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Some Geometric Properties of a Subclass of Multivalent Analytic
Functions Defined by the First-Order Differential Subordination
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Abstract. A new class 7,,(A, B, A) of multivalent analytic functions defined by the first-order differential
subordination is introduced. Some geometric properties of this new class are investigated. The sharp lower

bound on |z| = ¥ < 1 for the functional Re {(1 - /\)% + %} over the class 7,,(A, B, 0) is given.

1. Introduction

Throughout our present investigation, we assume that

n,peN, -1<B<1, B<A and A > 0.

(1.1)
Let A, (p) denote the class of functions of the form
f@y=2"+) o (1.2)
k=n

which are analytic in the open unit disk U = {z : |z| < 1}.

For functions f(z) and g(z) analytic in U, we say that f(z) is subordinate to g(z) and write f(z) < g(z)
(z € U), if there exists an analytic function w(z) in U such that

[wz)| <z and f(z) = g(w(z)) (ze€ U).

If the function g(z) is univalent in U, then

f@) <g(z) (zeU) & f(0)=g(0) and f(U)c g(U).
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Definition. A function f(z) € A,(p) is said to be in the class 7, (A, B, A) if it satisfies first-order differential
subordination:
f(2) /\f (z) 1+ Az

1-
( Ry zP sz 1 1 + Bz

z € ). (1.3)

Recently, several authors (see, e.g., [1-7, 9, 11] and the references cited therein) introduced and inves-
tigated various subclasses of multivalent analytic functions. Some properties such as distortion bounds,
inclusion relations and coefficient estimates were given. In [12] Srivastava made a systematic investiga-
tion of various analytic function classes associated with operators of basic (or g-) calculus and fractional
g-calculus. Inspired by some recent works of Srivastava et al. [8, 12-18] the main object of the paper is to

obtain inclusion relation, sharp bounds on Re (f ¢ )) and coefficient estimates for functions f(z) belonging to
the class 7,(A, B, ). Furthermore, we study a new problem, that is, to find

min Re {(1 f(z) + Af,(Z)},
zP

|zl=r<1 pzp_l

where f(z) varies in the class:

(1.4)

T(A,B,0) = {f(z) e L < 112 }

In order to derive our main results we need the following lemma.
Lemma [10]. Let g(z) be analytic in U and h(z) be analytic and convex univalent in U with 1(0) = g(0). If

1,
9(2) + P (2) < h(z),
where Repy > 0 and p # 0, then g(z) < h(z).

2. Geometric properties of functions in the class 7,(A, B, 1)

Theorem 1. Let 0 < A; < A,. Then 7,,(A, B, A;) € T7,,(A, B, A1).
Proof. Let 0 < A1 < A, and suppose that

_f®
9(z) = 7 (2.1)
for f(z) € T4(A, B, A2). Then g(z) is analytic in U and g(0) = 1. By using (1.3) and (2.1), we have
f ( L f' @) A,
1 -22)7~ o T 9@+ =2 @)
1+ Az
< T+ B (2.2)
An application of Lemma yields
1+ Az
9@ < 1535 (2.3)

Noting that 0 < % < 1 and that the function ﬁ‘g‘; is convex univalent in U, it follows from (2.1), (2.2)
and (2.3) that

f (Z L Mf @

(- A)—> -
Nz
)\1 f(Z) /\2f M
a-a 2 L0 (1= o
1 + Az

< .
1+ Bz
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This shows that f(z) € 7,(A, B, A1). The proof of Theorem 1 is completed.

Theorem 2. Let f(z) € 7,(A, B, A). Then for |z| = ¥ < 1, we have

Bm—l nm

f(2) - r
Re(z_P)Zl_p(A_B); Anm +p’

sl m—1
Re(%)>1—p(A—B)Z B

~ Anm +p’
f@ (B
Re(zp <1+p(A-B) L vy

and
f@@ " (=B
Re( | <1+pa B)mZ:l e (B # -1).
All the bounds are sharp for the function f,(z) defined by

ks (_B)m—lznm+p

fu2) =2 +p(A=B) ) |

———— (zel).
~  Anm+p
Proof. It is known that for [£| < 0 (0 < 1),

1+AS 1 - ABg?
1+BE  1-B%?

