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A Boundary Schwarz Lemma for Pluriharmonic Mappings Between the
Unit Polydiscs of Any Dimensions

Ziyan Huang?, Di Zhao?, Hongyi Li*"

“LMIB, School of Mathematical Sciences, Beihang University, Beijing, P.R.China, 100191

Abstract. In this paper, we present a boundary Schwarz lemma for pluriharmonic mappings between

the unit polydiscs of any dimensions, which extends the classical Schwarz lemma for bounded harmonic
functions to higher dimensions.

1. Introduction

The Schwarz lemma is regarded as one of the most important results in complex analysis. Let f be a
holomorphic self-mapping of the unit disk D. The classical Schwarz lemma states that for holomorphic
mapping f satisfying the condition f(0) = 0, the inequality |f(z)| < |z| is true for any z € D. This result is a
potent tool to study several research fields in complex analysis. An increasing number of mathematicians
thus focus attention on establishing various versions of the Schwarz lemma.

Schwarz lemma at the boundary is an active topic in complex analysis. Various interesting results
associated with the boundary Schwarz lemma have been presented in recent years. For the convenience of
representation, we introduce some notations and definitions.

Let C" be the complex space of dimension 1 with the norm given by |iz|| = (|z1]* + |z2* + -+ + |z,,|2)%
for any z = (21,22, ,z4)7 € C". For any z = (21,22, ,zn) , @ = (w1, @z, ,w,)T € C", the inner
product on C" is defined by (z,w) = Y.I; ziw;, therefore (z, z)% = ||z|]| also represents the norm of z. Let
B" = {z € C" : ||z]| < 1} be the unit ball in C", and dB" = {z € C" : ||z]| = 1} be the unit sphere. Denote
by D the unit disk with unit circle T in the complex plane C, then the unit polydisc can be represented as
D'=Dx---xD={zeC":|z <1,1<i< n}which belongs to the complex space C". Furthermore, denote
|Izll0 = Maxi<j<y, then wehave dD"” = {z € C" : ||zl = 1} and T" =T X --- X T ={z€ C": |z =11 <i < n}
which represent the topological boundary and the distinguished boundary ofD", respectively. If there are
only r (1 < r < n) components of zgp whose modules equals to 1, then the set of all this kind of boundary
points is denoted by E,. It is obvious that E, = T" and |J;,<, E, = dD" if taking all boundary points into
consider.

Denote the set of all holomorphic mappings between the bounded domains of any dimensions as
H(Q1,) where QO € C"and Q, ¢ CN. Forany f = (fi, f2, -+, fn)T € H(Q, ), the Jacobian matrix of f
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atz € Q) is given by
b= ()
Nxn

Moreover, we use Df( f z) to represent the N X n matrice ( of (z)) . For the same function, denote by J¢(z)
Nxn

the 2N X 2n Jacobian matrix of f at z in terms of real coordinates. Let C*(V) be the set of all functions f on
the bounded domain V for which

w {If(z O V}

| =z |a

is finite with 0 < @ < 1. Then we denote C*%(V) as the set of all functions f on V whose k-th order partial
derivatives exist and belong to C*(V) for an integer k.
In [1], the classical boundary Schwarz lemma for holomorphic mappings is described as follows:

Theorem 1.1. [1] Let f € H(D, D) be a holomorphic mapping. If f is holomorphic at z = 1 with f(0) = 0 and
f(1) =1, then f (1) > 1. Moreover, the inequality is sharp.

If we remove the condition f(0) = 0 in the above theorem and take the holomorphic mapping

1-£(0) f(2) - f(0)
1-fO)1-F0)f(z)

9@) =
we have the following estimate instead:

I1 1-fOP
1-1fOP

Chelst[2] and Osserman|[3] further studied the Schwarz lemma at the boundary of the unit disk, respec-
tively. Ornek[4] explored some new expressions of Schwarz inequality at the boundary of the unit disk and
acquired the sharpness of these inequalities.

Moreover, in the case of several complex variables, Wu generalized the classical Schwarz lemma for
holomorphic mappings to higher dimension [5]. Recently, Liu et al.[6] presented a version of the boundary
Schwarz lemma for holomorphic mappings from the unit ball B" to the unit ball BY, which is not restricted
by the condition f(0) =

f)=z > 0. (1)

Theorem 1.2. [6] Let f € H(B",BN) for n, N > 1. If f is C}** at zy € dB" with f(zo) = wy € IBY, then there exists
A € R such that

-7
Df(zo) wo = Azg

where A = B4 5 0, 4 = £(0).

