826 0.0011
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Table 5: Some numerical results of [I};’(t)] inequality (11) in Example 4.1 for q € {%, %, g} One can check that [Iq3 (t)] e|o, %)
t=1

t=1

9=3 9= 9=%
n | e Lesn B0, LR Le+y) [0 LR Le+n (o]
1 | 0.9687 1.877 0.5161 0.9965 21.6657 0.046 1.6936  25796.1141 0.0001
2 | 0.9675 1.8733 0.5165 0.9565 18.9992 0.0503 1.4923 11873.769 0.0001
3 | 09673 1.8728 0.5165 0.9382 17.8313 0.0526 1.3628 6503.4478 0.0002
4 | 0.9673 1.8728 0.5165 0.9294 17.2835 0.0538 1.2721 4015.4293 0.0003
5 | 0.9673 1.8728 0.5165 0.9251 17.0181 0.0544 1.205 2706.2688 0.0004
6 | 09673 1.8728 0.5165 0.923 16.8875 0.0547 1.1535 1949.717 0.0006
7 | 0.9673 1.8728 0.5165 0.9219 16.8227 0.0548 1.1128 1479.9943 0.0008
8 | 0.9673 1.8728 0.5165 0.9214 16.7904 0.0549 1.0801 1171.4155 0.0009
9 | 0.9673 1.8728 0.5165 0.9211 16.7743 0.0549 1.0533 959.2878 0.0011
10 | 0.9673 1.8728 0.5165 0.921 16.7662 0.0549 1.031 807.9574 0.0013
11 | 0.9673 1.8728 0.5165 0.9209 16.7622 0.0549 1.0124 696.637 0.0015
45 | 0.9673 1.8728 0.5165 0.9209 16.7582 0.055 0.8945 245.149 0.0036
46 | 0.9673 1.8728 0.5165 0.9209 16.7582 0.055 0.8943 244.6677 0.0037
47 | 0.9673 1.8728 0.5165 0.9209 16.7582 0.055 0.8941 244.2408 0.0037
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