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Abstract. The goal of this paper is twofold. We study holomorphic curves f : C −→ C3 avoiding four
complex hyperplanes and a real subspace of real dimension five in C3 where we study the cases where the
projection of f into the complex projective space CP2 is constant. On the other hand, we investigate the
kobayashi hyperbolicity of the complement of five perturbed lines in CP2.

Introduction

The concept of Kobayashi and Brody hyperbolicity has been studied by several authors. A complex
monifold M is said to be Brody hyperbolic if there is no non-constant holomorphic map f : C→ M. Using
his famous reparametrisation theorem (see [3]), Brody proved the following Theorem:

Theorem 0.1. Let M be a compact complex monifold. Then M is Kobayashi hyperbolic if and only if M is Brody
hyperbolic.

We know many examples of compact complex manifolds M that are hyperbolic according to Kobayashi,
and then, have the prorerty that each holomorphic curve f : C → M is constant. Since Bloch and Cartan,
the hyperbolicity of the complement of arrangements of projective lines in the complex projective plane
has been the subject of numerous studies for many years. Several researchers obtained different results for
some special cases, especially the next Theorem due to Borel, stated by Cartan in the following form (see
[4] and also [2]):

Theorem 0.2 (Borel Theorem). Let L1, L2, L3 and L4 be four projective lines in the general position in CP2, that
is, such that the configuration C = L1 ∪ L2 ∪ L3 ∪ L4 does not have a triple point. Let us note ∆ the union of the three
diagonals ∆1, ∆2 and ∆3 of the configuration C, that is to say the projective lines passing each through double points
of C, (there is six double points). Then
Any non-constant entier curve with values in CP2

\ C degenerates in ∆. (i.e There exists i ∈ {1, 2, 3} such that
f (C) ⊂ ∆i.)
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Thus, via R. Brody’s reparameterization Theorem (see [3]), M. Green was able to deduce from Borel’s
theorem the hyperbolically embedded character of the complement of five lines in the projective plane. He
prove the next:

Theorem 0.3. Let H1, H2,..., H2n+1 be 2n + 1 hyperplanes in general position in CPn. Then any holomorphic curves
f : C→ CPn

\ ∪
2n+1
i=1 Hi is constant.

As a direct consequence of the Green Theorem, the canonical projection into the complex projective space
CP2 of any holomorphic map f : C→ C3 which avoids five complex hyperplanes in C3 is constant, since its
image avoids the projections of the five complex hyperplanes, which are complex projective lines in general
position in CP2 (see Lemma 2.2). Our first main goal is to study the projection into CP2 of a holomorphic
curve f : C→ C3 which avoids four complex hyperplanes in general position in C3 and a real subspace H
of real dimension five (we change the nature of one complex hyperplane) and we check the case where the
projection remains constant. We show the following

Theorem A. Let H1,H2,H3,H4 be four complex hyperplanes in C3 and let H be a real subspace of R6 of real
dimension five. Let H̃ be a complex hyperplane of C3 such that H̃ ⊂ H. Then:
(1) If (H̃,H j,Hk) are in general position for all j , k, j, k ∈ {1, ..., 4}, then every holomorphic map f : C→ C3 such
that f (C) ∩ (∪4

i=1Hi ∪H) = ∅ is constant.
(2) If there exists H j,Hk, j , k, j, k ∈ {1, ..., 4}, such that (H̃,H j,Hk) are not in general position, then there exists
f : C→ C3, holomorphic, such that f (C) ∩

(
∪

4
i=1 Hi ∪H

)
= ∅ and π( f ) is non constant.

Remark 0.4.
(a) The existence and uniqueness of H̃ ⊂ H is explained in the proof of Theorem A.
(b) The condition ”(H̃,H j,Hk) are not in general position” is equivalent to the condition ”dimRSpanR(H̃⊥,H⊥j ,H

⊥

k ) =

4”.
(c) The fact of considering four complex hyperplanes is an optimal condition (see the end of section two for more
details).

Recently, J. Duval, following R. Debalme and S. Ivashkovich has obtained an almost complex version of
the previous Green theorem, reducing the hyperbolicity of the complement of five almost complexs lines
in CP2 to global geometrical properties. This makes sense only in real dimension 4: indeed any almost
complex structure is integrable in real dimension 2, while one lacks J−holomorphic hypersurfaces in real
dimension greater than 4. Let’s recall the Duval’s result [6] (see also [2]). We denote by J an almost complex
structure on CP2.