(A-B)o
<
~ 1-B20?

and

1-Ac (1+A£) 1+ Ao
< Re < .
1-Bo 1+ B¢ 1+ Bo

Let f(z) € Tw(A, B, A). Then we can write

PIpA f(z) /\f’(z) _ 1+ Aw(z)
bid pzl’—l " 1+ Buw(z)

(1- (zel),

2821

2.4)

(2.5

(2.6)

2.7)

2.8)

(2.9)

(2.10)

(2.11)

where w(z) = w,z" + W,z +- -+ is analytic and |w(z)| < 1 for z € U. By the Schwarz lemma we know that

|w(z)| < |z|" (z € U). It follows from (2.11) that

p(1=A) L

\ p p
T @)+ f@) = 1(

which implies that

pi=) E 1 1+ Aw(z)
( f (Z)) 1 (1 T Bw) )
After integartion we get

_pih v [1+Aw(&)
f@) = [« 1(—1+ Bw(a)d‘f

1
_P, g (14 Aw(tz)
s fo ! (1+Bw(tz) dt

1+ Aw(z)
1+ Bw(z) ]’

(2.12)
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Since
lw(tz)] < " (zl=r<1;,0<t <),

we have from (2.12) and left-hand inequality in (2.10) that for |z| = r < 1,

f() Pfl 3_1(1—At"1’”)
I s B b P —— .
Re( 225 | () 2.13)
ks Brm—1ynm
_1_p(A_B)ZAnm+p’
m=1

and forz € U,

f() Pfl g_l(l—At”)
Re(zp >/\ Ot\ T dt
sl Bm-1
_1_p(A_B)mZ=1)\nm+p'

Similarly, by using (2.12) and the right-hand inequality in (2.10), we have (2.6) and (2.7).
Furthermore, for the function f,(z) defined by (2.8), we find that f,(z) € A,(p) and

f(z)  Af'(2) 5 1 nm
A==+ = :1+(A—B)mZ:{(—B) 1gmm <

1+ Az
1+Bz’

Hence f,(z) € T4(A, B, A) and from (2.8) we conclude that the inequalities (2.4) to (2.7) are sharp. The proof
of Theorem 2 is completed.
Theorem 3. Let f(z) € 71(A, B, A) and

_l](Z) € ‘7'1(A1,Bl,/\1) (—1 <By <1, By <Ai; Ay > 0)

If
0 m—1 1
1
p(A1 Bl); Tm+p <5 (2.14)

then (f * 9)(z) € 71(A, B, A), where the symbol * denotes the familiar Hadamard product of two analytic
functions in U.
Proof. Since g(z) € T1(A1, B1, A1), we have from the inequality (2.5) and (2.14) that

96) Z“’ ol
A — — > .
Re( o ) >1 p(Al Bl)m=1 A + p Z5 (ze )
Thus the function % has the Herglotz representation:
9(z) f dp(x)
> = - Tow (ze ), (2.15)

where p(x) is a probability measure on the unit circle x| = 1 and i1 du(x) =1.
For f(z) € T1(A, B, A), we have
(Fr9)0) _ f@) g6

zP zP zP

f+9'@ _ @ 9@

zp-1 T oyl zP

and
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Thus

PINAL G
pz

=(1—A)(f(z)*@)+1(f'(z)*@)

Pz p\zr-t 2z

~ )+ 12

zP

7

(2.16)
where

@ A 1+4z
W)= (1= + T <115 z e ).

(2.17)

In view of the function %:’g; is convex univalent in U, it follows from (2.15) to (2.17) that

(f*9@)  Afx9)(@) _ 1+Az
1-A2) - + p—m = L:l h(xz)du(x) < 1+ B2 (z € V).

This shows that (f * g)(z) € T1(A, B, A). The proof of Theorem 3 is completed
Theorem 4. Let

f@) =2+ Z w2 € T(A, B, A).
k=n

(2.18)
Then

p(A — B)

|la| < +p (k = n).

