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On a Hilfer Fractional Differential Equation With Nonlocal
ErdéLyi-Kober Fractional Integral Boundary Conditions

Mohamed I. Abbas?

®Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21511, Egypt

Abstract. We consider a Hilfer fractional differential equation with nonlocal Erdélyi-Kober fractional
integral boundary conditions. The existence, uniqueness and Ulam-Hyers stability results are investigated

by means of the Krasnoselskii’s fixed point theorem and Banach’s fixed point theorem. An example is given
to illustrate the main results.

1. Introduction

It has become widely observed in recent years a large number of research papers interested in the theory
of fractional differential equations, whether those involving classical Riemann-Liouville and Caputo type
fractional derivatives or that include Hadamard and Hilfer type fractional derivatives, see for example
(1,4} 1658, [11) 113} 118, 121, 22| 24}, 30, 32]] and references cited therein.

On the other hand, The stability of functional equations was originally raised by Ulam [29], next by
Hyers [17]. Thereafter, this type of stability is called the Ulam-Hyers stability. The concept of stability
for a functional equation arises when we replace the functional equation by an inequality which acts as a
perturbation of the equation. Considerable efforts have been made to study the Ulam-Hyers stability of all
kinds of fractional differential equations, see for example [2, 3, 5] and references therein.

In the past few years, the Erdélyi-Kober fractional derivative, as a generalization of the Riemann-
Liouville fractional derivative, is often used, too [28}131]. An Erdélyi-Kober operator is a fractional integra-
tion operation introduced by Arthur Erdélyi and Hermann Kober in 1940 [19]. These operators have been
used by many authors, in particular, to obtain solutions of the single, dual and triple integral equations
possessing special functions of mathematical physics as their kernels. In [10], B. Ahmad et al. studied the
existence and uniqueness of solution of a class of boundary value problems of Caputo fractional differential
equations with Riemann-Liouville and Erdélyi-Kober fractional integral boundary conditions of the form

CDIx(t) = f(t,x(t)), t€[0,T],
x(0) = aI?Px(Q), x(T)=pI}°x(&), 0<(E<T.
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In [9], B. Ahmad and S. K. Ntouyas considered the following Riemann-Liouville fractional differential
inclusion with Erdélyi-Kober fractional integral boundary conditions

DIx(t) € F(t,x(t), 0<t<T,1<g<2,
x(0)=0, ax(T) = Y BTl "x(E), 0<&<T,

they applied endpoint theory, Krasnoselskii’s multi-valued fixed point theorem and Wegrzyk's fixed point
theorem for generalized contractions.

By using Mawhin continuation theorem, Q. Sun et al. [26] investigated the existence of solutions of the
following boundary value problem at resonance

COix(t) = f(t,x(t),x (t)), te€[0,Tl,
x(0) = a I)°x(0), x(T)=pPIx(&), 0<(E<T,

where P17 denotes to the generalized Riemann-Liouville (Katugampola) type integral of order p > 0.

In the last of this brief survey, N. Thongsalee et al. [27] studied the sufficient conditions for existence
and uniqueness of solutions for system of Riemann-Liouville fractional differential equations subject to the
nonlocal Erdélyi-Kober fractional integral conditions of the form

Dhx(t) = f(t,x(t),y®), tel0,T], 1<q <£2
DPy(t) = g(t, x(t), y(t)), t€[0,T], 1 <ga<2
x(0) =0, Y(T) =0 d)"x(&), 0<& <T,
y(0) =0, x(T) = 021" y(&), 0<& < T.

m

Based on the above mentioned papers, we consider the Hilfer fractional differential equations with Erdélyi-
Kober fractional integral boundary conditions of the form

Hpabx(t) = f(t,x(t)), tel0,Tl,

m

x(0) =0, (1) = ) oih " x(&),

i=1

1)

where D% is the Hilfer fractional derivative of order a € (0, 1) and type g € [0, 1] introduced by Hilfer (see,
[14416]) , I f]'f’éi is the Erdélyi-Kober fractional integral of order 6; > O withn; >0and y; € R, i =1,2,--- ,m
and 0; € R, &; € (0, T) are given constants.

To the best of the author’s knowledge this is the first paper dealing with Hilfer differential equation subject
to Erdélyi-Kober type integral boundary conditions.

The paper is organized as follows: Section 2 contains some preliminary concepts related to fractional
calculus and Section 3 comprises the existence and uniqueness results. In Section 4, we analyze the Ulam-
Hyres stability results. Finally, Section 5 contains an illustrative example of our main results.