Theorem 0.5. Let C be a configuration of five J−lines in general position (i.e, having no triple point) in the almost
complex projective space (CP2, J). Then:
(CP2

\ C, J) is Kobayashi hyperbolic.

Our second main result has for objective to perform a real small perturbation on a given arrangemants
of complex lines in CP2, and to check the Kobayashi hyperbolicity of their complement in the complex
projective space CP2. We shall prove the following theorem B.

Theorem B. Let {Li}
5
i=1 be five complex lines in general position inCP2 and let {L̃i}

5
i=1 be a C1

−small real deformation
of Li, i = 1, ..., 5. Let Jst be the standard structure on CP2. Then the following hold.

i) There exists an almost complex structure on CP2, denoted by J, such that (CP2
\ ∪

5
i=1L̃i, J) is J-Hyperbolic in

the sens of Kobayashi.

ii) (CP2
\ ∪

5
i=1L̃i, Jst) is Hyperbolic in the sens of Kobayashi for the standard structure.

The paper is organized as follows: In the first section we recall some generalities on the geometry of the
complex projective plane. In section tow we prove our main result.
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1. Preliminaries

1.1. Almost complex manifolds and pseudoholomorphic discs

Let X be a real smooth monifold of dimension 2n. An almost complex structure on X is an automorphism
J of TX such that J2 = −Id. The pair (X, J) is called an almost complex manifold that is a C∞ smooth real manifold
equipped with a C∞ smooth almost complex structure J. This almost complex manifold has J−holomorphic
curves; that are, smooth real surfaces whose tangent plane at any point is a complex line for J. In particular,
it has many non-constant J−disks (see J-C. Sikorav [1]). A J-disk is a smooth map f : (D, i)→ (X, J) from the
unit disk D of C to X, which is J-holomorphic: its differential d f : TD→ TX satisfies

d fz ◦ i = J f (z) ◦ d f .

Let J be an almost complex structure on CP2 positive with respect to the Fubini-Study form ω : ω(., J.) > 0.
A J−line of the almost complex projective plane (CP2, J) is a J−holomorphic curve in CP2, diffeomorphic
to CP1 and of degree 1 in homology. According to M. Gromov [10] (see also J.-C. Sikorav [16]), the space
of J−lines is diffeomorphic to CP2. In addition, by two distinct points passes a single J−line, two distinct
J−lines intersect transversely on a single point, and J−lines passing through a point P form a pencil,
diffeomorphic to CP1, and giving a Central projection:

Π : CP2
\ {P} → CP1.

1.2. Kobayashi hyperbolicity of almost complex manifolds

Let (X, J) be a almost complex manifold. The existence, for any point P ∈ X and any vector v ∈ TPX, of a
non-constant J−disk f passing through P tangentially to v (see the article of J-C. Sikorav in [1]), motivates
the definition of a pseudometric of Kobayashi-Royden almost complex KJ

X (see [11]).
For every p ∈ X, there is a neighborhoodV of 0 in TpX such that for every ξ ∈ V there exists f : ∆ −→ (X, J)
a pseudoholomorphic curve satisfying f (0) = p and f ′(0) = ξ ( see [14]). This allows one to define the
Kobayashi-Royden infinitesimal pseudometric KJ

X, where

KJ
X(p, ξ) = inf

{1
r

; f : ∆r −→ X, J − holomorphic ; f (0) = p, f ′(0) = ξ
}

Kruglikov [13] extended Royden’s results [15] and proved that KJ
X is upper semicontinuous on the tangent

bundle TX of X and that the integrated form of the Kobayashi-Royden metric coincides with the Kobayashi
pseudo-distance dJ

X, that is,

dJ
X(p, q) = inf

γ∈Γp,q

∫ 1

0
KJ

X(γ(t), γ′(t)).dt

Where Γp,q is the set of all C1
−paths γ : [0, 1]→ X such that γ(0) = p and γ(1) = q.

