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Abstract. Let (C,A, ϕ) be an entwining structure over a field k. In this paper, we introduce the notion of
the ribbon entwined datum to generalize the definition of (co)ribbon structures, and give several necessary
and sufficient conditions for the category of entwined modules to be a ribbon category. We also discuss the
ribbon structures in the Long dimodule category and Yetter-Drinfel’d category for applications.

1. Introduction

Entwining structures were proposed by Brzezinski and Majid in [7] to define coalgebra principal bundles.
An entwining structure over a monoidal category C consists of an algebra A, a coalgebra C and a morphism
ϕ : C⊗A→ A⊗C satisfying some axioms. The entwining modules are both A-modules and C-comodules,
with compatibility relation given by ϕ. Note that the definition of entwined modules generalizes lots of
important modules such as Hopf modules, Doi-Hopf modules, and Yetter-Drinfel’d modules ([9], [17]).
Further researches on entwining structures can be found in [1], [21], [23], and so on.

Monoidal category theory played an important role in the theory of knots and links and the theory of
quantum groups. Through the reconstruction theory and Tannakian duality ([12], [20]), quantum groups
and monoidal categories are correspondent with each other. There are many kinds of monoidal categories
with additional structure - braided, rigid, pivotal, balanced, ribbon, etc., and many of them have an
associated form in low dimensional topology theory and knot theory. For example, ribbon category (see
[18]) is based on the isotopy invariants of framed tangles; spherical category (see [2] and [10]) is based on
the Turaev-Virostate sum model invariant of a closed piecewise-linear 3-manifold. From the reconstruction
theoretical point of view, a ribbon (resp. pivotal) category is equivalent to the category of (co)modules over
a (co)ribbon (resp. pivotal) Hopf algebras (or its generalizations)(see [3], [4], and [22] - [26]).
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The motivations of our paper is raised from the study of how to get the ribbon structure in the center of
the category of modules of a finite dimensional Hopf algebra.

A ribbon structure (see [18], and also see [13]) in a rigid braided category is a self-dual twist (or a self-
dual balanced structure), which is a natural isomorphism from the identity functor to itself and compatible
with the duality and the braiding. In 1993, Kauffman and Radford got a necessary and sufficient condition
for a finite-dimensional Drinfel’d double to be a ribbon Hopf algebra (see [14]). As well-known, when a
Hopf algebra H is finite-dimensional we have that the category of modules of Drinfel’d double D(H) is
actually the Yetter-Drinfel’d category YDH

H. Therefore one is prompted to ask the following question: is
there any other approach to get the ribbon structures in the Yetter-Drinfel’d categories? When does YDH

H
becomes a ribbon category from the point of view of the category theory? To figure out these mentioned
questions necessitates the following discussion about the process of the emergence of the ribbon structures
in the category of entwined modules.

The paper is organized as follows. In Section 2 we recall some notions of entwining structures, and
ribbon categories. Section 3 is concerned about the presentation of Hopf algebras induced by CC

A(ϕ), and
about the exhibition of its (co)representation category is monoidal identified to CC

A(ϕ). In Section 4, we
mainly give a necessary and sufficient condition for CC

A(ϕ) to be a ribbon category. Finally, we consider the
Yetter-Drinfel’d category and the category of generalized Long dimodules as applications.

2. Preliminaries

Throughout the paper, we let k be a fixed field and char(k) = 0 and Veck be the category of finite
dimensional k-spaces. All the algebras and coalgebras, modules and comodules are supposed to be in Veck.
For the comultiplication ∆ of a k-module C, we use the Sweedler-Heyneman’s notation: ∆(c) = c1 ⊗ c2, for
any c ∈ C. τ means the flip map τ(a ⊗ b) = b ⊗ a.

2.1. Entwining structure and entwined modules
In this part we first review several definitions related to entwined modules (see [7] or [11]).
Let (C,∆C, εC) be a coalgebra and (A,mA, ηA) an algebra over k. A map ϕ : C ⊗ A → A ⊗ C, ϕ(c ⊗ a) =∑

aϕ ⊗ cϕ, is called an entwining map if the following identities hold
(E1)

∑
(ab)ϕ ⊗ cϕ =

∑
aϕbψ ⊗ cϕψ;

(E2)
∑

aϕ ⊗ (cϕ)1 ⊗ (cϕ)2 =
∑

aϕψ ⊗ (c1)ψ ⊗ (c2)ϕ;
(E3)

∑
(1A)ϕ ⊗ cϕ = 1A ⊗ c;

(E4)
∑

aϕεC(cϕ) = aεC(c),
where a, b ∈ A, c ∈ C, ψ = ϕ. Furthermore, (C,A, ϕ) is called a right-right entwining structure.

Let ϕ : C ⊗ A → A ⊗ C be an entwining map, M ∈ C, (M, %M) be a right A-module, (M, ρM) be a right
C-comodule. If the diagram

M ⊗ A

ρM
⊗idA

��

%M // M
ρM
// M ⊗ C

M ⊗ C ⊗ A
idM⊗ϕ // M ⊗ A ⊗ C

%M⊗idC

OO
(E0)

is commutative, then we call the triple (M, %M, ρM) an entwined module.
The morphism between entwined modules is called entwined module morphism if it is both A-linear and

C-colinear. The category of entwined modules is denoted by CC
A(ϕ).

Recall from [16], a k-linear map f : C→ A is called convolution invertible if there exists f−1 : C→ A such
that f (x1) f−1(x2) = f−1(x1) f (x2) = εC(x)1A for any x ∈ C.

Recall from [6] and [11], for any 1, f ∈ homk(C,A), one can define their entwined convolution product
1 ? f ∈ homk(C,A) via

(1 ? f )(c) :=
∑

f (c2)
ϕ
1(c1

ϕ), c ∈ C,
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and hence homk(C,A) is an algebra. Note that the unit is ηA ◦ εC.
Similarly, homk(C ⊗ C,A ⊗ A) is also an algebra with the following entwined convolution product:

(1′ ? f ′) :=mA⊗A(A ⊗ A ⊗ 1′)(A ⊗ τC,A ⊗ C)(ϕ ⊗ ϕ)(C ⊗ τC,A ⊗ A)(C ⊗ C ⊗ f ′)∆C⊗C,

where 1′, f ′ ∈ homk(C ⊗ C,A ⊗ A). Note that the unit is (ηA ⊗ ηA) ◦ (εC ⊗ εC).
Recall from [[5], Corollary 3.4,] (or see [11]) that C ⊗ A is an object in CC

A(ϕ) via

(c ⊗ a) · x = c ⊗ ax;
(c ⊗ a)0 ⊗ (c ⊗ a)1 =

∑
c1 ⊗ aϕ ⊗ c2

ϕ,

where a, x ∈ A and c ∈ C.
A ⊗ C is also an object in CC

A(ϕ) via

(a ⊗ c) · x =
∑

axϕ ⊗ cϕ;
(a ⊗ c)0 ⊗ (a ⊗ c)1 = a ⊗ c1 ⊗ c2.

Furthermore, for any right A-module M, M ⊗ C is also an entwined module by

(m ⊗ c) · a =
∑

m · aϕ ⊗ cϕ;
(m ⊗ c)0 ⊗ (m ⊗ c)1 = m ⊗ c1 ⊗ c2.