Furthermore, in [7] Liu et al. presented the result of Schwarz lemma for holomorphic mappings from
the unit polydisc D" to the unit ball BN at the boundary as follows.

Theorem 1.3. [7] Let f € H(D",BN) for n,N > 1. Given zy € dD". Assume z € E, with the first r components
at the boundary of D for some 1 < r < n. If f is C*% at zg with f(zo) = wo € IBN, then there exist a sequence of
nonnegative real numbers y1,v2,- -+ , v, satisfying Z;:l yj 2 1sand A € R such that

— T
Df(ZO) CUO = /\dlag(‘)/ll : /‘)/7’/0/" : ,O)ZO

[1-7" wl?
1—|lall?

where A = > 0,a = f(0) and "diag” represents the diagonal matrix.
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Harmonic mapping is a complex-valued harmonic function defined in the complex space, which is
in touch with geometric functions and locally quasiconformal mappings. For the harmonic mappings,
there are also some interesting analogues of the Schwarz lemma. For example, the Schwarz lemma for the
harmonic self-mapping of the unit disk is stated as follows.

Theorem 1.4. [8] Let f is a harmonic mapping of the unit disk D on itself, and f(0) = 0, then

4
If(z)] < p arctan |z|,z € D.

In [9], the boundary Schwarz lemma for the harmonic self-mapping of the unit disk is restated with a
simple proof. Considering the several complex variables, Mateljevic offered the boundary Schwarz lemma
for harmonic mappings between the unit balls with any dimensions in [10].

Note that the pluriharmonic mapping can be considered as a generalization of the harmonic function.
A continuous complex-valued function f defined on a domain Q € C” is said to be pluriharmonic if for
each fixed z € Q and 6 € dB", the function f(z + 6C) is harmonic in {C : ||C|| < dQ(z)}, where d()(z) denotes
the distance from z to the boundary dQ of Q. Therefore, it is a very natural task to obtain various versions
of the Schwarz lemma for pluriharmonic mappings.

It is obtained in [11] that when Q) is a simply connected domain, then f : QO — C is pluriharmonic if and
only if f could be represented by f = 1 + { where 1 and C are holomorphic in Q. Hence, a holomorphic
mapping can be regarded as a special pluriharmonic function. Furthermore, f : QO — C" is called a
pluriharmonic mappings if all its components are pluriharmonic functions from Q to C. Similarly to
H(€),€)y), the set of pluriharmonic mappings between the bounded domains of any dimensions is denoted
as P(Q, Q) where Q; c C" and Q, c CV.

In [12], Mateljevi¢ introduced Kobayashi metrics and obtained the Kobayashi-Schwarz lemma for the
holomorphic mappings on the bounded connected open subsets of complex Banach space. Asan application
of the lemma obtained, a boundary Schwarz lemma is established for pluriharmonic mappings defined on
the unit ball B%.

For the pluriharmonic mappings between unit balls with any dimensions, in [13], Liu et al. presented
the boundary Schwarz lemma for pluriharmonic mappings defined on the unit ball.

Theorem 1.5. [13] Let f € P(B",BN) for n,N > 1. If f is C*** at zy € dB" and f(zo) = wo € IBY, then there exists
a positive A € R such that

NT 7 ’
Df(z)) w, = Az,
; 1-]If©O
where z, and wy, are real versions of zo and wo, and A > —zli{fl)“ > 0.

In this paper, we extend the boundary Schwarz lemma for planar harmonic mappings to higher di-
mensions, and establish a novel boundary Schwarz lemma for pluriharmonic mappings between the unit
polydiscs of any dimensions.

Inspired by [13], we consider the real version of this problem. For z = (z1,22,-*- ,zy)T € C" with
z; = x; + iy; where 1 < i < n, denote 2’ as the real version of z and z’ = (x1, 1, , X, ¥u)] € R** only
containing real elements. Therefore, D" in C" is equivalent to the unit polydisc D** ¢ R*".