We say that (X, J) is Kobayashi hyperbolic if dJ
X is a distance. Otherwise In the opposite case, there is a point

through which pass arbitrarily large J-disks in a given direction. If the manifold X is compact, this is
equivalent to the existence of a non constant J-holomorphic map f : (C, i) → (X, J). This criterion, due to
Brody [3] in the complex case and to B. Kruglikov and M. Overholt [11] in the almost complex case, follows
from the next reparametrisation Theorem (see [3] in the complex case and [11] in the almost complex case):

Theorem 1.1. (Brody’s Reparameterization Theorem). Let (X, J) be a almost complex manifold. Let fn : D → X
a non-normal sequence of J-disks. There is a sequence of affine contractions rn of C converging to a point of the
unit disc, called an explosion point, such that fn ◦ rn converges uniformly on any compact in C to a Brody curve: a
non-constant entier curve with uniformly bounded derivative.
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2. Proof of Theorem A.

Throughout this section we identify R6, endowed with its standard complex structure Jst, to C3.

Definition 2.1. Let n > 3 and letH = (H1, ...,Hn) be a family of real subspaces of R6 such that codimRH j = 2 for
j = 1, ...,n. ThenH is said to be in general position if for every 3-tuple (i, j, k) of distinct integers i, j, k ∈ {1, ...,n},

SpanR(H⊥i ,H
⊥

j ,H
⊥

k ) = R6.

Here, if H is a real subspace in R6, then H⊥ denotes the orthogonal complement of H with respect to the Euclidean
metric.

We will need the following properties satisfied by the canonical projection in CP2 of a holomorphic curve
f : C → C3. For H a real subspace of R6, we denote by H? the set H \ {0}. Then, we have the following
Lemma

Lemma 2.2. Let π : C3
\ {0} → CP2 be the canonical projection. Then:

1. If H is a complex hyperplane in C3, then π(H?) is a complex projective line in CP2.
2. If f : C→ C3 is holomorphic and H is a complex hyperplane in C3, then

f (C) ∩H = ∅ ⇒ π( f )(C) ∩ π(H?) = ∅.

3. If H1,H2,H3 are complex hyperplanes in general position in C3, then π(H?
1 ), π(H?

2 ), π(H?
3 ) are in general

position in CP2.

Notation: if Z ∈ CP2, we denote [z1 : z2 : z3] its homogeneous coordinates, where
(z1, z2, z3) ∈ C3.

Proof.
Point (1). We may assume that H = {(z1, z2, z3) ∈ C3/a1z1 + a2z2 + a3z3 = 0}, with a1, a2, a3 ∈ C, a3 , 0. Then

π(H?) = {[1 : z2 : z3] ∈ CP2/a1 + a2z2 + a3z3 = 0} ∪ {[0 : 1 : −
a2

a3
]}

= {[1 : z : −
a1 + a2z

a3
], z ∈ C} ∪ {[0 : 1 : −

a2

a3
]}.

We notice that [0 : 1 : − a2
a3

] corresponds to [ 1
∞

: 1 : − a1+a2∞

a3∞
].Hence π(H?) is a projective complex line in CP2.

Point (2). We first notice that π( f ) is well defined since, by assumption f (C) ∩ H = ∅, which implies

that f (C) ⊂ C3
\ {0}. Assume now, to get a contradiction, that π( f )(C) ∩ π(H?) , ∅. Then there are two

possibilities.
Case (α). There exists z ∈ C and there exists λ ∈ C such that

π( f )(z) =
[
1 : λ : −

a1 + a2λ
a3

]
.

Then, there exists cz ∈ C∗ such that f (z) =
(
cz, λcz,−

a1+a2λ
a3

cz

)
. In particular a1 f1(z)+a2 f2(z)+a3 f3(z) = 0, where

f = ( f1, f2, f3). Hence, f (z) ∈ H. This is a contradiction.
Case (β). There exists z ∈ C such that

π( f )(z) =
[
0 : 1 : −

a2

a3

]
.

Then, there exists cz ∈ C∗ such that f (z) =
(
0, cz,−

a2
a3

cz

)
and a1 f1(z) + a2 f2(z) + a3 f3(z) = 0. We obtain again

that f (z) ∈ H : this is a contradiction.
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Point (3). Since H1,H2,H3 are complex hyperplanes in C3, then there is a linear change of coordinates such

that the hyperplanes are defined by equations

H1 = {(z1, z2, z3) ∈ C3
| z1 = 0},

H2 = {(z1, z2, z3) ∈ C3
| z2 = 0},

H3 = {(z1, z2, z3) ∈ C3
| z3 = 0}.

