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Abstract. Let I be an ideal on ω, the notion of I-AD family was introduced in [3]. Analogous to the well
studied ideal I(A) generated by almost disjoint families, we introduce and investigate the ideal I(I-A). It
turns out that some properties of I(I-A) depends on the structure of I. Denoting by a(I) the minimum
of the cardinalities of infinite I-MAD families, several characterizations for a(I) ≥ ω1 will be presented.
Motivated by the work in [23], we introduce the cardinality sω,ω(I), and obtain a necessary condition for
sω,ω(I) = s(I). As an application, we show finally that if a(I) ≥ s(I), then BW property coincides with
Helly property.

1. Introduction

Let ω denote the set of all natural numbers, and we are implicitly identifying a natural number n ∈ ω
with the set {0, 1, · · · ,n − 1}. An ideal on ω is a family of subsets of ω closed under taking finite unions
and subsets of its elements. By Fin we denote the ideal of all finite subsets of ω. If not explicitly said we
assume that all considered ideals are proper (not equal to P(ω)) and contain Fin. For convenience, we fix
some notations: I+ = {A ⊆ ω : A < I}; I∗ = {A ⊆ ω : ω \ A ∈ I}; for each A ∈ I+, let I|A = {I ∩ A : I ∈ I};
A ⊆I B if A \ B ∈ I, where A, B are subsets of ω.

A family A of infinite subsets of ω is called almost dis joint (AD-family, in short) if for any different
elements A, B ∈ A, A ∩ B is finite. Moreover, if for any infinite X ⊆ ω, there is A ∈ A such that A ∩ X is
infinite, thenA is called a maximal almost disjoint family (MAD-family, in short).

The following notions are generalizations of almost disjoint families and maximal almost disjoint fam-
ilies, respectively. They were introduced by Farkas and Soukup, and were extensively studied in, e.g.,
[4, 14, 17, 21].

Definition 1.1. ([3]) Let I be an ideal on ω, and letA ⊆ I+ be an infinite family.

• A is called an I-almost disjoint family (I-AD, in short) if (∀A,B ∈ A)(A ∩ B ∈ I).

• A is an I-maximal almost disjoint family (I-MAD, in short) if it is an I-AD family and not properly
included in any larger I-AD family or equivalently, (∀X ∈ I+)(∃A ∈ A)(X ∩ A ∈ I+).
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Denoting by a(I) the minimum of the cardinalities of infinite I-MAD families. In addition, if I is an
analytic P-ideal, let ā(I) be the minimum of cardinalities of uncountable I-MAD families.

The motivation of this note is to investigate the influence of I-AD families on ideal convergence. To be
specific, we consider the relation among I-AD families, ideal version of Bolzano-Weierstrass property and
ideal version of Helly property.

Definition 1.2. ([24]) Let I, J be ideals on ω, and let X be a topological space. We say that X has the
(I,J)-BW property if for any sequence 〈xn : n ∈ ω〉 from X, there exists A ∈ I+ such that 〈xn : n ∈ A〉 is
J-convergent (i.e, there is x such that for each open neighborhood U of x, {n ∈ A : xn < U} ∈ J).

Most of time, we are considering X = [0, 1]. In such case, if [0, 1] has the (I,I)-BW property, we write
I ∈ BW. If [0, 1] has the (I,Fin)-BW property, we write I ∈ FinBW. These notations were introduced first
in [6].

Recall that S ⊆ [ω]ω is an (ω,ω)-splitting family if for any countable family {Xn : n ∈ ω} ⊆ [ω]ω, there
exists S ∈ S such that both of {n : |S ∩ Xn| = ω} and {n : |Xn ∩ (ω \ S)| = ω} are infinite. Denoting by sω,ω
the smallest size of (ω,ω)-splitting families [23]. For the cardinality s and its variation s(I), one may refer
to [7]. By proving s = sω,ω, Mildenberger, Raghavan and Steprāns partially answer an open question of
Shelah, one can refer to [22] for details.

In Section 3, the cardinality sω,ω(I) will be introduced. We obtain a necessary condition for sω,ω(I) = s(I)
by showing that for any ideal I, if I < BW, then sω,ω(I) , s(I) (see Theorem 3.7).