2. Preliminaries

In this section we present some definitions and lemmas which will be used in our results later.
Atfirst, we review some fundamental definitions of the Riemann-Liouville fractional integral and derivative
which will be made up to the Hilfer fractional derivative (see [12} 20]).

Definition 2.1. The Riemann-Liouville fractional integral of order o > 0 of a continuous function y : (0,00) — R
is defined by

¢
I*y@t) = %a) ](; (t=s)*y(s)ds, n—-1<a<n, 2)
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where n = [a] + 1, [a] denotes the integer part of a real number a and T'(-) is the Gamma function defined by
T(@) = fooo e~5s%"1ds, provided the integral exists.

Definition 2.2. The Riemann-Liouville fractional derivative of order o > 0 of a continuous function y : (0, 00) — R
is defined by

Dy

Dﬂfﬂ—ay(t)

—1 d ' t n—-a-1
T(n-a) (E) fo(t—s) y(s)ds, n—1<a<n,

Definition 2.3. (Hilfer fractional derivative) The Hilfer fractional derivative operator of order o and type B is defined
by

Hz)a,ﬁy(t) — Iﬁ(n—a)z)n[(l—ﬁ)(n—a)y(t), (3)

wheren—1<a<n,0sﬁ§1and1):%,

This generalization (3) yields the classical Riemann-Liouville fractional derivative operator when § = 0.
Moreover, for f = 1, it gives the Caputo fractional derivative operator.

Some properties and applications of the generalized Riemann-Liouville fractional derivative are given
in [14].

Definition 2.4. The Erdélyi-Kober fractional integral of order 6 > 0 with 1 > 0 and u € R of a continuous function
y : (0, c0) = R is defined by

[y,é N = nt"?(é‘*#) ts'ﬁl"’n_ly(s)
n y( ) = L(6) 0 (t” _ 51))1—(‘) S,

4)

provided the right side is pointwise defined on R*.
Remark 2.5. For n =1, the above operator is reduced to the Kober operator

t—(ﬁ"'l-l) t s:”y(s)

1,0 _
KO =Ty

ds, u,6>0,

that was introduced for the first time by Kober in [19]]. For u = 0, the Kober operator is reduced to the Riemann-
Liouville fractional integral with a power weight:

t0 ' y(s)
00,08 —
K™ y(t) = o) J, (t—s)lféds' 0> 0.

Lemma 2.6. Let 6,1 > 0and p,q € R. Then we have

woy _ T+ (@/m)+1)
n T(u+@/n+o6+1)

Lemma 2.7. Let 1, A and v be positive constants. Then
t —
tq(A 1)+v
[fwr-syet - S,
0 n n

where B(w, v) = fol(l —5)?"1s71ds, (Re(w) > 0, Re(v) > 0) is the well-known beta function.

I
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Lemma2.8. let1 <a <2. Then

Il—a
r(pr o = ) - S r<af>)—(a) (t-a)! -

(> f)@)

Ta-1) (t—a)* 2.

Now, We adopt the following definitions of Ulam-Hyeres and generalized Ulam-Hyers stabilities from Rus
[23].

Definition 2.9. Equation considered in problem (1) is Ulam-Hyers stable if there exists a real number Cy > 0 such
that for each € > 0 and for each solution y € C([0, T], R) of the inequality

1D Py) - f (L yt)| <€, tel0,T],
there exists a solution x € C([0, T], R) of Eq.(T) with
ly(t) = x(t)| < Cre, te[0,TI.

Definition 2.10. Equation considered in problem (1) is generalized Ulam-Hyers stable if there exists 9y € C(R*, RY),
9¢(0) = 0 such that for each solution y € C([0, T], R) of the inequality

"D Py) - f(tyb)| <e telo,T],
there exists a solution x € C([0, T], R) of Eq.(T) with
|ly(t) = x(t)] < 94(e), te0,TI.
Remark 2.11. It is clear that Definition 2.9 = Definition[2.10}

To end this section, we recall the Krasnoselskii’s fixed point theorem, which plays a key role in the main
results for the problem ().

Theorem 2.12. (Krasnoselskii’s fixed point theorem [25]) Let K be a closed convex and non-empty subset of a
Banach space X. Let A and B, be two operators such that

(i) Ax+ By eK, forallx,y € K;
(ii) A is a contraction mapping;
(iii) B is compact and continuous.

Then there exists a z € K such that z = Az + Bz.