Now by projection into CP2, we get

π(H?
1 ) = {[0 : 1 : z] | z ∈ C ∪ {∞}} ∪ [0 : 0 : 1],

π(H?
2 ) = {[1 : 0 : z] | z ∈ C ∪ {∞}} ∪ [0 : 0 : 1],

π(H?
3 ) = {[1 : z : 0] | z ∈ C ∪ {∞}} ∪ [0 : 1 : 0].

Hence π(H?
1 ) ∩ π(H?

2 ) ∩ π(H?
3 ) = ∅, meaning that π(H?

1 ), π(H?
2 ), π(H?

3 ) are in general position since there is
no triple point.

In the next lemma, we give the explicit form of all curves f : C → C3 which avoids five lines in general
position, and those that avoid four lines in general position. This lemma will be used later in the proof of
our main result.

Lemma 2.3. (i) For all n > 5 and for all H1, ...,Hn complex hyperplanes in C3 in general position, there exists a non
constant holomorphic f : C→ C3 curve such that

f (C) ∩ (∪n
i=1Hi) = ∅.

(ii) Let H1,H2,H3 and H4 be four complex hyperplanes in C3. If there exists f : C → C3 holomorphic, such that
f (C) ∩ (∪4

i=1Hi) = ∅, then there exists two holomorphic curves h, 1 : C→ C such that

f = (eh,−eh, e1)

Remark 2.4. In case (i), according to the Green Theorem and to Lemma 2.2, π( f ) is constant. Here π denotes the
canonical projection from C3

\ {0} into CP2 and π( f ) := π ◦ f .Notice that π( f ) is well-defined since f (C) ⊂ C3
\ {0}.

Proof. Point (i). Consider first the case n = 5. By a linear change of coordinates, we take the hyperplanes
H1,H2,H3,H4 and H5 in standard form defined by the following equations

H1 = {(z1, z2, z3) ∈ C3
| z1 = 0},

H2 = {(z1, z2, z3) ∈ C3
| z2 = 0},

H3 = {(z1, z2, z3) ∈ C3
| z3 = 0},

H4 = {(z1, z2, z3) ∈ C3
| z1 + z2 + z3 = 0},

H5 = {(z1, z2, z3) ∈ C3
| a1z1 + a2z2 + a3z3 = 0}, a j ∈ C \ {0} ∀ j = 1, 2, 3.

Now, if we assume that f (C) ∩
(⋃5

i=1 Hi

)
= ∅, then there exists h1, h2, h3 : C→ C, holomorphic, such that

f =
(
eh1 , eh2 , eh3

)
.

Moreover, since π( f )(C) will omits π(Hi) for i = 1, ..., 5 (see Lemma 2.2) and π ◦ f is constant by Green (see
[9]), there exists (ω1, ω2, ω3) , (0, 0, 0) such that for all z ∈ C,[

eh1(z) : eh2(z) : eh3(z)
]

= [ω1 : ω2 : ω3] .

Therefore [
1 :

eh2(z)

eh1(z)
:

eh3(z)

eh1(z)

]
=

[
1 :

ω2

ω1
:
ω3

ω1

]
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which implies that 
eh2(z)−h1(z) = ω2

ω1

eh3(z)−h1(z) = ω3
ω1

⇒


eh2(z) = ω2

ω1
eh1(z)

eh3(z) = ω3
ω1

eh1(z)

Hence f = (eh1 , c2eh1 , c3eh1 ), with 1 + c2 + c3 , 0, and f is not constant.
Essentially the same type of argument works in general. Let H1, ...,Hn, n > 5, be n hyperplanes defined
by:

Hk :=

Z ∈ C3
|

3∑
i=1

αk
i zi = 0, αk

i ∈ C, 1 6 k 6 n

 .
Pose f = (eh, c2eh, c3eh) which is not constant, where h is holomorphic from C to C. Hence, in order that f
avoids H1, ...,Hn, it is sufficient to choose c2, c3 ∈ C such that for every k = 1, ...,n

αk
1 + αk

2c2 + αk
3c3 , 0.