(2.19)
The result is sharp for each k > n.
Proof. 1t is known that, if

o)

pz) = Z cjzj <Yz (zel),

j=1
where ¢(z) is analytic in U and ¢(z) = z + - - - is analytic and convex univalent in U, then |c;| <1 (j € N).
By (2.18) we have

() | Af'(2)
(1—A)J‘Z—§+p§7j—1 1

= (Ak +p)a Zk
p(A-B) p(A-B) kZ ¢

<

z

. 2.2
1+8z ¢V (2.20)
In view of the function 75 is analytic and convex univalent in U, it follows from (2.20) that

Ak +p
al <1 (k> n),
p(A_B)|k| (k = n)

which gives (2.19).
Next we consider the function fi(z) defined by

p A-B 3 (_B)m—lzkm+i7 U; k
= —_— —_— . >
f@) =2 +p( ) Akm +p (e U; k=n).

m=



J.-L. Liu / Filomat 34:9 (2020), 2819-2827 2824

Since ,
i z) Afk @) 1+AZ 1+Az
pzp‘l " 1+Bzk  1+Bz

(1= )= (z e U)

and

p (A - B) k
=P +p
filz) =2 + Ky FAME
for each k > n, the proof of Theorem 4 is completed.
Theorem 5. Let f(z) € 7,(A,B,0). Then for |z| =r < 1,
(1) if M, (A, B, A, 1) > 0, we have

4 — _ n 2n
ela- A)f(z) Af (zl) 5 p— (p(A + B) + An(A — B))r" + pABr ; (2.21)
pzr- p(1 - Br)?
(ii) if M, (A, B, A,r) <0, we have
Af 4A?K4Kp — 12
eq(1- A)@ fal, ARaKy ~ L, (2.22)
pzP1 4Ap(A - Byr"=1(1 — r2)Kp
where
Kq =1-A%" —nAr=1(1 - r?),
Kg =1— B> —nBr~1(1 - 1?), (2.23)
=2A(1 — ABr®") — An(A + B)r" (1 = 12) — p(A — B)r"1(1 - 1?), '
M, (A, B, A, r) = 2AKg(1 — Ar") — L, (1 — Br").
The results are sharp.
Proof. Equality in (2.21) occurs for z = 0. Thus we assume that 0 < [z| = 7 < 1.
For f(z) € Tx(A, B,0), we can write
f@) _1+A2"9(2)
7 " 1+ Bg) (ze), (2.24)
where @(z) is analytic and |@p(z)| < 1in U. It follows from (2.24) that
1@, Ve
zF pzf’ 1
_ fl&  MA-B)nz'p(z) + 2" ¢’ (2))
Tz p(1 + Bz"¢(z))?
f@, An f (Z) f@)) | MA-BZ"¢'(2)
=7 -1)[A-B—= . 2.2
7 " uA-B) 5 |t D Brew)y @.25)
Making use of the Carathéodory inequality:
lp2)I?
9’ @) < Lz,
7
we obtain
Re n+1(p (Z) - 1’”+1(1 _ |(P(Z)|2)
(1+Bz'p(z))?) — (1 -1+ Bz'p(z)P
2n A — B@ 2 f(Z 2
T | =17 -1 . (2.26)

(A-B)?r-1(1-1r?)
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Put 2 =+ iv (4,0 € R). Then (2.25) and (2.26) give

f@) Af'(z) An(A + B) AnA
Re{(l—/\)z—p+—pzlg_1 }2(1+ (A=) )u_p(A—B)

AnB ’ B AP ((A — Bu)? + (Bu)?] — (1 — 1)* + v)]

_ 2
pa-p ") p(A =By 1(i— 1)
B An(A+B)\  An oy A(P"(A = Bu)* — (u—1)%)
- (1 *pA-B) )” pa-B P T T e - )
A 1 — B2y
+ m (TIB + m)vz. (227)

Note that

1 — B2 1 -2

_ 2 44 2(1-2) , ,2(n-1)
f”‘1(1—r2)_r”-1(1—r2)‘rn_-l(1+r 7t e 2D 20

=3 1 I [(1 +20DY 4 (2 4 20Dy L (20D 1)]
o
e (2.28)

Combining (2.27) and (2.28) we get

f@) Af'(z) An(A + B) An
Re{(l—/\)z—p‘i‘pZT}Z(l‘i‘ p(A—B) )M—p(A_B)(A+BM2)
A((u = 1) = (A - Bu)?)
p(A - B)r=1(1 —r?)
=: P, (u). (2.29)