An ideal I is called selective if for every ⊆-decreasing family {Yn : n ∈ ω} ⊆ I+ there is Y = {xn : n ∈
ω} ∈ I+ such that Y ⊆ Y0 and Y \ (xn + 1) ⊆ Yxn (Y is called a dia1onalization of {Yn : n ∈ ω}). It is well
known that for every AD-familyA, I(A) is selective. This result is due to Mathias [19]. We are interested
in the question that is there some analogous results for I-AD families. In Section 4, we show that the
answer depends on the construction of I. In particular, we exam the relation between P+(I)-ideals and the
P+((I-A))-ideals (see Theorem 4.2).

The classic Helly theorem asserts that for any sequence of real-valued functions 〈 fn : n ∈ ω〉 that is
uniformly bounded and monotone, there is a subsequence 〈 fnk : k ∈ ω〉which is pointwise convergent. The
ideal version of Helly theorem was considered by Filipów, Mrożek, Recław and Szuca in [5]. They showed
that for any ideal I on ω, if I can be extended to an Fσ-ideal or maximal P-ideal, then for any sequence of
real value functions 〈 fn : n ∈ ω〉 that is uniformly bounded and monotone, there exists A ∈ I+ such that the
subsequence 〈 fn : n ∈ A〉 is pointwise convergent ([5], Theorem 5.8). Note that every analytic P-ideal with
the BW property can be extended to an Fσ-ideal ([6], Theorem 4.2). Thus, for every analytic P-ideal I with
the BW property, the ideal version of Helly theorem holds.

LetRR be the set of all functions: R→ R endowed with the Tychonoff product topology, and let UBM(R)
be the set of all sequences from RR that are uniformly bounded and monotone.

Definition 1.3. LetI be an ideal onω. We say thatI has the Helly property, and writeI ∈ Helly, if for every
sequence 〈 fn : n ∈ ω〉 from UBM(R), there exists A ∈ I+ such that 〈 fn : n ∈ A〉 is I-convergent. Moreover, if
for each A ∈ I+, I|A ∈ Helly, then we say I has hereditarily Helly property, and write I ∈ hHelly.

According to these notations, the Helly theorem can be reformed as Fin ∈ Helly, and the ideal version
of Helly theorem can be restated as follows: If I can be extended to an Fσ-ideal or maximal P-ideal then
I ∈ Helly.

It is well known that I ∈ hBW if, and only if I ∈ hHelly ([5], Theorem 5.9), and we are asked that if
I ∈ BW ⇒ I ∈ Helly([5], Problem 5.10). In Section 5, we consider this question, and one of our main results
can be viewed as a very partial answer to this question (see Theorem 5.6).

2. Preliminaries

We use the standard notions of Set theory. For a nonempty set X, let |X| be the cardinality of X. Let
[X]<ω be the set of all finite subsets of X, and let P(X) be the power set of X.
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A family S of infinite subsets of ω is called an I-splitting if for every A ∈ I+ there exists S ∈ S such that
A∩ S ∈ I+ and A \ S ∈ I+ [6]. Denoting by s(I) the smallest size of I-splitting families, it has been showed
that I ∈ BW if and only if s(I) ≥ ω1 ([6], Theorem 5.1).

2.1. The Ideal I(I-A)
Let I be an ideal on ω, and letA be an infinite I-AD family. Put

I(I-A) = {I ⊂ ω : ∃B ∈ [A]<ω(I ⊆I
⋃
B)},

it is easy to see that I ⊂ I(I-A) andA ⊆ I(I-A). Note that for any A, B ∈ I∗, A ∩ B ∈ I+, so every I-AD
family disjoint with I∗, and so there is no single A ∈ A such that ω ⊆I A. Indeed, we have the following
result that says I(I-A) is an ideal that strictly extends I.

Lemma 2.1. Let I be an ideal on ω, and letA be an infinite I-AD family. Then I(I-A) is an ideal on ω.