This defines a right adjoint functor for the underlying functor U : CC
A(ϕ)→MA.

2.2. Monoidal entwining datum and double quantum group
Suppose that C and A are two bialgebras over k such that (C,A, ϕ) is an entwining structure. Recall that

(C,A, ϕ) is called a monoidal entwining datum if the following equations hold{
(E5)

∑
(aϕ)1 ⊗ (aϕ)2 ⊗ (cd)ϕ =

∑
(a1)ϕ ⊗ (a2)ψ ⊗ cϕdψ;

(E6)
∑
εA(aϕ)(1C)ϕ = εA(a)1C,

where a ∈ A, c ∈ C.
Recall from [[11], Theorem 4.1] that CC

A(ϕ) is a monoidal category such that the forgetful functors are
strict monoidal if and only if (C,A, ϕ) is a monoidal entwining datum. Further, for any M,N ∈ CC

A(ϕ), the
A-action and the C-coaction on M ⊗N are given by

(m ⊗ n) · a = m · a1 ⊗ n · a2;
(m ⊗ n)0 ⊗ (m ⊗ n)1 = m0 ⊗ n0 ⊗m1n1,

where m ∈M, n ∈ N, a ∈ A. Moreover, the tensor unit in CC
A(ϕ) is (k, idk ⊗ εA, idk ⊗ ηC).

Recall that a pair of bialgebras C and A together with a monoidal entwining map ϕ (such that CC
A(ϕ) is

a monoidal category) and together with a k-linear morphism R : C ⊗ C→ A ⊗ A is called a double quantum
group if the following identities hold for any a ∈ A, c, d, x, y, z ∈ C:

(E7)
∑

R(c1 ⊗ d1) ⊗ c2d2 = R(1)(c2 ⊗ d2)
ϕ
⊗ R(2)(c2 ⊗ d2)

ψ
⊗ d1

ϕc1
ψ;

(E8)
∑

a2ψR(1)(cϕ ⊗ dψ) ⊗ a1ϕR(2)(cϕ ⊗ dψ) = R(1)(c ⊗ d)a1 ⊗ R(2)(c ⊗ d)a2;
(E9)

∑
R(1)(x ⊗ yz)

1
⊗ R(1)(x ⊗ yz)

2
⊗ R(2)(x ⊗ yz)

= r(1)(x2 ⊗ y) ⊗ R(1)(x1
ϕ
⊗ z) ⊗ r(2)(x2 ⊗ y)

ϕ
R(2)(x1

ϕ
⊗ z);

(E10)
∑

R(1)(xy ⊗ z) ⊗ R(2)(xy ⊗ z)
1
⊗ R(2)(xy ⊗ z)

2
= r(1)(y ⊗ z2)

ϕ
R(1)(x ⊗ z1

ϕ) ⊗ R(2)(x ⊗ z1
ϕ) ⊗ r(2)(y ⊗ z2);

(E11) R ∈ homk(C ⊗ C,A ⊗ A) is invertible under the entwined convolution,
where R(m ⊗ n) :=

∑
R(1)(m ⊗ n) ⊗ R(2)(m ⊗ n) ∈ A ⊗ A.

Recall from [[11], Theorem 5.5] that CC
A(ϕ) is a braided monoidal category if and only if (C,A, ϕ,R) is a

double quantum group. Further, the braiding C in CC
A(ϕ) is given by

CM,N : M ⊗N→ N ⊗M, m ⊗ n 7→
∑

n0 · R(2)(m1 ⊗ n1) ⊗m0 · R(1)(m1 ⊗ n1), (2.1)

where R(m ⊗ n) :=
∑

R(1)(m ⊗ n) ⊗ R(2)(m ⊗ n), M,N ∈ CC
A(ϕ).
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Lemma 2.1. Assume that (C,A, ϕ,R) is a double quantum group. If the following identity holds∑
aϕ ⊗ (1C)ϕ = a ⊗ 1C, for any c ∈ C, a ∈ A,

then (A,R(1C ⊗ 1C)) is a quasitriangular Hopf algebra.
Dually, if the following identity holds∑

εA(aϕ)cϕ = εA(a)c, for any c ∈ C, a ∈ A,

then (C, (εA ⊗ εA) ◦ R) is a coquasitriangular Hopf algebra.

Proof. Straightforward.

2.3. Ribbon category
In this section, we will review several definitions and notations related to ribbon structures.
Let (C,⊗, I) be a strict monoidal category. Recall from [13] or [3] that for an object V ∈ C, a left dual of V

is a triple (V∗, evV, coevV), where V∗ is an object, evV : V∗ ⊗ V → I and coevV : I → V ⊗ V∗ are morphisms in
C, satisfying

(V ⊗ evV)(coevV ⊗ V) = idV, and (evV ⊗ V∗)(V∗ ⊗ coevV) = idV∗ .

Similarly, a right dual of V is a triple (∗V, ẽvV, c̃oevV), where ∗V is an object, ẽvV : V ⊗ ∗V → I and
c̃oevV : I→ ∗V ⊗ V are morphisms in C, satisfying

(ẽvV ⊗ V)(V ⊗ c̃oevV) = idV, and (∗V ⊗ ẽvV)(c̃oevV ⊗
∗V) = id∗V.

If each object in C admits a left dual (respectively a right dual, respectively both a left dual and a right
dual), then C is called a left rigid category (respectively a right rigid category, respectively a rigid category).

Assume that C is a left rigid category. X,Y ∈ C, for a morphism 1 : Y→ X define its transpose as follows:

1∗ := X∗
idX∗⊗coevY // X∗ ⊗ Y ⊗ Y∗

idX∗⊗1⊗idY∗ // X∗ ⊗ X ⊗ Y∗
evX⊗idY∗ // Y∗ . (TR1)

Then it is easy to get the following commutative diagrams

X∗ ⊗ Y

idX∗⊗1

��

1∗⊗idY // Y∗ ⊗ Y

evY

��
X∗ ⊗ X evX

// I,

I

coevX

��

coevY // Y ⊗ Y∗

1⊗id∗Y
��

X ⊗ X∗
idX⊗1

∗

// X ⊗ Y∗.

(TR2)

Further, this defines a bijection between HomC(X∗,Y∗) and HomC(Y,X).

Lemma 2.2. Let C be a left rigid category, U,V,W be objects in C. Then
(1). V∗ ⊗U∗ � (U ⊗ V)∗;
(2). if f : V →W and 1 : U→ V are morphisms in C, then we have ( f ◦ 1)∗ = 1∗ ◦ f ∗, and (1V)∗ = 1V∗ ;
(3). I∗ = I.

Let (C,⊗, I, a, l, r,C) be a braided monoidal category with the braiding C. Recall from [13] (or [19]) that a
twist (or a balanced structure) on C is a family θV : V → V of natural isomorphisms indexed by the objects V
of C satisfying

θV⊗W = CW,VCV,W(θV ⊗ θW), where V,W ∈ C.