We first combine the Harnack’s inequality with the minimum principle and establish a new inequality for
the nonnegative harmonic function defined on the unit polydisc D?" (see Lemma 2.1). This lemma provides
an important technique support for estimating the lower bound of the function in the proof of the main
results. Furthermore, we also present the Schwarz lemma for the pluriharmonic mapping f € P(D",DN)
(see Lemma 2.2), which generalizes the corresponding results in Theorem 1.4 to higher dimensions and
plays a significant role in the proof of Theorem 1.6. Then we get the following boundary Schwarz lemma
for pluriharmonic mappings in P(D", DN).

Theorem 1.6. Let f € P(D", DN) with f(0) = 0 for n,N > 1. Given zo = (z1,"** , 2, Zr+1,"** ,Zn)’ € E, C OD". If
fis C gt 74 and f(z0) =wo € Ey C JDN, then there exist a sequence of nonnegative real numbers y1,y2,--+ ,Vr
such that the following statements hold.
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1) Suppose that zy and wy are real versions of zo and wy, respectively. Then

J#(z)) ) = diag(A1,0,- -+, A,,0,--+,0)z)

P) P 1-1/(0 .
where A; —Zm u] with u] > zzlf,’(l)forlélSr.

2) tr(dlﬂ_l](/\ll e /\r,O e, 0) =L forl<r<n.

2. Some lemmas

In this section, we exhibit some notations and present several basic lemmas, which play the significant
roles in the proof of the main results.

Lemma 2.1. Let f be a nonnegative function defined on the unit polydisc D*' in R*". If f is continuous on the unit
polydisc and harmonic on its interior, then for any z = (x1, y1,- -+ , X, Yu)" € D** satisfying [x? +y*> =1y <1(1 <
i<r<mn)and x; = y; = 0(r + 1 < i < n), the following inequation holds:

1-
f@) 2 e fO)

Proof. Suppose that f is a nonnegative function defined on the unit ball B*" in R*". According to the
description of [13], we know that if f is continuous on the unit ball and harmonic on its interior, then for
any zg € B¥ with || zg ||= 7o < 1 we have the Harnack’s inequality

1-— 1+

(1 +ro) anf()_f(z)_(l 2n1f()

Since the conditions that z = (x1, y1,- -+, Xu, yu)" € D*" satisfies |z;| = \[x? + y? =rp <1for1 <i<r<nand
x; = y; = 0forr+1 <i<n,itis not difficult to derive that ||zl = (YI-, Izi?)2 = \frry < V. Then we have

1- 1+7

T [0S R S s fO)

Therefore, it follows from the minimum principle for harmonic function that

1- To
>— 9 70
This completes the proof. [J

Lemma 2.2. Let f = (f1,---, fu)' € P(D",D") withn,N > 1 and f(0) = 0, then

4
lf (@)l < ;arctanIIZIloo

Proof. For any fixed z’ € D" \ {0} and any C € D, let
& ) fiz) >
l12’lleo /” I fiz")l

for any 1 < i < n. Applying Theorem 1.4 to the complex-valued harmonic mapping F;, we have the
inequality

F(O = <f(

, 4
/@) = IFi(llzlleo)l < —arctan flzlles
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for any 1 < i < n. Thus, the inequality

4
lf @l < . arctan ||z]|

holds for any z € D".
The proof of the lemma is complete. [J

Remark 2.3. When n = N =1, Lemma?2.2 reduces to Theorem 1.4, which extends the boundary Schwarz lemma to
high dimensions.

3. Proof of Theorem 1.6
In the following, we will prove Theorem 1.6.

Proof. 1) The first proof is divided into six steps for reader’s convenience.

Step 1. Assume zp € dD" and f = (fi, -, fn)! is C** in a neighborhood V of zp. Without loss
of generality, we let zp = Y.i_; e where e/ represents the i-th column of the identity matrix I,. Since
fj = uj +ivj for 1 < j < N is defined on the unit polydisc, it is obtained from f that ux(}¥.i_; e!) = 1 for
1 <k <m < N. Moreover, 1 —uy > 0 is harmonic on the unit polydisc. By using Lemma 2.1 and considering
x = (x1,0,x,0,--+,%,0,--- ,00T € R for x; = ronear 1 (1 <i < r < n), we have

1= () 2 ot (1= (0)),

which gives that

1 — u(x) S 1 — ux(0)
1—-x = (1 + x,-)zn‘l )

Letting x; — 17, we can derive

dueCin ) _ Q- ud) - (- i ) | 1-w(0)
ox; B xi—1- 1—x; - 21

()

forl<i<rand1<k<m.