We point out that what preceeds proves more generally that given a countable set of complex hyperplanes
in C3 passing through the origin, there exists f : C→ C3 not constant and avoiding each hyperplane. This
proves Point (i).
Point (ii). Let H1,H2,H3 and H4 be four complex hyperplanes in general position inC3. We know that there
is a linear change of coordinate such that H1,H2,H3 and H4 are defined in standard form by :

H1 = {(z1, z2, z3) ∈ C3
| z1 = 0},

H2 = {(z1, z2, z3) ∈ C3
| z2 = 0},

H3 = {(z1, z2, z3) ∈ C3
| z3 = 0},

H4 = {(z1, z2, z3) ∈ C3
| z1 + z2 + z3 = 0},

Now the fact that f (C) ∩ (∪4
i=1Hi) = ∅ is equivalent to the existence of holomorphic functions fi : C → C,

i = 1, 2, 3 such that
f = (e f1 , e f2 , e f3 ).

Then, by Lemma 2.2 (2), 1 := π( f ) satisfies 1(C) ⊂ CP2
\
⋃4

j=1 π(H?
j ). Hence 1 has the following form

1 = [1 : e12 : e13 ] , (1)

where12 = f2− f1 and13 = f3− f1. According to Theorem 0.2, there exists three diagonals ∆12,34,∆13,24,∆14,23
such that 1(C) = π( f (C)) is contained in one of these diagonals, where ∆i j,kl is the diagonal line passing
through

(
π(H?

i ) ∩ π(H?
j )

)
and

(
π(H?

k ) ∩ π(H?
l )

)
.

We recall that 
π(H?

i ) = {[z1 : z2 : z3] ∈ CP2 : zi = 0} For j = 1, 2, 3
and
π(H?

4 ) = {[z1 : z2 : z3] ∈ CP2 : z1 + z2 + z3 = 0}.

Hence ∆12,34,∆13,24,∆14,23 are given by

∆12,34 = {[z1 : z2 : z3] ∈ CP2 : z1 + z2 = 0},
∆13,24 = {[z1 : z2 : z3] ∈ CP2 : z2 + z3 = 0},
∆14,23 = {[z1 : z2 : z3] ∈ CP2 : z1 + z3 = 0}.

(2)

Suppose that 1(C) is contained in ∆12,34, the cases 1(C) ⊂ ∆13,24 or 1(C) ⊂ ∆14,23 being similar. Then
e12 + 1 = 0⇒ e12 = −1⇒ 1 = [1 : −1 : e13 ], where 13 = f3 − f1. Hence

f = (e f1 ,−e f1 , e f3 ). (3)
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Now we may show Theorem A,
Let H be a real subspace of C3 such that dimRH = 5, then H contains a unique complex hyperplane H̃ of C3.
Indeed, there exists (a1, b1, a2, b2, a3, b3) ∈ R6

\ {0} such that

H =
{
(x1, y1, x2, y2, x3, y3) ∈ R6

|
∑3

j=1(a jx j + b jy j) = 0
}

=
{
z ∈ C3

| <

(∑3
j=1(a j − ib j)z j

)
= 0

}
.

Hence H̃ :=
{
z ∈ C3

|
∑3

j=1(a j − ib j)z j = 0
}

is a complex hyperplane in C3, contained in H.
Point (1). Assume that (H̃,H j,Hk) are in general position for some j , k, j, k ∈ {1, ..., 4}. Since H̃ ⊂ H, where
H̃ is a complex hyperplane of C3, and

f (C) ∩ (∪4
i=1Hi ∪H) = ∅ ⇒ f (C) ∩ (∪4

i=1Hi ∪ H̃) = ∅,

then it follows from Lemma 2.3 (i) that there is (c1, c2) ∈ (C∗)2 which satisfies 1 + c2 + c3 , 0 and there exists
h : C→ C holomorphic such that

f (z) = (eh, c2eh, c3eh).

On another hand H := {(x1, y1, ..., x3, y3) ∈ R6
|
∑3

j=1(aixi + biyi) = 0}. By hypothesis f (C) ∩ H = ∅ then for
every z ∈ Cwe have,

a1<(eh(z)) + a2<(c2eh(z)) + a3<(c3eh(z))
+b1=(eh(z)) + b2=(c2eh(z)) + b3=(c3eh(z)) , 0.

Thus, for every z ∈ C

<(eh(z))
[
a1 + a2<(c2) + a3<(c3) + b2=(c2) + b3=(c3)

]
+=(eh(z))

[
b1 + b2<(c2) + b3<(c3) − a1=(c2) − a3=(c3)

]
, 0.