A twist θ on an autonomous category C is self-dual if θV∗ = (θV)∗ (or equivalently, θ∗V = ∗(θV)).
A ribbon category is a braided autonomous category endowed with a self-dual twist.
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3. Entwined smash product

3.1. The entwined smash product
Definition 3.1. Let A, B be algebras in a monoidal category C. A morphism Φ : B ⊗ A → A ⊗ B in C is called an
algebra distributive law if Φ satisfying

B ⊗ B ⊗ A

idB⊗Φ

��

mB⊗idA // B ⊗ A

Φ

��
B ⊗ A ⊗ B

Φ⊗idB

// A ⊗ B ⊗ B
idA⊗mB

// A ⊗ B,

A
ηB⊗idA //

idA⊗ηB ""

B ⊗ A

Φ

��
A ⊗ B,

B ⊗ A ⊗ A

Φ⊗idA

��

idB⊗mA // B ⊗ A

Φ

��
A ⊗ B ⊗ A

idA⊗Φ
// A ⊗ A ⊗ B

mA⊗idB

// A ⊗ B,

B

ηA⊗idB ""

idB⊗ηA // B ⊗ A

Φ

��
A ⊗ B.

Similar to [[9], Theorem 8], we have the following property.

Lemma 3.2. Let C be a finite dimensional coalgebra and A a finite dimensional algebra. Then give an entwining map
ϕ : C ⊗ A→ A ⊗ C is identified to give an algebra distributive law Φ : A ⊗ C∗op

→ C∗op
⊗ A.

Proof. If there is an entwining map ϕ : c⊗ a 7→
∑

aϕ ⊗ cϕ, one can define a linear map Φ : A⊗C∗op
→ C∗op

⊗A
by

Φ(a ⊗ p) =
∑

pΦ
⊗ aΦ :=

∑
p(ei

ϕ)ei
⊗ aϕ,

where c ∈ C, a ∈ A, p ∈ C∗, ei and ei are dual bases of C and C∗. It is obvious to see that Φ is an algebra
distributive law.

Conversely, if is an algebra distributive law Φ : a ⊗ p 7→
∑

pΦ
⊗ aΦ, one can define a linear map

ϕ : C ⊗ A→ A ⊗ C by
ϕ(c ⊗ a) =

∑
aϕ ⊗ cϕ :=

∑
eiΦ(c)aΦ ⊗ ei.

Also it can be easily checked that ϕ is an entwining map.

Recall from [[8], Theorem 2.5], if there is an algebra distributive law Φ : B⊗A→ A⊗B, then (A⊗B, (mA⊗

mB) ◦ (idA ⊗Φ ⊗ idB), ηA ⊗ ηB) is also an algebra.
Now we suppose that (C,A, ϕ) is a monoidal entwining datum over k where C,A are two Hopf algebras

with bijective antipodes.

Definition 3.3. The entwined smash product C∗op
⊗A of the entwining structure (C,A, ϕ), in a form containing

C∗op and A, is a Hopf algebra under the following structures:
• the multiplication m̂ is given by

(p ⊗ a)(q ⊗ b) :=
∑

p ∗op ei
⊗ aϕbq(ei

ϕ) =
∑

ei
∗ p ⊗ aϕbq(ei

ϕ),

where a, b ∈ A, p, q ∈ C∗op, ei and ei are dual bases of C and C∗;
• the unit is η̂(1k) = εC ⊗ 1A;
• the comultiplication is given by

∆̂(p ⊗ a) := (p1 ⊗ a1) ⊗ (p2 ⊗ a2);

• the counit is given by
ε̂(p ⊗ a) := p(1C)εA(a);

• the antipode is given by
Ŝ(p ⊗ a) :=

∑
p(S−1

C (ei
ϕ))ei

⊗ SA(a)ϕ.
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Proof. Firstly, since Lemma 3.2, C∗op
⊗ A is an algebra.

Next we will show C∗op
⊗ A is a bialgebra. Obviously, C∗op

⊗ A is a coalgebra under the given comulti-
plication. We only need check that ∆̂ and ε̂ are algebra maps.

For p, q ∈ C∗op, a, b ∈ A, we compute

∆̂(p ⊗ a)∆̂(q ⊗ b)
= ((p1 ⊗ a1) ⊗ (p2 ⊗ a2))((q1 ⊗ b2) ⊗ (q1 ⊗ b2))

=
∑

p1 ∗
op ei
⊗ a1ϕb1q1(ei

ϕ) ⊗ p2 ∗
op oi
⊗ a2ψb2q2(oi

ψ).

Thus for any c, d ∈ C, we have∑
(p1 ∗

op ei)(c) ⊗ a1ϕb1q1(ei
ϕ) ⊗ (p2 ∗

op oi)(d) ⊗ a2ψb2q2(oi
ψ)

=
∑

p(c2d2) ⊗ a1ϕb1 ⊗ q(c1
ϕd1

ψ) ⊗ a2ψb2.

Also we have

∆̂((p ⊗ a)(q ⊗ b)) = ∆̂(
∑

p ∗op ei
⊗ aϕbq(ei

ϕ))

=
∑

p1 ∗
op ei

1 ⊗ aϕ1b1 ⊗ p2 ∗
op ei

2 ⊗ aϕ2b2q(ei
ϕ),

Then for c, d ∈ C, we obtain∑
(p1 ∗

op ei
1)(c) ⊗ aϕ1b1 ⊗ (p2 ∗

op ei
2)(d) ⊗ aϕ2b2q(ei

ϕ)

=
∑

p(c2d2) ⊗ aϕ1b1 ⊗ q(c1d1
ϕ) ⊗ aϕ2b2

(E5)
=
∑

p(c2d2) ⊗ a1ϕb1 ⊗ q(c1
ϕd1

ψ) ⊗ a2ψb2,

which implies ∆̂((p ⊗ a)(q ⊗ b)) = ∆̂(p ⊗ a)∆̂(q ⊗ b) .
Since ε̂ preserves multiplication, C∗op

⊗ A = (C∗op
⊗ A, m̂, εC ⊗ 1A, ∆̂, ε̂) is a bialgebra.

In order to prove Ŝ is the antipode of C∗op
⊗ A, we compute

Ŝ((p ⊗ a)1)(p ⊗ a)2

=
∑

p1(S−1
C (ei

ϕ))(ei
⊗ SA(a1)ϕ)(p2 ⊗ a2)

=
∑

p(S−1
C (ei

ϕ)oi
ψ)ei
∗

op oi
⊗ SA(a1)ϕψa2.

For any c ∈ C, we have∑
p(S−1

C (ei
ϕ)oi

ψ)(ei
∗

op oi)(c) ⊗ SA(a1)ϕψa2

=
∑

p(S−1
C (c2

ϕ)c1
ψ) ⊗ SA(a1)ϕψa2

(E2)
=
∑

p(S−1
C (cϕ2)cϕ1) ⊗ SA(a1)ϕa2

= p(1C)εC(c) ⊗ SA(a1)a2 = p(1C)εC(c) ⊗ εA(a)1A.

Thus Ŝ ∗ id = η̂ε̂. Similarly, one can show that id ∗ Ŝ = η̂ε̂. Hence (C∗op
⊗ A, Ŝ) is a Hopf algebra.

Be similar with [[9], Theorem 9], we have the following property.

Proposition 3.4. The category of entwined modules CC
A(ϕ) is monoidal isomorphic to the representation category of

C∗op
⊗ A.