3. Existence and Uniqueness Results

Let C([0, T], R) be the Banach space of all real-valued continuous functions from [0, T] into R equipped
by the norm |lxllc = sup,o 1 lX(#)l, Yx € C([0, T], R).

Lemma3.1. letl <a<20<B<L,y=a+28-aB,6;,n >0,u,0i € R,&E € (0,T), i =1,2,--- ,mand
h € C([0, T1, R). Then the linear Hilfer fractional differential equation subject to the Erdélyi-Kober fractional integral
boundary conditions

®)

Hpbyx(t) = h(t), t€[0,T],
x(0) =0, x(T) = Ly 0: 75" x(&),
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is equivalent to the following fractional integral equation

-1 m
x(t) = T°h(t) + % Z o Ih M IOn(E) - I°K(T) |, (6)

i=1

where

_ Z 68! T(pi+(y=1)/ni +1)

S STy @

i=1
Proof. By Definition 2.3 (with n = 2), the equation "D*x(t) = h(t) can be written as
TP P2 TA-P=0) (1) = 1(t). (8)

Applying the Riemann-Liouville fractional integral 7% of order a to the both sides of the equation (§), we
get
TP P TOPROx() = Th(¢).

Indeed,
I07PE D2 AP0y (t) = TV D*T* 7 x(t) = TV (REDYx)(H),

thus
I7RLDrx)(t) = Th(t).

By using Lemma[2.8|(with a = 0), we get
(T 72(0) g, (272)(0) s

x(t) = I°h(t) +

I'(y) I'(y-1)
Setting (7177x)(0) = c1, (Z277x)(0) = ¢, gives
x(t) = T°h(t) + 1y 2 p-2
O =0+ 705+ 15, o)
From the first boundary condition x(a) = 0, we obtain c; = 0. Then we get
() = Th(t) + —— 1. 9
(6= 1) + £ ©)

m

In view of Lemmaand the boundary condition x(T) = Z oil, H’ ‘x(&7), we get

i=1

a - . MO a _t1 /1

Mw

m
idi o ) ‘1 i Oi g1
ST THED + s 2 o, ThPE)

i=1

Il
—_

Wby e L € N g1 Lt (y=D/ni+1)
A () ;‘Gléi T(ui + (= 1)/ni+ 6+ 1)

Ms

Il
—_

Therefore, we conclude that

Y oiT4 O T h(E) — T°I(T) ]_ r(y)[ <

Tl o N_ 7@
Tr-1 y=1_TQu+(=D/ni+1) A ZGZI’F L70(&) = I7h(T) |-
~ L= 0 Musgn7peoan =

c1 =T(y) [

By substitution the value of ¢; in equation (), we obtain the solution (6). The converse follows by direct
computation. This completes the proof. [
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We consider the following assumptions:
(H1) The function f : [0, T] x R — R is continuous.
(H2) There exist constants L, M > 0 such that
If(t,x) — f(t,y)| < LIx — y|, for each t € [0,T], x,y € C([0, T], R),
and
M = sup |f(0, ).

te[0,T]

(H3) There exists a function i € C([0, T], R*) such that
If(t,x)| < Y(t), forall (t,x) € [0, T] X R,

and

[l = sup [P(E)l.

te[0,T]

We transform the problem (1) into a fixed point problem ¥ x = x, where the operator # : C([0, T], R) —
C([0, T], R) is defined by

1 (.m
(Fx)(t) = N [Z Gl T (5, xO)(E) — T (s, x()(T) |,
i=1
where
'7’(6 +i) +n;—1 a-1
1,0 7 yql#’ I (y_s)
I T° f(s, x(9))(&) F((S @ f f @y f(s, x(s))dsdy,

where &; € (0,T) fori=1,2,--- ,m,and

a 1 Y a-1
I fs 3@ = 1 [ =9 e xMs, ye e

fort € [0, T].
The following uniqueness result is based on Banach'’s fixed point theorem.