We denote
a :=

[
a1 + a2<(c2) + a3<(c3) + b2=(c2) + b3=(c3)

]
b :=

[
b1 + b2<(c2) + b3<(c3) − a1=(c2) − a3=(c3)

]
then

f (C) ∩H = ∅ ⇔ eh(C)
∩ {(x, y) ∈ R2 / ax + by = 0} = ∅.

However {(x, y) ∈ R2
| ax + by = 0} is either a real line or R2, depending on the values of a and b. Then by

the little Picard Theorem eh is constant because it avoids an infinite number of points. Hence h is constant
and f is then constant. We point out that the projection of f into CP2 is also constant.
Point (2). Suppose there exists j , k, j, k ∈ {1, ..., 4}, such that
dimRSpanR(H̃⊥,H⊥j ,H

⊥

k ) = 4. Then:
H̃⊥ ⊂ SpanR(H⊥j ,H

⊥

k ).

In fact for all i = 1, ..., 4, dimRH⊥i = 2, then dimRSpanR(H⊥i ,H
⊥

j ) = 4.
Suppose H̃⊥ ⊂ SpanR(H⊥1 ,H

⊥

2 ) then there exists α1, α2 ∈ C such that

H̃ = {α1z1 + α2z2 = 0}.

Now by lemma 2.3 (ii), let pose
f = (e f1 ,−e f1 , e f3 ).

We take f1 = c, c ∈ C \ {0}, such that<(α1ec
− α2ec) , 0 and f3 not constant. Then

f = (C,−C, e f3 )
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avoids ∪4
i=1Hi ∪H, and π( f ) is not constant.

This concludes the proof of Theorem A.

Proposition 2.5. The consideration of four complex hyperplanes in Theorem A, is an optimal condition.

Proof. Let H1,H2 and H3 be three complex hyperplanes in C3, then there exists H a real hyperplane in R6

and a complex hyperplane H̃ contained in H such that
(
H1,H2,H3, H̃

)
are in general position, and there

exists f : C→ C3, holomorphic, such that f (C)∩
(
∪

3
j=1 H j∪H

)
= ∅ and π◦ f is not constant. Indeed, we pose

H = {x1 +x2 +x3 = 0} and H̃ = {z1 +z2 +z3 = 0}, which is clearly contained in H. Since f (C)∩
(
∪

3
j=1 H j∪H

)
= ∅,

then f (C) ∩
(
∪

3
j=1 H j ∪ H̃

)
= ∅ and f = (e f1 , e f2 , e f3 ). Hence

1 := π( f ) = [1 : e12 : e13 ] ,

where 12 = f2 − f1 and 13 = f3 − f1. By the Borel Theorem 0.2, 1 := π( f ) is contained in one of diagonals
∆12,34,∆13,24,∆14,23 (see 2). Suppose π( f )(C) ⊂ ∆13,24, then

π( f ) = [1, e12 ,−e12 ],

Hence f = (1, e12 ,−e12 ) avoids
(
∪

3
j=1 H j ∪H

)
and π( f ) is not constant.

3. Proof of Theorem B.

In this section we perform a C1
−small deformation on the five avoided complex lines in CP2 and we

show that there exists a almost complex structure denoted by J, such that the deformed lines become J−lines
and their complement inCP2 is Kobayashi hyperbolic. Furthermore we show that this complement remains
Kobayashi hyperbolic with the standard structure in CP2.
To show our main result we need the following lemmas.

Lemma 3.1. Let (Li)i=1,...,5 be five lines in general position on CP2. Let L̃i be a sufficiently C1
−small deformation

of Li, i = 1, ..., 5. Then there exists a diffeomorphism φ : CP2
→ CP2 such that φ(Li) = L̃i are J−lines, where

J = φ?(Jst).

Proof. The diffeomorphism is seen when we deform a single line (say L1):
Let Z be the zero section of NL1 (the normal bundle of L1 which is the orthogonal to TL1). let V be
a neighborhood, with boundary, of Z. Let U be a tubular neighborhood of L1. Let Φ : U → V be a
diffeomorphism and π be the projection of the normal bundle on its base. Now for all i , 0, Li are transverse
to L1, then we can assume, without modifying Φ, that for all i , 0, Φ(Li ∩U) is in a fiber F of π. Since L̃1 is
a sufficiently C1

−small deformation of L1, then Φ(L̃1) is the graph of a C1
−small section of F, noted by ”s”.