X. H. Zhang et al. / Filomat 34:9 (2020), 3065–3081 3071

Proof. For any object (M, θM, ρM), and morphism λ : M→ N in CC
A(ϕ), one can define a functor Γ from CC

A(ϕ)
to the category of right C∗op

⊗ A-modules via

Γ(M) := M as k-spaces , Γ( f ) := f ,

where the C∗op
⊗ A-module structure on M is given by

m ↼ (p ⊗ a) := p(m1)m0 · a, for all m ∈M, p ∈ C∗, a ∈ A.

First of all, we claim that Γ is well-defined. In fact, for any m ∈M, p, q ∈ C∗, a, b ∈ A, we have

m ↼ (εC ⊗ 1A) = εC(m1)m0 · 1A = m.

Also, we can get

(m ↼ (p ⊗ a)) ↼ (q ⊗ b) = p(m1)(m0 · a) ↼ (q ⊗ b)

=
∑

p(m2)ei(m1)m0 · aϕbq(ei
ϕ)

= m ↼ (p ⊗ a)(q ⊗ b),

where ei and ei are dual bases of C and C∗ respectively. Hence (M,↼) is a right C∗op
⊗ A-module.

For the morphism λ : M → N, it is a direct computation to check Γ(λ) is C∗op
⊗ A-linear. Thus Γ is

well-defined.
Conversely, we define the functor Λ from the representation category of C∗op

⊗ A to CC
A(ϕ) by

Λ(U) := U as k-spaces , Λ(λ) := λ,

where (U,↼) is a right C∗op
⊗A-module, λ : U→ V is a morphism of C∗op

⊗A-modules. Further, the A-action
on U is defined by

u · a := u ↼ (εC ⊗ a), for any u ∈ U, a ∈ A,

and the C-coaction on U is given by

ρU(u) = u0 ⊗ u1 :=
∑

(u ↼ (ei
⊗ 1A)) ⊗ ei.

Next we will show that Λ is well defined. It is straightforward to show (U, ·) is an A-module and (U, ρU)
is a C-comodule. We only check U satisfies Diagram (E0).

Since for any a ∈ A, we have

ρU(u · a) =
∑

(u · a ↼ (ei
⊗ 1A)) ⊗ ei

=
∑

(u ↼ (ei(oi
ϕ)oi
⊗ aϕ)) ⊗ ei

=
∑

(u ↼ (ei
⊗ 1A)(εC ⊗ aϕ)) ⊗ ei

ϕ

=
∑

u0 · aϕ ⊗ u1
ϕ,

hence U ∈ CC
A(ϕ).

Since Λ(λ) : U→ V are both A-linear and C-colinear, Λ is well-defined, as desired.
Obviously Γ is a strict monoidal functor, and Λ is the inverse of Γ. This completes the proof.

Remark 3.5. Be similar with Lemma 3.2 and Proposition 3.4, for any finite dimensional k-algebras A and B,
if Φ : B ⊗ A → A ⊗ B, b ⊗ a 7→

∑
aΦ
⊗ bΦ, is an algebra distributive law, then there is an entwining map

ϕ : A∗cop
⊗ B→ B ⊗ A∗cop, defined by

ϕ(γ ⊗ b) :=
∑

γ(ei
Φ)bΦ ⊗ ei, where b ∈ B, γ ∈ A∗, ei and ei are dual bases of A and A∗.
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Conversely, if there an entwining map ϕ : A∗cop
⊗ B → B ⊗ A∗cop, γ ⊗ b 7→

∑
bϕ ⊗ γϕ, then one can define an

algebra distributive law Φ : B ⊗ A→ A ⊗ B via

Φ(b ⊗ a) :=
∑

eiϕ(a)ei ⊗ bϕ.

Moreover, the category of A ⊗ B-modules is identified to CA∗cop

B (ϕ), the category of entwined modules.

Example 3.6. (1) If we define ϕ : H ⊗ H → H ⊗ H by ϕ(x ⊗ y) = y1 ⊗ xy2, where x, y ∈ H and H is a finite
dimensional Hopf algebra, then the category CH

H(ϕ) is the category of Hopf modules. Recall from Lemma 3.2 and
Theorem 3.4, if we define the following multiplication on H∗op

⊗H

(δ ⊗ a)(γ ⊗ b) := γ(?a2)δ ⊗ a1b,

then H∗op
⊗ H is an associative algebra, and the category of Hopf modules of H is identified to the category of

H∗op
⊗H-modules.

(2) Let H be a finite dimensional Hopf algebra and A a finite dimensional left H-module algebra. Recall that the
multiplication on A]H, the usual smash product of A and H is

(a]x)(b]y) = a(x1 · b)]x2y, where a, b ∈ A, x, y ∈ H,

which implies there is an algebra distributive law Φ : H⊗A→ A⊗H, Φ(h⊗ a) = h1 · a⊗ h2. Thus from Remark 3.5,
there exists an entwining map ϕ : A∗cop

⊗H→ H ⊗ A∗cop, defined by

ϕ(γ ⊗ h) :=
∑

γ(h1 · ei)h2 ⊗ ei, where h ∈ H, γ ∈ A∗, ei and ei are dual bases of A and A∗.

Furthermore, the representation of A]H is isomorphic to the category CA∗cop

H (ϕ).

3.2. The dual case
The definition and results in this section are dual to the corresponding results in Section 3.1, so we will

not give the complete proof.

Definition 3.7. Let C, D be coalgebras in a monoidal category C. A morphism Ψ : C ⊗D→ D ⊗ C in C is called a
coalgebra distributive law if Ψ satisfying

C ⊗D

idC⊗∆D

��

Ψ // D ⊗ C

∆D⊗idC

��
C ⊗D ⊗D

Ψ⊗idD

// D ⊗ C ⊗D
idD⊗Ψ

// D ⊗D ⊗ C,

C ⊗D Ψ //

idC⊗εD $$

D ⊗ C

εD⊗idC

��
C,

C ⊗D

∆C⊗idD

��

Ψ // D ⊗ C

idD⊗∆C

��
C ⊗ C ⊗D

idC⊗Ψ
// C ⊗D ⊗ C

Ψ⊗idC

// D ⊗ C ⊗ C,

C ⊗D Ψ //

εC⊗idD $$

D ⊗ C

idD⊗εC

��
D.

Similar to [[9], Theorem 12], we have the following property.

Lemma 3.8. Let C be a finite dimensional coalgebra and A a finite dimensional algebra over k. Then give an entwining
map ϕ : C ⊗ A→ A ⊗ C is identified to give a coalgebra distributive law Ψ : A∗cop

⊗ C→ C ⊗ A∗cop.

Now suppose that (C,A, ϕ) is a monoidal entwining datum over k where C,A are two Hopf algebras
with bijective antipodes.
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Definition 3.9. The entwined smash coproduct A∗cop
⊗C of (C,A, ϕ), in a form containing A∗cop and C, is a Hopf

algebra with the following structures:
• the multiplication m is given by

(γ ⊗ c)(δ ⊗ d) := γ ∗ δ ⊗ ab,

where c, d ∈ A, γ, δ ∈ A∗cop;
• the unit is η(1k) = εA ⊗ 1C;
• the comultiplication is given by

∆(γ ⊗ c) :=
∑

(γ1(eiϕ)γ2 ⊗ c1
ϕ) ⊗ (ei

⊗ c2),

where ei and ei are dual bases of A and A∗

• the counit is given by
ε(γ ⊗ c) := γ(1A)εC(c);

• the antipode is given by
S(γ ⊗ c) :=

∑
γ(eiϕ)S−1

A∗ (e
i) ⊗ SC(cϕ).