Proof. It is easy to see that I(I-A) is closed under taking subsets and finite unions. Suppose that ω ∈ I(I-
A), we may assume there are A,B ∈ A such thatω = A∪B. Note thatA is infinite, there exists C ∈ A\{A,B}.
According to the definition ofI-AD family, both of C∩A and C∩B belong toI. Thus, C = (C∩A)∪(C∩B) ∈ I,
contradiction.

Corollary 2.2. For any ideal I on ω, neither I+ nor I∗ is an I-AD family.

2.2. Submeasure
Recall that a submeasure on ω is a map φ: P(ω)→ [0,∞] that satisfying the following conditions:

(1) φ(∅) = 0;

(2) φ(A) ≤ φ(A ∪ B) ≤ φ(A) + φ(B) holds for every A, B ⊂ ω.

Moreover, if for every A ⊂ ω,

(3) φ(A) = limitn→∞φ(A ∩ n),

then φ is called lower semicontinuous (lsc, in short). For any given lsc submeasure φ, define

Fin(φ) = {A ⊂ ω : φ(A) is f inite}.

It is easy to see that Fin(φ) is an ideal. Mazur showed that every Fσ-ideal has the following useful
characterization via lower semicontinuous submeasures.

Theorem 2.3. ([18]) Let I be an ideal on ω. Then I is an Fσ-ideal if and only if I = Fin(φ) for some lsc submeasure
φ on ω.

3. Splitting Families

An ideal I is called dense (or, tall) if for any X ∈ [ω]ω there exists B ⊆ X such that B ∈ I and B ∈ [ω]ω.
Analogously, we introduce the following general notion.

Definition 3.1. LetA, B be subsets of P(ω). We say that B isA-dense if for each A ∈ A, there exists B ⊆ A
such that B ∈ A and B ∈ B.

LetA be the set [ω]ω, and let B be an ideal on ω. Then B beingA-dense coincides with B being dense.

Definition 3.2. Let I be an ideal on ω, and letA be an I-AD family. Define

• I(I-A)++ = {X ⊆ ω : (∃B ∈ [A]ω)(∀B ∈ B)(X ∩ B ∈ I+)}.
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• (I-A)⊥ = {X ⊂ ω : (∀A ∈ A)(X ∩ A ∈ I)}.

Definition 3.3. ([12]) Let I be an ideal on ω, I is called decomposable if there is an infinite partition {An :
n ∈ ω} ⊂ I+ of ω such that for every A ⊆ ω, A ∈ I if and only if A ∩ An ∈ I for all n ∈ ω. I is called
indecomposable if it is not decomposable.

Lemma 3.4. Let I be an ideal on ω, the following conditions are equivalent:

(1) I is decomposable;

(2) There exists an infinite countable I-AD family such that I = (I-A)⊥;

(3) a(I) = ω.

Proof. (1)⇔ (2) is obvious.
(2)⇒ (3) Assume that there exists an I-AD familyA = {An : n ∈ ω} such that I = (I-A)⊥. It is easy to

see thatA is an I-MAD family, this implies a(I) = ω. Indeed, for any A ∈ I+, A < (I-A)⊥. So there is n ∈ ω
such that A ∩ An ∈ I

+. This show thatA is maximal.
(3) ⇒ (2) Assume that A = {An : n ∈ ω} is an I-MAD family. I ⊆ (I-A)⊥ is clear. If A ∈ (I-A)⊥, then

A ∩ An ∈ I for each n ∈ ω. By the maximality ofA, we have that A ∈ I.

The following observations are evident.

Proposition 3.5. Let I be an ideal on ω, and letA be an I-AD family. Then

(1) (I-A)⊥
⋂
I

+
⊆ I(I-A)+;

(2) If A ⊆ B ∈ (I-A)⊥ then A ∈ (I-A)⊥.

The following properties I(I-A) are analogous to that of the ideal I(A) ([9], Lemma 18).

Lemma 3.6. Let I be an ideal on ω, and letA be an I-AD family. Then

(1) I(I-A)++
⊆ I(I-A)+;

(2) A is an I-MAD family if and only if I(I-A) is I+-dense.

(3) I(I-A)++ = I(I-A)+ if and only ifA is an I-MAD family.