Theorem 3.2. Under the assumptions (H1) and (H2), the boundary value problem (1) has a unique solution on
[0, T, provided that LQ) < 1, where

(10)

I +a/ni+u+1)

1 Ty+o-1 TV1 |loilEST(a/ni + i + 1)
= =+ Z
T'a+1) |A| m

Proof. Define the set B, = {x € C([0, T], R) : |lx]lc < r} with

MQ

> .
"=17I0

Clearly, the fixed points of the operator ¥ are solutions of problem (T).
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We show that # B, C B,. For any x € B,, we have

IAI

I(Fx0)BI < sup {I‘*If(s xX(s))I(E) + f“lf(s x(s))I(T

t€[0,T]
-1 & it e
’ W;'Gll% I lf(ax(s)»(@)}

I (If (s, x(s)) = f(s,0)[ + |f(s,0)) (T)
Tr-1

+ WI“ (If (s, x(s)) = f(s, 0)l + £ (5, 0))) (T)

IA

y-1
" Z 0l T (15, %) = £(5,0) + (5, 0 (£9)

(LHM)(H >f na 1“l“mlr(a)f (T sy

T?/—l m | lnlé —1i(0i+u;) f f yr],y i+1i— l(y_s)a ld p
" & T &y

IA

= Ta+D R M vy
_ LM, Tt T Z loil & T(a/ni + pi + 1)
T T(a+1) IA| |A| T(6; + a/ni + i + 1)

= (Lr+M)Q<r,
which implies that ¥ 8, C B,.

Next, for each t € [0, T] and x, y € C([0, T],R), , we have

I(Fx)() = (Fy) @)

IA

Al

¢ Z| AT T (1G5, 26) = £G5, YD) ()

O

Lr+M (o, D Ty me f oyt
0 &~y

IA

T
Ta+)| 1A A
LO||x = yll,

I +a/ni+u;+1)

which implies that [|Fx — Fy| < LO||lx — y||. AsLQ < 1, F is contraction.

L TV+a- 1 Tv 1 Z |C71 5ar 0(/1]1 + Wi + 1)

3009

(16, ) - Fls, YO (D) + L% (15, 1) — Fls, y&)N) (D)

llx = yll

Therefore, we deduce by the Banach’s contraction mapping principle, that ¥ has a fixed point which is the

unique solution of the boundary value problem (). The proof is completed. [

The following existence theorem is based on the Krasnoskelskii’s fixed point theorem (Theorem [2.12).

Theorem 3.3. Assume that assumptions (H1) — (H3) hold. Then the boundary value problem (1) has at least one

solution on [0, T], provided that LA < 1, where

1 el vl G ol T (a/ni + pi + 1)
“Ta+n| Al A Z L +a/ni+pi+1)

(11)
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Proof. Consider B,- = {x € C([0, T], R) : [Ixllc <7} with 7" > [[]|QQ. We define two operators A, B on B, by

(Ax)(t) =

(Z. T I f(s, X(6)(E) — T, XD,

and
(Bx)(t) = I° f(s, x(s))(®)-

Foreacht € [0,T] and any x, y € B,., we have

/

Al

A

(AN ) + (Bo)(#)] < sup {f“If(5,X(S))I(f)+ I°f (s, x(s)IT)

te[0,T]

/ 1 m
v o zlf“f’é’f“lf(s,x(S))I(éi)}

IN

y+a-1 Y- oi|l&T(afm; + ui + 1
Iyl — LT Zl &7 (/i + pi + 1)
I'a+1) |A |A| I +a/n+ui+1)

= [Pl <.
Therefore, Ax + Bx € B,-.
Next, it is easy to show that Ax is contraction. Indeed,

Ty—l
Al

y—1
+ 1;A| ZI iy e (1f(s,x(s)) = f(s, y(s)I) (&)

IA

[(AX)() = (Ay)(®)| I (If (s, x(5)) = f(s, y(sNN (T)

1 Ty+a-1 T)’ U loiléfT(a/ni + pi+ 1)
< Z e s ol |
IFa+1) |A |A Loi+a/n+ui+1)
= LAllx -yl

Since LA < 1, then A is contraction.
It remains to prove the continuity and compactness of 8. In view of assumption (H1), the continuity of the
function f implies that the operator 8 is continuous. Also, we observe that

(Bx)®)] < sup {I7|f(s, x(s)I(D)}

te[0,T]
T
Ta+1) 1l
This shows that 8 is uniformly bounded on B;-.

Now, we prove the compactness of 8. We define

sup  |f(t,x)| = f< 0.