Be similar with [[9], Theorem 13], we have the following property.

Proposition 3.10. CC
A(ϕ) is monoidal isomorphic to the corepresentation category of A∗cop

⊗ C.

Corollary 3.11. For any a ∈ A, c ∈ C, the following identities hold

S−1
A (a) ⊗ SC(c) =

∑
S−1

A (aϕ)
ψ
⊗ SC(m1

ψ)ϕ; (3.1)

SA(a) ⊗ S−1
C (c) =

∑
SA(aϕ)

ψ
⊗ S−1

C (cψ)ϕ. (3.2)

Proof. We only prove Eq.(3.2). For any a ∈ A, c ∈ C, p ∈ C∗, γ ∈ A∗, since Ŝ is the antipode of C∗op
⊗ A, we

have

Ŝ((εc ⊗ a)(p ⊗ 1A)) = Ŝ(p ⊗ 1A)Ŝ(εc ⊗ a).

For one thing, we compute

Ŝ((εc ⊗ a)(p ⊗ 1A)) = Ŝ(ei
⊗ aϕ)p(ei

ϕ)

=
∑

p(S−1
C (oi

ψ)
ϕ

)oi ⊗ SA(aϕ)ψ,

where ei (oi) and ei (oi) are dual bases of C and C∗ respectively.
For another, we have

Ŝ(p ⊗ 1A)Ŝ(εc ⊗ a) = (p(S−1
C (ei))ei

⊗ 1A)(εC ⊗ SA(a))

=
∑

p(S−1
C (ei))ei

⊗ SA(a).

Thus
∑

p(S−1
C (oi

ψ)ϕ)oi ⊗ SA(aϕ)ψ =
∑

p(S−1
C (ei))ei

⊗ SA(a). Indeed, we can easily get∑
p(S−1

C (oi
ψ)
ϕ

)oi(c) ⊗ γ(SA(aϕ)ψ) =
∑

p(S−1
C (ei))ei(c) ⊗ γ(SA(a)),

i.e. ∑
p(S−1

C (cψ)
ϕ

) ⊗ γ(SA(aϕ)ψ) =
∑

p(S−1
C (c)) ⊗ γ(SA(a)),

which implies Eq.(3.2).
Similarly, since

(S ⊗ S) ◦ ∆
cop

= ∆ ◦ S,

Eq.(3.1) holds.
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Assume that C and A are two Hopf algebras with bijective antipodes over k, and ϕ : C ⊗A→ A ⊗ C is a
k-linear map such that (C,A, ϕ) is a monoidal entwining datum.

For any (M, %M, ρM) ∈ CC
A(ϕ), set M∗ = ∗M = homk(M, k) as spaces, and define the A-action and C-coaction

on M∗ and ∗M by

%M∗ : M∗ ⊗ A −→M∗, ( f · a)(m) := f (m · S−1
A (a)),

ρM∗ : M∗ −→M∗ ⊗ C, f0(m) ⊗ f1 := f (m0) ⊗ SC(m1),
%∗M : ∗M ⊗ A −→ ∗M, ( f · a)(m) := f (m · SA(h)),

ρ
∗M : ∗M −→ ∗M ⊗ C, f0(m) ⊗ f1 := f (m0) ⊗ S−1

C (m1),

where f ∈ homk(M, k), a ∈ A, m ∈M, and define the evaluation map and coevaluation map by

evM : f ⊗m 7−→ f (m); coevM : 1k 7−→
∑

i

ei ⊗ ei;

ẽvM : m ⊗ f 7−→ f (m); c̃oevM : 1k 7−→
∑

i

ei
⊗ ei,

where ei and ei are dual bases in M and M∗. It is easy to check that M∗ and ∗M are all both A-modules and
C-comodules. Further, ev, coev, ẽv, c̃oev are all both A-linear and C-colinear maps.

Theorem 3.12. CC
A(ϕ) is a rigid category.

Proof. We only show that CC
A(ϕ) admit left duality, i.e., M∗ is an object in CC

A(ϕ) for any entwined module
M. Actually, for any µ ∈M∗, m ∈M, a ∈ A, we have

(µ · a)0(m) ⊗ (µ · a)1 = µ(m0 · S−1
A (a)) ⊗ SC(m1)

(3.1)
=

∑
µ(m0 · S−1

A (aϕ)
ψ

) ⊗ SC(m1
ψ)
ϕ

=
∑

µ0(m · S−1
A (aϕ)) ⊗ µ1

ϕ =
∑

(µ0 · aϕ)(m) ⊗ (µ1)ϕ.

Thus CC
A(ϕ) is a left rigid category.

Similarly, one can check that CC
A(ϕ) is a right rigid category by using Eq.(3.2).

4. The ribbon structure in the category of entwined modules

Now suppose that (C,A, ϕ,R) is a double quantum group over k, thus CC
A(ϕ) is a braided category with

the braiding which is defined by Eq.(2.1). We also assume that Nat(F,F) means the collection of natural
transformations from the forgetful functor F : CC

A(ϕ)→ Veck to itself. Then we have the following property.

Proposition 4.1. There is a bijective map between the algebra Nat(F,F) and homk(C,A).

Proof. See [[11], Theorem 2.1 and Proposition 2.4]
Actually, one can define a map Π : Nat(F,F)→ homk(C,A) by

Π(θ) : C→ A, c 7→
∑

(εC ⊗ A)θC⊗A(c ⊗ 1A),

where θ ∈ Nat(F ◦ id,F ◦ id), c ∈ C. Define Σ : homk(C,A)→ Nat(F,F) by

Σ(1)M : M→M, m 7→ m0 · 1(m1),

where 1 ∈ homk(C,A), M ∈ CC
A(ϕ), m ∈ M. It is a direct computation to check that Π and Σ are well-defined

and inverse with each other.
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From now on, assume that θ ∈ Nat(F,F) and 1 ∈ homk(C,A) are in correspondence with each other.

Lemma 4.2. θ is a natural isomorphism if and only if 1 is invertible under the entwined convolution.

Proof. Straightforward from Proposition 4.1.

Lemma 4.3. For any (M, %M, ρM) ∈ CC
A(ϕ), θM is A-linear if and only if 1 satisfies

1(c)a =
∑

aϕ1(cϕ), for any c ∈ C, a ∈ A. (4.1)

Proof. ⇐: Since we have

θM(m · a) =
∑

m0 · aϕ1(m1
ϕ)

(4.1)
=

∑
m0 · 1(m1)a = θM(m) · a,

where m ∈M, a ∈ A. Hence θM is an A-module morphism.
⇒: Conversely, since θA⊗C is A-linear, for any c ∈ C and a ∈ A, we have the following commute diagram

(1A ⊗ c) ⊗ a
%A⊗C //

θA⊗C⊗idA

��

∑
aϕ ⊗ cϕ

θA⊗C

��∑
(1(c2)

ϕ
⊗ c1

ϕ) ⊗ a
%A⊗C // ∑ aϕ ⊗ cϕ

0
· 1(aϕ ⊗ cϕ

1
)

which implies∑
aϕ1(cϕ2)

ψ
⊗ cϕ1

ψ =
∑
1(c2)

ϕ
aψ ⊗ c1

ϕψ.