Proof. (1) is obvious.
(2) Assume that A is an I-MAD family. For every X ∈ I+, by the maximality of A, there exists A ∈ A

such that X ∩ A ∈ I+. Clearly, X ∩ A ∈ I(I-A).
If X ∈ I+, since I(I-A) is I+-dense, there exists B ⊂ X such that B ∈ I(I-A) and B ∈ I+. So there exists

a finite B ∈ [A]<ω such that B ⊆I
⋃
B. We may assume that B = {Bni : i ≤ k} for some k ∈ ω, then there

exists some i ≤ k such that Bni ∩ X ∈ I+, and then X < A. This implies the maximality ofA.
(3) Assume that I(I-A)++ = I(I-A)+. By the item (2), we need to show that I(I-A) is I+-dense. Note

that for any X ∈ I+, if X ∈ I(I-A), we need to do nothing, so we may assume that X ∈ I(I-A)+, and so
there is an infinite set {Xn : n ∈ ω} ⊆ A such that X ∩ Xn ∈ I

+ for all n ∈ ω. Hence, X ∩ Xn ∈ I
+
∩ I(I-A)

for each n ∈ ω.
Now we assume thatA is an I-MAD family. Let X < I(I-A)++, and let B = {A ∈ A : A∩ B ∈ I+

}. Then
B is finite, according to this, we may assume thatB can be enumerated as {Ai : i ≤ n}. Let Y = X \

⋃
i≤n

Ai, then

Y ∈ (I-A)⊥. Thanks to the assumption thatA is an I-MAD family, we have that Y ∈ I, and so X ⊆I
⋃
i≤n

Ai.

This implies that X ∈ I(I-A).

The following definitions are motivated by (ω,ω)-splitting families and sω,ω mentioned previously.
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Definition 3.7. Let I be an ideal on ω. Define

• S ⊆ [ω]ω is an I-(ω,ω)-splitting family if for every countable collection {Xn : n ∈ ω} ⊂ I+ there exists
S ∈ S such that both of {n : Xn ∩ S ∈ I+

} and {n : Xn ∩ (ω \ S) ∈ I+
} are infinite.

• sω,ω(I) = min{|S| : S ⊆ [ω]ω ∧ S is an I-(ω,ω)-splittin1 f amily}.

Theorem 3.8. Let I be an ideal on ω. If sω,ω(I) = s(I), then I ∈ BW.

Proof. Let S be an I-(ω,ω)-splitting family such that |S| = sω,ω(I).

Claim 3.9. For every I-AD familyA ⊂ I+, S is an I(I-A)-splitting family.

Proof. Case 1 If A is an I-MAD family. For X ∈ I(I-A)+, there exists {Xn : n ∈ ω} ⊆ A such that
{X∩Xn : n ∈ ω} ⊂ I+. SinceS is anI-(ω,ω)-splitting family, there exists S ∈ S such that {n : S∩(X∩Xn) ∈ I+

}

and {n : (ω \ S) ∩ (X ∩ Xn) ∈ I+
} are infinite. Thus, both of S ∩ X and X ∩ (ω \ S) are in I(I-A)+.

Case 2. IfA not is an I-MAD family, for X ∈ I(I-A)+, there are two subcases:
Subcase 1 X ∈ I(I-A)++. In this case we just do with the same argument as the Case 1.
Subcase 2 If X < I(I-A)++, we can extend A to be an I-MAD family A′ such that X ∈ I(I-A′)+

as follows: note that X < I(I-A)++, there exists a finite family {A0,A1, · · · ,An} ⊂ A such that for each
A ∈ A \ {A0,A1, · · · ,An}, A ∩ X ∈ I. Take

X̃ = X \
⋃
k≤n

Ak.

Since X ∈ I(I-A)+, X̃ ∈ I+. Let {Yn : n ∈ ω} ⊆ I+ be a partition of X̃. Clearly, A
⋃
{Yn : n ∈ ω} is also an

I-AD family. Extending it to an I-MAD familyA′, we have that X ∈ I(I-A′)++ because of Yn ∩X ∈ I+ for
each n ∈ ω. By the Case 1, there exists S ∈ S such that X∩ S ∈ I(I-A′)+, and X∩ (ω \ S) ∈ I(I-A′)+. Notice
that I(I-A′)+

⊆ I(I-A)+, we finish the proof of the Claim.