Step 2. Letp = zo,q1 = — Y.y €/ +ike] for 1 <I<randk € R. Itis clear that p + tq; = (1 — t)zo + ikte]' for
teR,sowehavel|p+tglle <1 o [1-t+ikt{ <land|l-t{ <1 e 0<t< 137 The equivalence relationship
means that for a given k whent — 0*,p+tq; € D" (V. For t — 0%, taking the Taylor expansion of f;(p + tq;)

att =0, we have

filp + tq)) = (wo); + Dfj(zo)qit + Dfi(zo)it + O(t*)

where (wp); denotes the j-th element of w. By Lemma 2.2,

4
If(p + ta)lleo = max Ifi(p + tq)] < —arctan|lp + fqlle. 3)

Considering that
llp + tqille = 11 — t + iktor|1 — ¢|,
it is easy to derive

11
arctan|1 —f| = T_ - A_Lt +O(t*) =

1+a
171 t+ 0@t

L
42
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and

arctan |1 + (=1 + ik)| = g + }L(—1 +ik)E + %(—1 —ik)E + O = % — S+ O@Y),

N~

Thus (3) is equivalent to
— _ 2
max |(@0); + Dfi(zo)qut + Dfi(=zo)git + O(t*)| < 1 - St O(t'+™).

Substituting wy = Z;":l e?’ , we have

— 4
— 1+a _ = 1+a
max {1+ 2Re(Df(z0)q1 + Df o))t + O(F**)} <1 —t+O(H").

Letting t — 0%, we deduce that

Substituting q; = — Y./, e/ + ike]', we have

r

Z e} + ike

i=1

+ Df(zo)

max {Re Df(zo)q: + Df(zo)ql)} < —% 4)
1m<]ei>lf] {Re Df(zo)

1<]<
- 2
- Z el — ike?]]} <—
. e
=1
which equals to

/i) . 9filz0) 9fj(z0) _ . 9fz0) 2
15N {Re [_ Z:‘ 9z 9z ;‘ 9z; 9z ]} TS

i=
Le taf/ 20) — Re !9f,(Zo) 3}’/(20) and 9f;(}0) Re 9f/ Zo) +ilm 19f](Zo

+ilm o

. From the above inequality, we have

. {_Rez afé(;w IO Z af]<zO> 9ﬁ(20)} L2

1<j<N — 0z 0z d
ie.
. If; (Zo) df;(zo) dfj(zo) df(zo) 2
152N {Re ; *Re Z 0z Tk (Im 9z ~Im 9z ) 2 ©)

Since (5) is valid for any k € IR, so that
af; af;
' fi(20) . fi(20)

5 Imm=m =01<i<r, ©)
which gives
. ~ dfj(z0) af](Zo) 2
1121;111 {Re ; 9z *Re ; 9zZ; z e @

and

9f](Zo) 9f](Zo) _ 9fi(z0)  9fj(=z0) 1<
0z dz; 9z 9z T




Z. Huang et al. / Filomat 34:9 (2020), 3151-3160 3157

Step 3. Consider p = z,q; = — Y.y € +kef for 1 <l <rand k < 0. Then p +tq; = (1 - t)zp + kte] for t € R.
Hence |p +tqllo <1 & |1 —t+ktff<land[1-f{ <1 ©0<t< 1271( The equivalence relationship implies
that for any given k < 0 there is t — 0" such that p + tq; € D" (| V. Taking the Taylor expansion of f;(p + tg;)
att = 0 and applying Lemma 2.2, we get

— _ 4
{nﬁ;)}fl |(a)0)j + Dfi(zo)qit + Dfj(zo)qit + O(t1+a)| < = arctan ||p + tqillco-
Same to Step 2, it is not difficult to obtain
— 4
= 1+a _ = 1+a
1122)15; {1 + 2Re(Df(z0)q: + Df (zo)qn)t + O(t )} <1 nt + O(t ™).