Take idA ⊗ εC to action at the both side of the above equation, we immediately get Eq.(4.1).

Lemma 4.4. For any (M, %M, ρM) ∈ CC
A(ϕ), θM is C-colinear if and only if 1 satisfies

1(c1) ⊗ c2 =
∑
1(c2)ϕ ⊗ c1

ϕ, for any c ∈ C. (4.2)

Proof. Be similar with Lemma 4.3.

Lemma 4.5. If θ is both A-linear and C-colinear, then 1 is invertible under the entwined convolution if and only if 1
is convolution invertible, i.e., there exists a k-linear map 1′ : C→ A, such that

1(c1)1′(c2) = 1′(c1)1(c2) = εC(c)1A, ∀c ∈ C.

Proof. ⇒: Suppose that 1?−1 is the inverse of 1 under the entwined convolution. Then for any c ∈ C, we
have

1(c1)1?−1(c2)
(4.1)
=

∑
1?−1(c2)

ϕ
1(c1

ϕ)

= (1 ? 1?−1)(c) = εC(c)1A,

and similarly we can obtain 1?−1(c1)1(c2) = εC(c)1A from Eq.(4.2).
⇐: Conversely, if 1 is convolution invertible and 1′ is its inverse, then it is easily to get that 1′ is the

inverse of 1 under the entwined convolution.

Remark 4.6. From Lemma 4.2 - 4.5, we immediately get that 1 is convolution invertible and satisfies Eqs.(4.1)-(4.2)
if and only if θ is a natural isomorphism in CC

A(ϕ).
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Lemma 4.7. Suppose that θ is a natural transformation in CC
A(ϕ), then θ is a twist if and only if for any x, y ∈ C, 1

satisfies

∆A(1(xy)) =∑
1(x1)r(2)(x3 ⊗ y3)

ψ
R(1)(y2

ϕ
⊗ x2

ψ) ⊗ 1(y1)r(1)(x3 ⊗ y3)
ϕ

R(2)(y2
ϕ
⊗ x2

ψ). (4.3)

Proof. ⇐: For any M,N ∈ CC
A(ϕ) and m ∈M, n ∈ N, we compute that

(CN,M ◦ CM,N ◦ (θM ⊗ θN))(m ⊗ n)
= (CN,M ◦ CM,N)(m0 · 1(m1) ⊗ n0 · 1(n1))

(4.2)
= CN,M(

∑
(n00 · 1(n1)

ϕ
⊗m00 · 1(m1)

ψ
) · R(m01

ψ
⊗ n01

ϕ))

(E1)
=

∑
m0 · 1(m2)

ϕ
R(2)(m3 ⊗ n3)

φ
r(1)(n1

ψχ
⊗m1

ϕφ) ⊗ n0 · 1(n2)
ψ

R(1)(m3 ⊗ n3)
χ
r(2)(n1

ψχ
⊗m1

ϕφ)

(4.2)
=

∑
m0 · 1(m1)R(2)(m3 ⊗ n3)

ϕ
r(1)(n2

ψ
⊗m2

ϕ) ⊗ n0 · 1(n1)R(1)(m3 ⊗ n3)
ψ

r(2)(n2
ψ
⊗m2

ϕ)

(4.3)
= (m0 ⊗ n0) · (1(m1n1)),

which implies θ is a twist.
⇒: Conversely, for the entwined modules C ⊗ A and A ⊗ C, since θ is a twist, then for any x, y ∈ C we

have

(CA⊗C,C⊗A ◦ CC⊗A,A⊗C ◦ (θC⊗A ⊗ θA⊗C))((x ⊗ 1A) ⊗ (1A ⊗ y))
= θC⊗A,A⊗C((x ⊗ 1A) ⊗ (1A ⊗ y)),

Since

(CA⊗C,C⊗A ◦ CC⊗A,A⊗C ◦ (θC⊗A ⊗ θA⊗C))((x ⊗ 1A) ⊗ (1A ⊗ y))
(4.2)
= (CA⊗C,C⊗A ◦ CC⊗A,A⊗C)((x1 ⊗ 1(x2)) ⊗ (1(y1) ⊗ y2))

= CA⊗C,C⊗A(
∑

(1(y1)R(1)(x3 ⊗ y3)
ϕ
⊗ y2

ϕ) ⊗ (x1 ⊗ 1(x2)R(2)(x3 ⊗ y3)))

(E1)
=

∑
x1 ⊗ 1(x3)ψR(2)(x4 ⊗ y3)

φ
r(1)(y2

ϕ
2 ⊗ x2

ψφ) ⊗ 1(y1)R(1)(x4 ⊗ y3)
ϕ

r(2)(y2
ϕ

2 ⊗ x2
ψφ)

χ
⊗ y2

ϕ
1
χ,

and

θC⊗A,A⊗C((x ⊗ 1A) ⊗ (1A ⊗ y))
= x1 ⊗ 1(x1y1)

1
⊗ 1(x1y1)

2
⊗ y1,

we have ∑
x1 ⊗ 1(x3)ψR(2)(x4 ⊗ y3)

φ
r(1)(y2

ϕ
2 ⊗ x2

ψφ) ⊗ 1(y1)R(1)(x4 ⊗ y3)
ϕ

r(2)(y2
ϕ

2 ⊗ x2
ψφ)

χ
⊗ y2

ϕ
1
χ

= x1 ⊗ 1(x1y1)
1
⊗ 1(x1y1)

2
⊗ y1.

Take εC ⊗ idA ⊗ idA ⊗ εC to action at the both side of the above equation, we immediately get Eq.(4.3).

Recall from Theorem 3.12, we get that CC
A(ϕ) is a rigid category. Then we get the following property.

Lemma 4.8. θ is self-dual in CC
A(ϕ) if and only if 1 satisfies

1(c) =
∑

S−1
A 1SC(cϕ)

ϕ
, for any c ∈ C. (4.4)
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Or equivalently,

1(c) =
∑

aiϕai(S−1
A 1SC(cϕ)), for any γ ∈ A∗, c ∈ C, (4.5)

where ai and ai are bases of A and A∗ respectively, dual to each other.

Proof. ⇐: For any object M ∈ CC
A(ϕ), suppose that oi and oi are dual bases of M and M∗, ai and ai are dual

bases of A and A∗, µ ∈M∗, m ∈M, then we have

θM∗ (µ)(m) = (µ0 · 1(µ1))(m) = µ0(m · S−1
A 1(µ1))

(TR2)
=

∑
(%M)∗(µ0)(m ⊗ S−1

A 1(µ1))

(TR1)
=

∑
µ0(oi · ai)ai(S−1

A 1(µ1))oi(m)

=
∑

µ(oi0 · aiϕ)ai(S−1
A 1SC(oi1

ϕ))oi(m)

=
∑

µ(m0 · S−1
A 1SC(m1

ϕ)
ϕ

)

(4.4)
= µ(m0 · 1(m1)) = (θM)∗(µ)(m).

Thus θ is self-dual in CC
A(ϕ).