(t,x)€[0,T]xB,+
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Foreachty, t; € [0,T], 1 <t and x € B,-, we get

ty t
(B9 - B0 < s f (2 — 9% (5, x(5))ds - fo (51— 91 (5, x(3))ds
< F(a+1)(f [(t =) = (1 = )" UIIfGs, x(5))lds
_ o)1 d
N f (t1 - 51" |f(s, () s)
f .
S Tasphthk

The right hand side of the above inequality tends to zero as t, — t; — 0, which implies that 8 is equicon-
tinuous. Hence 8 is relatively compact on B,-. By the Arzela-Ascoli theorem, we deduce that the operator
8 is compact. We conclude, by the Krasnoskelskii’s fixed point theorem, that the boundary value problem
has at least one solution on [0, T]. The proof is completed. [

4. Stability Results

In this section, we discuss the Ulam-Hyers and generalized Ulam-Hyers stability results for the problem

(1)
Remark 4.1. A function y € C([0, T], R) is a solution of the inequality
"D Fy() - f (1 y®)| <e telo,T],
if and only if there exist a function g € C([0, T], R) (which depend on y) such that
(i) lgt)l <€, te[0,T],
(ii) "D Py(t) = f (t, y(t)) + g(t), t€[0,T],
Lemma 4.2. If y € C([0, T],R) is a solution of the inequality
oM y) - f(tyt)| <e, tel0,T],

then y satisfies

ly(®) = (F YOI < Qe, (12)
where Q) is defined in (10).

Proof. From Remark [4.T]and Lemma 3.1} we have

y-1

¥ = T,y + )0 +

N G I (fGs, y(6) + 9D — T(F(s, y(6) + 9)(T) |

i=1
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Then, we get
)/

-1 m
h [Z oLy I (fs,y(6) + (&)

i=1

ly(5) = (Fy)(®)l

I%(f(s, y(s) + 9)(8) +

I(f(s, y(s)) + !7)(T))

-1 A
T fls, o)) ~ 5 [Z ST T fls, yNED - TG, y(s))(T)J

i=1

IA

1 (m
Ilgl(t) + % (Zf o8 T g1(E) - I“Igl(T)]
< Qe :
This completes the proof. [J
Theorem 4.3. Assume that assumptions (H1) and (H2) are satisfied. Then the problem (1) is Ulam-Hyers stable.
Proof. Lete > 0,y € C([0, T], R) be a solution of the inequality
"Dy - £ (L y®)| <e tel0,T],

and let x € C([0, T], R) be the unique solution of problem . Then, we have

PN s,
y® —x®OF = |y - L°fs, 260 - — Z oy T f(s, x(s))(Ei) — L7 f (s, x(s))(T)
i=1
= |y(®) = (Fx)@)
= ly®) = (Fy® + (Fy)©) = (F 00
< ly@) = (FyOI+1IFy)E) — (Fx)@)l
< Qe+ LAy —x,
which implies that

Qe
) —x() < 75 Q<1

By setting Cy = 1535, we get
ly(t) — x(t)| < Cre.

Thus, the problem (1)) is Ulam-Hyers stable.
If we set 9¢(e) = Cre, 9¢(0) = 0, then the problem (1) is generalized Ulam-Hyers stable. [J

5. An example

In this section we consider the following Hilfer fractional differential equation with Erdélyi-Kober
fractional integral boundary condition:

Hqi,2 _ lx(#)]
Dsrox(t) = 25 VA+2(1+[x()))” telo1],
(13)

x(0) =0, x(1)= 11"
5
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1 2

_ _ 5 _ _ _ _ _ _ 5 _ 1 _ 2 1 _ 3 _ 5 —_
wherea = 3,=2,y=5,T=1m=3,01=3,00=%,05=3,l1 = 3,2 =513 =5,00 = 35,00 =3,03 =
3

Lm=Lm=3m=1&=%&=3 & =2 and the function f(t, x(t)) = =

9’ 25 VA+2(1+[x(t)]) *

We can see that

[f(t,x() = f(t,y@®) = (?) - o)
25Va+ 21+ x(t))  25Va+£2(1 + |y(t))
1 ()] = ly(®)]
254 + 12 (1 + [x()DA + [y@®)])
< lolx -yl

which implies, by assumption (H2), that L = =
Simple calculations give

v i+ (@ =1/ni+1)
A=T"1-Y gt —0.029801394 # 0,
; =i I+ (@ =1)/ni+06; + 1)
1 L Tyt TV o ol &S T (/i + pi + 1)
= e D T + o o Tan D |~ 43.74995072,

and

1 Tr+a-1 T” ! Z loil &S T(a/ni + pi + 1)

= ~ 4291 2.
Ma+1)| |Al TG +a/n+u+1) 9100658

Hence, we get LQ ~ 0.8749990144 < 1 and LA ~ 0.8582013164 < 1.
Therefore, the conclusion of Theorem [3.3| implies that the boundary value problem has at least one
solution on [0, 1] and by Theorem 3.2} this solution is unique.
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