LetA be an I-AD family that is not maximal. By Lemma 3.5(2), I(I-A) is not dense, and then it has BW
property ([7], Lemma 3.5). According to the Claim above, S is an I(I-A)-splitting family. But Theorem 5.1
in [6] tell us that for any ideal I, it has BW property if, and only if there is no countable I-splitting family.
So,

s(I) = sω,ω(I) = |S| > ω.

Again, by Theorem 5.1 in [6] mentioned above, I ∈ BW.

Remark 3.10. It has been proved in [22] that sω,ω = s, but how about the sω,ω(I) and s(I). Our result shows
that the if I < BW, then sω,ω(I) , s(I).

4. P+(I )-Ideals

Definition 4.1. LetI be an ideal onω. I is called a P+(I)-ideal if for any⊆-decreasing sequence 〈An : n ∈ ω〉
from I+ there exists A ∈ I+ such that A \ An ∈ I for every n ∈ ω.

It is easy to see that the P+(I)-ideal coincides with the notion of σ-closed in P(ω)/I (see [12]), and
coincides with the notion of P(I)-coideal defined in [5].

Let I be an ideal on ω, the game G3(I) is defined as follows: In the step n, Player I chooses Xn ∈ I
+, and

Player II chooses Fn ∈ [Xn]<ω. Player II wins if
⋃

n∈ω
Fn ∈ I

+. Otherwise, the Player I wins (see [16]).

Theorem 4.2. Let I be an ideal on ω,A being an I-AD family. Consider the following conditions:

(1) I is an Fσ-ideal;

(2) Player II has a winning strategy in G3(I);
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(3) I is a P+-ideal;

(4) I is a P+(I)-ideal;

(5) I(I-A) is a P+(I(I-A))-ideal;

(6) [0, 1] has the (I(I-A),I)-BW property;

(7) a(I) > ω.

(1)⇒ (2)⇒ (3)⇒ (4)⇔ (5)⇔ (6)⇔ (7).

Before giving proofs, we point out that if I is analytic, then (2) implies (1) ([20], Theorem 3.2.13). If I is
a P+

tower-ideal, then (4)⇒ (3) ([12], Theorem 3.8 (1)).

Proof. (1) ⇒ (2) see Theorem 3.2.13 in [20], we present here its proof for the sake of completeness. Let I
be an Fσ-ideal, by Theorem 2.2, there exists a lower semicontinuous submesure φ such that I = {A ⊂ ω :
φ(A) < ∞}. We define a strategy σ for Player II as the form

I X0 X1 · · · Xn · · ·

II σ(X0) σ(X0,X1) · · · σ(X0, · · · ,Xn) · · ·

such that for each n ∈ ω,

• Xn ∈ I
+;

• σ(X0, · · · ,Xn) ∈ [Xn]<ω;

• φ(σ(X0, · · · ,Xn)) ≥ n.

The last item is possible since φ(Xn) = ∞ and φ is lower semicontinuous. It is easy to check that the Player
II will win according to this strategy.

(2) ⇒ (3) Assume that σ is a winning strategy for the Player II. Let {Xn : n ∈ ω} ⊆ I+ such that
X0 ⊇ X1 ⊇ · · · . We define a run of Player I in G3(I) as form:

I X0 X1 · · · Xn · · ·

II σ(0) σ(1) · · · σ(n) · · ·

such that for each n ∈ ω, σ(n) ∈ [Xn]<ω. Since the Player II win this run,
⋃

n∈ω
σ(n) ∈ I+. In addition, it is

obvious that
⋃

n∈ω
σ(n) ⊆∗ Xn for all n ∈ ω.

(3)⇒ (4) is evident.
(4)⇒ (5) Let {Yn : n ∈ ω} ⊂ I(I-A)+ such that Y0 ⊇ Y1 ⊇ Y2 ⊇ · · · . There are two possible cases.
Case 1 If there are infinitely many n, Yn ∈ I(I-A)++, we may assume that for each n ∈ ω, Yn ∈ I(I-A)++.