⇒: Conversely, for (C ⊗ A)∗ ∈ CC
A(ϕ), since θ is self-dual, we have

θ(C⊗A)∗ (γ ⊗ εC)(c ⊗ 1A) = (θC⊗A)∗(γ ⊗ εC)(c ⊗ 1A), where γ ∈ A∗, c ∈ C.

For one thing, consider that

(θC⊗A)∗(γ ⊗ εC)(c ⊗ 1A) = (γ ⊗ εC)((c1 ⊗ 1A) · 1(c2))
= γ(1(c)).

For another, we compute

θ(C⊗A)∗ (γ ⊗ εC)(c ⊗ 1A)
(TR2)
=

∑
(%C⊗A)∗((γ ⊗ εC)0)((c ⊗ 1A) ⊗ S−1

A 1((γ ⊗ εC)1))

(TR1)
=

∑
(γ ⊗ εC)0((ci ⊗ bi) · ai)ai(S−1

A 1((γ ⊗ εC)1))(bi
⊗ ci)(c ⊗ 1A)

=
∑

(γ ⊗ εC)(ci1 ⊗ biaiϕ
)ai(S−1

A 1SC(ci2
ϕ))ci(c)bi(1A)

=
∑

γ(aiϕ)ai(S−1
A 1SC(cϕ)) = γ(S−1

A 1SC(cϕ)
ϕ

),

where ci and ci are dual bases of C and C∗, ai and ai, bi and bi are two dual bases of A and A∗. Hence Eq.(4.4)
holds.

Definition 4.9. Assume that C,A are two Hopf algebras with bijective antipodes over a field k, and (C,A, ϕ,R)
is a double quantum group. If there exists a k-linear map 1 : C → A, such that 1 is convolution invertible, and
Eqs.(4.1)-(4.4) are satisfied, then 1 is called an entwined ribbon morphism over (C,A, ϕ,R). Further, (C,A, ϕ,R, 1)
is called a ribbon entwined datum.

Combining Proposition 4.1 - Lemma 4.8, we get our main theorem below.

Theorem 4.10. Assume that C,A are two Hopf algebras with bijective antipodes over k, ϕ : C ⊗ A → A ⊗ C and
R : C ⊗ C→ A ⊗ A are two k-linear maps such that (C,A, ϕ,R) is a double quantum group. Then CC

A(ϕ) is a ribbon
category if and only if there is an entwined ribbon morphism 1 ∈ Homk(C,A). Moreover, the ribbon structure θ in
C

C
A(ϕ) is defined by

θM : M→M, θM(m) = m0 · 1(m1), where m ∈M

for any (M, θM, ρM) ∈ CC
A(ϕ).
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Theorem 4.11. Suppose that (C,A, ϕ,R) is a double quantum group where R is a map from C ⊗ C to A ⊗ A. Then
there exists a k-linear map 1 : C→ A such that (C,A, ϕ,R, 1) is a ribbon entwined datum if and only if C∗op

⊗A is a
ribbon Hopf algebra.

Proof. ⇒: If (C,A, ϕ,R, 1) is a ribbon entwined datum, then the R-matrix of C∗op
⊗A is

∑
ci
⊗R(2)(ci ⊗ ei)⊗ ei

⊗

R(1)(ci ⊗ ei), where ei and ei, ci and ci are all dual bases of C and C∗ respectively. Further, the ribbon element
in C∗op

⊗ A is
∑

ei
⊗ 1(ei).

⇐: Conversely, if C∗op
⊗ A is a ribbon Hopf algebra with the ribbon element L =

∑
L(1)
⊗ L(2)

∈ C∗op
⊗ A,

then the entwined ribbon morphism of CC
A(ϕ) is c 7→

∑
L(1)(c)L(2).

Theorem 4.12. Suppose that (C,A, ϕ,R) is a double quantum group where R is a map from C ⊗ C to A ⊗ A. Then
there exists a k-linear map 1 : C→ A such that (C,A, ϕ,R, 1) is a ribbon entwined datum if and only if A∗cop

⊗C is a
coribbon Hopf algebra.

Proof. If (C,A, ϕ,R, 1) is a ribbon entwined datum, then the coquasitriangular structure on A∗cop
⊗ C is

ζ : (A∗cop
⊗ C) ⊗ (A∗cop

⊗ C)→ k, ζ((γ′ ⊗ c) ⊗ (γ ⊗ d)) 7→ (γ′ ⊗ γ)R(c ⊗ d).

And the coribbon form on A∗cop
⊗ C is γ ⊗ c 7→ γ(1(c)).

Conversely, if A∗cop
⊗ C is a coribbon Hopf algebra with the coribbon form Θ ∈ (A∗cop

⊗ C)∗, then the
entwined ribbon morphism of CC

A(ϕ) is c 7→
∑

Θ(ei
⊗ c)ei, where ei and ei are dual bases of A and A∗,

respectively.

Example 4.13. If C = k, ϕ = idA, then the double quantum group (C,A, ϕ,R) becomes a quasitriangular Hopf
algebra (A,R), where R means the R-matrix in A. And the entwined ribbon morphism becomes an invertible element
1 ∈ A satisfies

(1) 1 is in the center of A;
(2) ∆(1) = (1 ⊗ 1)R21R;
(3) 1 = S(1),

which implies 1 is a usual ribbon element in A, thus A is a ribbon Hopf algebra.

Example 4.14. Let k be a field and H4 be the Sweedler’s 4-dimensional Hopf algebra H4 = k{1H, e, x, y|e2 = 1H, x2 =
0, y = ex = −xe} with the following structure

∆(e) = e ⊗ e, ∆(x) = x ⊗ 1H + e ⊗ x, ∆(y) = y ⊗ e + 1H ⊗ y,
ε(e) = 1, ε(x) = ε(y) = 0, S(e) = e, S(x) = −y, S(y) = x.

Since the triangular structure in H4 is

R =
1
2

(1H ⊗ 1H + 1H ⊗ e + e ⊗ 1H − e ⊗ e), (4.6)

we immediately get that H4 is a ribbon Hopf algebra with the ribbon element 1H.

Example 4.15. If A = k, ϕ = idC, then the double quantum group (C,A, ϕ,R) becomes a coquasitriangular Hopf
algebra (C,R). And the entwined ribbon morphism is a convolution invertible k-linear character 1 ∈ C∗, satisfies

(1) 1(c1)c2 = c11(c2);
(2) 1(cd) = 1(c1)1(d1)R(c2 ⊗ d2)R(d3 ⊗ c3);
(3) 1(c) = 1(S(c)),

for any c, d ∈ C, which implies 1 is a coribbon form on C, thus C is a coribbon Hopf algebra.

Example 4.16. Let k be a field and H4 be the Sweedler’s 4-dimensional Hopf algebra. Since the cotriangular structure
on H4 is

β 1H 1 x y
1H 1 1 0 0
1 1 −1 0 0
x 0 0 0 0
y 0 0 0 0

(4.7)
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we immediately get that H4 is a coribbon Hopf algebra with the coribbon form ε.

Example 4.17. Assume that (C,A, ϕ,R, 1) is a ribbon entwined datum. If the following identity hold∑
aϕ ⊗ (1C)ϕ = a ⊗ 1C, for any a ∈ A,

then recall from Lemma 2.1 that (A,R(1C ⊗ 1C)) is a quasitriangular Hopf algebra. Further, (A, 1(1C)) is a ribbon
Hopf algebra.