Also, (2.10) and (2.24) imply that

1-Ar"
1-Br"

Sque(@)< _1+Ar”

¢ |~ 1+ B’

Now we calculate the minimum value of (1) on the segment [%:‘g:: , ii‘g:: ] Obviously,

An(A+B)  2AnB 2A((1 = B?r*")u — (1 — ABr™"))

VS ATE pA-B" T pa-Bra-
oo 20 [ 1-B 2An(1 - B)
an (u) = p(A _B) (1’"_1(1 — 1’2) —n ) > m >0 (see (228)) (230)

and 1, (1) = 0 if and only if
__2M1-ABr*") = An(A+B)r" ' (1 —r*) = p(A - By (1 - 1?)
W= 2A(1 — B2 — nBri-1(1 - 12))

L,
= e (see (2.20)). (2.31)

Since
2AKp(1 + Ar") — L,(1 + Br")
=21 [(1 +Ar")(1 — B3 — (1 + Br")(1 - ABrz”)]
+ Anr" (1 =) [(A + B)(1 + Br") — 2B(1 + Ar")] + p(A — B)r""1(1 — *)(1 + Br")
= 2A(A = B)r"(1 + Br") + An(A = B)r" (1 — *)(1 = Br") + p(A = B)r'" (1 — r*)(1 + Br")
>0,
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we see that
1+ Ar"
u, < . 2.32
"= T+ B (232)
However, 1, is not always greater than 1=4-. The following two cases arise.

(1) u, < %, thatis, M, (A, B, A,r) 2 0 (see (2.23)). In view of ¢},(u,) = 0 and (2.30), the function ¢,(u) is
increasing on the segment [1_Ar" Ledr ] Therefore we deduce from (2.29) that, if M, (A, B, A,r) > 0, then

1-Br"” 1+Br*
f2)  Af'() 1- Ar"
Re{(l_/\)z_V-'- pzr~1 }Z]’D"(l—Br")
_ An(A"'B) 1-Ar" An 1= A" 2
_(1+ p(A—B))(1—Br”)_p(A—B)(A+B(1—Br”))

:1—Ar”_ An ( _1—Ar")( _Bl—Ar”)
1-Br* p(A-B) 1 - Br" 1 - Br"
p — (p(A + B) + An(A — B))r" + pABr*"

B p(1 - Brm)? '

This proves (2.21).
Next we consider the function f(z) € 7,(A4, B, 0) given by
f(z) _1-AZ"

Z_p_l—BZ” (ZEU).

It is easy to find that

f(ry Af'(r) p-—(p(A+B)+ An(A - B)r" + pABr*
- A)r_p + p-1 = _ n)2
pr p(1 — Br)

a

7

which shows that the inequality (2.21) is sharp.

(ii) u, = t‘gf: , thatis, M, (A, B, A, r) < 0. In this case we easily have

Re {(1 PG I
zF pzr~t

} > (). (2.33)

In view of (2.23), ¥, (1) in (2.29) can be written as

AKgu? — Lyu + AKy
p(A=B)yr1(1-1r2)

Pu(u) = (2.34)

Therefore, if M,,(A, B, A, ) < 0, then it follows from (2.31), (2.33) and (2.34) that

Re {(1 - /\)% N Af'(z)} _ ARtz = Lytty + AK;

- p(A-By1(1-r?)
B 4A2K4Kp — L2
" 4Ap(A - B)r1(1 - r2)Kg '

pzrt

To show that the inequality (2.22) is sharp, we take

f2) 1+ Az"p(z) _Z=0y
Z 1+ Bz'¢(z) and - ¢(z) = 1-cuz

(zel),
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where ¢, € Ris determined by

f) _1+Are(r) _ [1—Ar” 1+Ar”)
w  1+Brp®r) " L1-Br' 1+Br)
Clearly, -1 < ¢@(r) <1,-1<¢, <1, |p(z) £ 1 (z € U), and so f(z) € T,(A, B, 0). Since

1-c2  1-lp®)P
(I-cyr2 1-12 7

p'(r) =
from the above argument we obtain that

f(r) Af'(r)
(1= /\)r_P M prr=1

= Pu(Uty).

Now the proof of Theorem 5 is completed.
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