Otherwise, we remove off these not in I(I-A)++. For Y0, there is a countable family {An : n ∈ ω} such that
Y0 ∩An ∈ I

+ for each n ∈ ω. Assume that the family {An : n ∈ ω} covers ω, we shall construct inductively a
⊆-decreasing family {Zn : n ∈ ω} such that for each n ∈ ω,

• Zn ∈ I(I-A)++;

• Zn ⊆ Yn;

• Zn ∩ Ak = ∅ for each k < n.

Put Z0 = A0, let n1 = min{k : Y1 ∩ Ak ∈ I
+
}, and define

Z1 = Y1 \
⋃

k≤n1
Ak.



J. Yu, S. Zhang / Filomat 34:9 (2020), 3099–3108 3105

Thanks to Y1 ∈ I(I-A)++, n1 is well defined, and Z1 ∈ I(I-A)++. With the same manner, we finish the
construction. Note that I(I-A)++

⊂ I
+, by the item (4), there exists Z ∈ I+ such that Z ⊆I Zn for each

n ∈ ω. It is enough to show that Z ∈ I(I-A)++, and this follows from the following Claim.

Claim 4.3. There are infinitely many k such that Z ∩ Ak ∈ I
+.

Proof. Suppose that there exists n such that for each k > n, Z ∩ Ak ∈ I. According to the assumption of
{An : n ∈ ω} covering ω, we have that Z

⋂⋃
k≤n Ak ∈ I

+. Note that

Z
⋂ ⋃

k≤n
Ak ⊆ Z \ Zk.

So Z \ Zk ∈ I
+, this contradict to the fact that Z ⊆I Zk.

Case 2 If for all but finitely many n, Yn < I(I-A)++, we may assume that {Yn : n ∈ ω} ⊂ I(I-A)+
\ I(I-

A)++ since it does no matter to removing off finitely many Yn which belong to I(I-A)++.

Claim 4.4. Let A be an infinite I-AD family. For any X ∈ I(I-A)+
\ I(I-A)++, there is a family {Yn : n ∈ ω}

such that Yn ∩ X ∈ I+ for each n ∈ ω, andA
⋃
{Yn : n ∈ ω} is also an I-AD family.

Proof. Note that X < I(I-A)++, there exists {A0,A1, · · · ,An} ⊂ A such that for each A ∈ A \ {A0,A1, · · · ,An},
A ∩ X ∈ I. Put

X̃ = X \
⋃
k≤n

Ak.

Since X ∈ I(I-A)+, X̃ ∈ I+. Let {Yn : n ∈ ω} ⊆ I+ be a partition of X̃. Clearly, Yn ∩X ∈ I+ for each k ∈ ω. In
addition, this is also an I-AD family. Therefore, the familyA

⋃
{Yk : k ∈ ω} is desired.

According to the previous claim, we can inductively construct a sequence {An : n ∈ ω} of I-AD families
such that

• A0 = A;

• An ⊆ Am for n < m;

• Yn ∩ A ∈ I+ for all A ∈ An+1 \ An.

The last term implies that Yn ∈ I(I-An+1)++. We extend the union
⋃

n∈ω
An to an I-MAD familyB. Note that

for each n ∈ ω,

Yn ∈ I(I-An+1)++
⊆ I(I-B)++,

so {Yn : n ∈ ω} ⊆ I(I-B)++. With the same argument as the Case 1, we obtain X ∈ I(I-B)+
⊆ I(I-A)+ such

that X ⊆I Yn for each n ∈ ω.
(5)⇒ (6) The Corollary 5.6 in [5] asserts that if I is a P+(I)-ideal, then I ∈ BW. By the item (5), I(I-A) ∈

BW. As we mentioned previous, I ⊂ I(I-A), so [0, 1] has the (I(I-A),I)-BW property.
(6)⇒ (7) For the sake of contradiction, suppose that a(I) = ω andA = {An : n ∈ ω} ⊂ I+ be an I-MAD

family. We may assume that An ∩ Am = ∅ for any different n,m ∈ ω. Otherwise, we can shrink them to be
pairwise disjoint via replacing An by An \

⋃
i<n

Ai. Define {xn : n ∈ ω} by

xn = 1/k if n ∈ Ak.