Dually, if the following identity hold∑
εA(aϕ)cϕ = εA(a)c, for any c ∈ C, a ∈ A,

then (C, (εA ⊗ εA) ◦ R) is a coquasitriangular Hopf algebra. Further, (C, εA ◦ 1) is a coribbon Hopf algebra.

5. Applications

5.1. Generalized Long dimodules
Suppose that H and B are both finite dimensional Hopf algebras over k, M is at the same time a right

H-module and a right B-comodule. Recall that M is called a generalized right-right Long dimodule (see [15]) if

ρ(m · h) =
∑

m(0) · h ⊗m(1)

for all m ∈ M and h ∈ H. The category of generalized right-right Long dimodules and H-linear B-colinear
homomorphisms is denoted by LB

H. If we define τ : B ⊗H → H ⊗ B as the flip map in Veck, then obviously
(B,H, τ) is a monoidal entwining datum, and LB

H = CB
H(τ).

Then from Theorem 3.4, we immediately get that the category of generalized Long dimodules is iden-
tified to the representations of the Hopf algebra B∗op

⊗ H. Here the bialgebra structure of B∗op
⊗ H is the

ordinary bialgebra structure which is induced by the tensor product of B∗op and H, and the antipode is
defined by

S(p ⊗ a) = S−1
B∗ (p) ⊗ SH(a), where p ∈ B∗, a ∈ H.

Proposition 5.1. LB
H is a braided category if and only if H is a quasitriangular Hopf algebra and B is a coquasitri-

angular Hopf algebra.

Proof. We only need to prove the existence of the double quantum group (B,H, τ,R) is equivalent to the fact
that H is quasitriangular and B is coquasitriangular. Consider the following sets

P = {R ∈ Homk(B ⊗ B,H ⊗H) | (B,H, τ,R) is a double quantum group},

and

Q = {(R, β)|where R is the quasitriangular structure in H,
and β is the coquasitriangular structure on B}.

Define the map F : P → Q by

F(R) = (R(1C ⊗ 1C), (εA ⊗ εA) ◦ R), for any R ∈ P.

Clearly F is well-defined because of Lemma 2.1. Further, F is invertible, and its inverse is given by
F′ : Q → P,

F′(R, β) : B ⊗ B −→ H ⊗H

a ⊗ b 7−→
∑

β(a, b)R(1)
⊗ R(2),

where (R, β) ∈ Q. Thus the conclusion holds.
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Example 5.2. Let k be a field and H4 be the Sweedler’s 4-dimensional Hopf algebra. Recall from Example 4.14 and
Example 4.16 that LH4

H4
is a braided category with the braiding:

CM,N(m ⊗ n) =
∑

β(m(1),n(1))R(2)
· n(0) ⊗ R(1)

·m(0), where m ∈M, n ∈ N, M,N ∈ LH4
H4
.

Theorem 5.3. LB
H is a ribbon category if and only if H is a ribbon Hopf algebra and B is a coribbon Hopf algebra.

Proof. ⇐: Suppose the ribbon element in H is ξ, the coribbon form on B is ζ. Define a k-linear map 1 : B→ H
by

1(b) := ζ(b)ξ, for any b ∈ B,

it is easy to check that 1 satisfies Eqs.(4.1)-(4.4). Since Theorem 4.10, the conclusion hold.
⇒: Straightforward from Example 4.17.

Example 5.4. Let k be a field and H4 be the Sweedler’s 4-dimensional Hopf algebra. Recall from Example 4.14 and
Example 4.16 that LH4

H4
is a ribbon category and its ribbon structure is id.

5.2. Yetter-Drinfel’d modules

Let H be a finite dimensional Hopf algebra over k. Recall that if M is both a right H-module and a right
H-comodule, and satisfies

ρ(m · h) =
∑

m(0) · h2 ⊗ S(h1)m(1)h3

for any h ∈ H, m ∈M, then M is a right-right Yetter-Drinfel’d module. The category of Yetter-Drinfel’d modules
and H-linear H-colinear homomorphisms is denoted byYDH

H.
If we define

ϕ̈ : H ⊗H −→ H ⊗H

c ⊗ a 7−→
∑

aϕ̈ ⊗ cϕ̈ := a2 ⊗ S(a1)ca3.

It is straightforward to show ϕ̈ is a right-right entwining structure, and CH
H(ϕ̈) = YDH

H. Further, it is easy
to see that the entwined smash product H∗op

⊗ H is the Drinfel’d double of H, and the entwined smash
coproduct of (H,H, ϕ̈) is the Drinfel’d codouble (see [16], Section 10) of H.

SinceYDH
H is a braided category with the braiding

tM,N : M ⊗N→ N ⊗M, m ⊗ n 7→ n(0) ⊗m · n(1), where M,N ∈ YDH
H, m ∈M, n ∈ N,

we immediately get that (H,H, ϕ̈,R) is a double quantum group, where R is defined by

R : H ⊗H −→ H ⊗H
a ⊗ b 7−→ 1H ⊗ ε(a)b.

Then we have the following result from Theorem 4.10.

Theorem 5.5. YDH
H is a ribbon category if and only if there is a k-linear map 1 : H → H, which is convolution

invertible and satisfies the following identities for any a, b ∈ H:
(1) 1(b)a = a21(S(a1)ba3);
(2) 1(a1) ⊗ a2 = 1(a2)

2
⊗ S(1(a2)

1
)a11(a2)

3
;

(3) ∆(1(ab)) = 1(a1)b3 ⊗ 1(b1)S(b2)a2b4;
(4) 1(b) =

∑
ai2

ai(S−11S(S(ai1
)bai3

)),
where ai and ai are bases of A and A∗ respectively, dual to each other.
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Recall from [16] that if (H,R) is a quasitriangular Hopf algebra, then any M ∈ MH can be seen as an
object inYDH

H by the coaction defined by

ρM(m) =
∑

m · R(2)
⊗ R(1), for any m ∈M.

HenceMH ⊆ YD
H
H. We denote this subcategory byMYDH

H. Dually, if (H, β) is a coquasitriangular Hopf
algebra, thenMH

⊆ YD
H
H by the following H-action

h ·m = β(h,m(1))m(0), for any M ∈ MH, h ∈ H, m ∈M.

We denote this subcategory ofYDH
H by CYDH

H.

Proposition 5.6. (1) If (H,R, ξ) is a ribbon Hopf algebra, thenMYDH
H is a ribbon category;

(2) If (H, β, ζ) is a coribbon Hopf algebra, then CYDH
H is a ribbon category.

Proof. (1) If the ribbon element in H is ξ, then we can define a k-linear map 1 : H→ H via 1(x) = ε(x)ξ. It is
a direct computation to check that 1 is an entwined ribbon morphism ofMYDH

H.
(2) Similarly, if the coribbon form on H is ζ, then we can define define 1′ : H→ H by 1′(x) = ζ(x)1H. It is

easy to check that 1′ also satisfies Eqs.(4.1)-(4.4).

Example 5.7. Let H4 be the Sweedler’s 4-dimensional Hopf algebra. After a direct calculation, we get that YDH4
H4

is
not a ribbon category. However,MYDH4

H4
and CYDH4

H4
are both ribbon categories.
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