Let χ be a tray function defined by: {
χ(x) = 1, ∀x ∈ Z
χ(x) = 0, ∀x ∈ ∂V

Let ψ : V → V be a map defined by
ψ(x) = x + χ(x)(s ◦ π)(x).

We can see that ψ is a diffeomorphism of V (C1-small perturbation of the identity). It is equal to the identity
at the boundary of V, preserves the fibers of π and sends the zero section to the graph of s. in fact

x ∈ Z ⇒ ψ(x) = x + s ◦ π(x) ∈ Φ(L̃1)
x ∈ ∂V ⇒ ψ(x) = x

y ∈ π−1(z), z ∈ L1 ⇒ ψ(y) = y + χ(y)s(z) ∈ π−1(z)
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Let Ψ|U = Φ−1
◦ ψ ◦Φ and

φ : CP2
→ CP2; Z 7→ Ψ(Z)

Now The general case is obtained by composing such diffeomorphisms. Indeed more precisly, let (φi)i=1,...,5 :
CP2 :→ CP2 be five C∞ diffeomorphisms such that, by what precedes we have,

φ1(L1) = L̃1 , φ1(Li) = Li, i = 2...5
φ2(L2) = L̃2 , φ2(Li) = Li, i > 3, φ2(L̃1) = L̃1.
φ3(L3) = L̃3 , φ3(Li) = Li, i > 4, φ3(L̃ j) = L̃ j, j 6 2.
φ4(L4) = L̃4 , φ4(L5) = L5, φ4(L̃ j) = L̃ j, j 6 3.
φ5(L5) = L̃5 , φ5(L̃ j) = L̃ j, j 6 4.

Let φ = φ1 ◦φ2 ◦φ3 ◦φ4 ◦φ5 and J = φ∗ Jst. Hence This global diffeomorphism of the projective plane turns
the initial situation into the perturbed situation and these perturbations are J−lines for the new structure
obtained by transporting, by the diffeomorphism, the standard structur, then L̃1, L̃2, L̃3, L̃4 and L̃5 are J-lines
of the projective space. Hence, by Duval’s theorem [6], (CP2

\
⋃5

i=1 H̃i, J) is J-Hyperbolic in the sens of
Kobayashi.

Lemma 3.2. Let Li be five complex lines in general position on CP2. There exists ε > 0 such that if ϕ is a
diffeomorphism of CP2 with |ϕ − id| < ε then, (CP2

\
⋃
ϕ(Li), Jst) is Kobayashi hyperbolic.

Proof. Suppose thatCP2
\
⋃
ϕ(Li) is not hyperbolic. Then there is a sequence of diffeomorphismsϕn tending

to the identity with a divergent sequence of holomorphic disks fn : D→ CP2
\
⋃
ϕ(Li). By the Brody lemma,

we can reparametrize these disks by a sequence of contractions rn so that fn ◦ rn converges to a non constant
entire curve f : C → CP2 (up to extracting a subsequence). This entire curve must cut ∪Li by Green’s
theorem. If it is contained in one of the Li, it cuts some other L j by Picard’s theorem. So in any case it
cuts one of the lines L j without being contained in it. Locally its homological intersection with L j is strictly
positive. This remains true just before passing to the limit, that is fn(D) ∩ ϕn(Li) , ∅. This contradicts the
hypothesis that fn(D) avoids ∪ϕn(Li).

Proof. [Proof of Theorem B]
The proof of Theorem B is a consequence of the two previous Lemmas.

Particular case

In the case where we perturb a single line we can easily prove the folowing

Proposition 3.3. Let L1, ...,L5 be five complex lines in general position in CP2. Let L̃1 be a small deformation of L1,
(L̃1 ' CP

1) and ωFS(L1, L̃1) < 1.
Then any holomorphic curve f : C→ CP2

\ ∪
5
i=2Hi ∪ H̃1 is constant.

Proof. By Borel’s Theorem 0.2, a holomorphic curve of CP2 which avoids four complex lines in general
position is contained in one of the diagonal lines (∆i)i=1,2,3 of the configuration (the lines joining two double
points corresponding to two disjoint pairs of the initial lines). Now the fifth line after any small (real)
deformation still cuts the three diagonals apart from the double points. In fact the fifth line is transverse to
the diagonals so if we disturb it a little there remains an intersection close to the previous one (stability of
transverse intersections). So finally the holomorphic curve is contained in CP1 (the diagonal) minus three
points. It is constant by Picard’s theorem (see [8]).
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