SinceA is an I-MAD family, by Lemma 3.5(3), for any A ∈ I(I-A)+ there are infinite set {nk : k ∈ ω} such
that A ∩ Ank ∈ I

+
\ I(I-A)+ for each k ∈ ω. The subsequence {xn : n ∈ A} cannot be I-convergent since it

has infinitely many cluster points. Indeed, for each k ∈ ω, 1/nk is a cluster point of this subsequence. This
contradict to the the item (6).

(7) ⇒ (4) Recall that I is a P+(I)-ideal if, and only if I is indecomposable ([12], Theorem 3.8(2)), this
implication follows from Lemma 3.4 above.
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Remark 4.5. Let h be a function from ω to R+ satisfying∑
n∈ω

h(n) = ∞.

Let

Ih = {A ⊂ ω :
∑

n∈A
h(n) < ∞}.

It was showed in [3] that for any summable ideal Ih, a(Ih) > ω. Note that every summable ideal is Fσ, so
this result can be viewed as a special case of Theorem 4.2.

Remark 4.6. In [10], it is shown that if I is a nowhere prime P+(I)-ideal then a(I) > ω ([10], Proposition
2.9). Theorem 4.2 improves this result.

Remark 4.7. We should point out that the implication (1) ⇒ (3) was probably first proved by Just and
Krawczyk in [13], see also [5].

Definition 4.8. Let 〈Pn : n ∈ ω〉 be a decomposition of ω into pairwise disjoint nonempty finite sets,
−→µ = 〈µn : n ∈ ω〉 being a sequence of probability measures µn: P(Pn)→ [0, 1]. Let

Z−→µ = {A ⊂ ω : limnµn(A ∩ Pn)} = 0.

Z−→µ is an ideal called the density ideal generated by −→µ , it was introduced by Farah in [2].

Corollary 4.9. Let I be an ideal on ω.

(1) If I is not dense, then I is a P+(I)-ideal.

(2) a(Z−→u ) = ω([3], Theorem 2.2 (2)).

(3) If I is an analytic P-ideal, then ā(I) = a(I) if and only if I is a P+(I)-ideal.

Proof. (1) It is enough to show that a(I) > ω. Since I is not dense, it is easy to see that I ≤K Fin (i.e. there
exists f : ω→ ω such that f−1(I) ∈ Fin if I ∈ I [15]).

Claim 4.10. Let I ≤K Fin that witnessed by f : ω→ ω. IfA is an I-MAD family then { f−1(A) : A ∈ A} is a MAD
family.

Proof. Let A be an I-MAD family, it is easy to see that { f−1(A) : A ∈ A} is a Fin-AD family. We show
that it is maximal. For any X ∈ [ω]ω, f (X) ∈ I+. So there exists A ∈ A such that A ∩ f (X) ∈ I+, and so
f−1(A ∩ f (X)) ∈ [ω]ω. Note that f−1(A ∩ f (X)) ⊆ f−1(A) ∩ X. Thus, f−1(A) ∩ X ∈ [ω]ω.

The Claim 4 implies that if I do not dense , then a(I) ≥ a > ω, and then we obtain the item (1).
(2) Note thatZ−→u does not have the BW property (see [6] or [20]), so it not be a P+(Z−→u )-ideal. The item

(2) followed by the equivalence between (4) and (7) in Theorem 4.2.
(3) Recall that for any analytic P-ideal I, ā(I) be the minimum of cardinalities of uncountable I-MAD

families. If ā(I) = a(I), then a(I) > ω, and this implies that I is a P+(I)-ideal. It’s the same the other way
round.

Corollary 4.11. Let I be an ideal on ω, and letA be an I-AD family.

(1) If I is a P+-ideal, then so is the I(I-A);

(2) If I is selective, then so is the I(I-A).

Proof. Both proofs are the same as that of (4)⇒ (5) in Theorem 4.2, and we just consider the Case 1 since the
other case is analogous. Let {Yn : n ∈ ω} ⊂ I(I-A)+ such that Y0 ⊇ Y1 ⊇ Y2 ⊇ · · · . With the same notations
as we have used, we obtain Z ∈ I+ such that Z ⊆∗ Zn for each n ∈ ω. Thus, Z is desired.

Recall that Fin is selective, so we have the following well known result mentioned in Section 1 ([9],
Lemma 19).

Corollary 4.12. (Mathias) For any AD-familyA, I(A) is selective.
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5. P+
tower

(I )-Ideals and Comments

Definition 5.1. Let I be an ideal, we say that I is a P+
tower(I)-ideal if for every decreasing sequences

〈An : n ∈ ω〉 that fulfills Xn \ Xn+1 ∈ I for all n ∈ ω, there exists X ⊂ ω such that for each n ∈ ω X ⊆I Xn.

The notion of P+
tower(I)-ideal is a generalization of the P+

tower-ideal introduced in [12].

Definition 5.2. ([6]) I has the hereditary BWproperty (write as I ∈ hBW) if for any A ∈ I+, I|A ∈ BW. The
hFinBW property was defined analogously.

Recall that I is a P-ideal if for every countable family {An : n ∈ ω} ⊆ I, there exists A ∈ I such that
An ⊆

∗ A for each n ∈ ω. It is well known that for any P-ideal I, I ∈ hBW is coincides with I ∈ hFinBW.
The goal of this section is to show the following diagram.

P+(I)P+ P+
tower(I)

hBW

The implication of P+(I) ⇒ hBW follows from the fact that if I is a P+(I)-ideal, then for each A ∈ I+, I|A
is a P+(I|A)-ideal.

For s ∈ 2<ω, lh(s) denotes the length of s. For i ∈ {0, 1}, s _ i denotes the sequence 〈s(0), · · · , s(lh(s)− 1), i〉.
In order to prove hBW ⇒ P+

tower(I), we need the following result, which is the Proposition 2.9 in [7].

Lemma 5.3. Let r ∈ ω, and let I be an ideal. I has BW property if and only if for every family {As : s ∈ r<ω} that
fulfills the following conditions:

S1 A∅ = ω;

S2 As = As_0 ∪ As_1;

S3 As_0 ∩ As_1 = ∅.

There exists x ∈ 2ω and B ⊂ ω such that

• B ∈ I+;

• B \ Ax|n ∈ I for all n ∈ ω.

It is easy to check the following result.

Lemma 5.4. Let r ∈ ω, and let I be an ideal. I has the hBW property if and only if for every X ∈ I+, and for every
family {As : s ∈ r<ω} that fulfils the following conditions:

S1 A∅ = X;

S2 As = As_0 ∪ As_1;

S3 As_0 ∩ As_1 = ∅.

There exists x ∈ 2ω and B ⊂ ω such that

• B ∈ I+;

• B \ Ax|n ∈ I for all n ∈ ω.

If I is a weak Q-ideal such that I ∈ hFinBW, then the set B is a diagonalization of the sequence
{Ax|n : n ∈ ω} ([7], Theorem 3.16).
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Theorem 5.5. Let I be an ideal on ω. If I ∈ hBW, then it is a P+
tower(I)-ideal.

Proof. Let X0 ⊇ X1 ⊇ X2 ⊇ · · · be a decreasing sequence from I+ such that Xn \ Xn+1 ∈ I for all n ∈ ω. We
construct a family {As : s ∈ 2<ω} such that

(1) A∅ = X0;

(2) As_0 = Xlh(s), As_1 = Xlh(s) \ Xlh(s)+1 for all s ∈ {0}<ω.

SinceI has the hBW property, according to Lemma 5.4 above, there exists r ∈ 2ω, B ∈ I+ such that B\Ar|n ∈ I

for all n ∈ ω. The condition of Xn \ Xn+1 ∈ I actually force r = 0ω. So X ⊆I Xn for all n ∈ ω.

Note that I ∈ BW is equal to s(I) ≥ ω1, and I ∈ hBW is equal to I having the hereditarily I-Helly
property ([5], Theorem 5.9). We observe the following result.

Theorem 5.6. Let I be an ideal on ω. If a(I) ≥ s(I), then the following conditions are equivalent:

(1) I ∈ BW;

(2) I is a P+(I)-ideal;

(3) I ∈ hBW;

(4) I ∈ hHelly;

(5) I ∈ Helly.
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