We also substitute q; = — Y.i_; e + ke}' and let t — 0%, then

ool

i=1

7

1 1
—Zei + ke

i=1

max {Re Df(zo) + Bf(zo)

1<j<N

A straightforward computation shows that

. {Re[_ Z oz i) Z Ifi(z0) kamz@)]} S _%,

1<j<N = 0z 9z = 0z 0z

which is equivalent to

min {Rei 3/;-(;0) + Rezr: o) k(Reafj(ZO) - Reafj(_z(’))} > %
i=1 ! ‘

1<j<N 0Z; 0z 0z

Since (7) and (8) is valid for k € R, we get
af; af;
min —k —f/(ZO) — —f](_ZO) >0
1<j<N 0z 0z,
for k < 0. We further derive

df;(z0) S 9f;(zo)
321 - 821 ’

1<I<r1<j<N )

since k < 0 is arbitrary.

Step 4. Letp =z,q1 = — Y. € +ike forr+1<I<nandk#0eR. Thenp+tq = (1-1t) Y, e +ikte]
for t € R. It is not difficult to verify that [[p + tgillo <1 & [1 —# <1 and ikt <1 e 0<t< min{kl—z,2}.
Therefore, givenak # 0 € R, there exists t — 0* such thatp+tg; € D" (] V. Then taking the Taylor expansion
of fi(p + tq;) att = 0, we can derive

— _ 4
1121;25] |(a)0)j + Dfi(zo)qit + Dfj(zo)qit + O(t1+"‘)| < = arctan ||p + tqille,

from which it is obvious that

max {1 + 2Re(D f(z0)q1 + Df(z0)qi)t + O(t““)} <1- %t + O(H+).
<j<

Substituting q; = — Y.i_, e/ + ike]' and letting t — 0%, we get

_ Z el — ikef]]} < —%,

7

=Y e + ke

i=1

max Df(zo) + Df(z0)

max <{ Re
i=1
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i.e.

- 9fiz) | 9fi(z0) ofi(z0) . 9fi(z0) 2
1122);}{136(—2 9z + 9z Z‘ 9z 9z ]}_ T

9f/(zo)

9fj(Zo) and 9f;(Zn) — Re ‘9f](Zo +ilm 9fj(z0)

Reviewing that af](ZO) = Re + iIm=1= =

difficult to obtaln

dfi(zo) Cm Ifi(zo)
(92] &Zl

, and exploiting (7), it is not

max k (Im

<0,r+1<li<n.
1<j<N

Since the above equality is valid for k # 0 € R, with the similar argument to Step 2, we have

mafj(zo) _Imafj(zo) 3
821 aZl B

r+l<i<n (10)

Step5. Letp = zo,q1 = — YLy €f +kef forr+1<I<nandanyk # 0 € R. Thenp+tq = (1-t) X7, e! +kte]
for t € R. It is not difficult to verify that [[p + tglle <1 & [1 -t <land kt? <1 & 0 <t < min{]%,Z}.
Therefore, given a k # 0 € R, there exists t — 0* such that p + fq; € D" (| V. With the similar argument to

Step 4, it is not difficult to obtain

dfi(zo = dfj(z0)
RZ +R§ 2 o r+1<i<n 11
‘ = 9z ‘ & oz ' ! .
Review the formulas f; = u;j+iv;and z; = x; +iy; for 1 <i <n,1 < j < N. Considering that &% = %(&% - i&%i)

and (9% =1 (3% + iaiyi), we can derive the following results forany 1 <i<n,1<j<N:

afi 1{a9 .9 S\ duj  Jv; dv;  duj]
5 =3 (o)) =3 |5 5 (5 -5

~

I\)IH

af; 1( 9 p2] . 1[(du; Jv; Jdv;  du;
% = 3G oo =5 (5 - 5+l )
In view of (2) and (6), it is obvious that for any 1 < j < m we have

o”uj_08uj>1—u]-(0)1<.< 12
oy~ 2 e SIS "

Similarly, it follows from (10) and (11) that

8u]- 0 8u]- 0 1<i< 13
ayi"ax,-"” <i<n. (13)
Rewrite z = (z1,--- ,z,)7 € C" by 2/ = (X1, Y1, , X, Yn)" € R¥, then z[ = (e}) + (&) +---+(&f ) =

(1,0,---,1,0,---,0)T € R¥ where (¢%)’ represents the i-th column of 1dent1ty matrix Ip,,. Accordmg to (12)
and (13), it is concluded that

]f(ZE))TCUf) = dia!]()\ll 0/ Tty /\r/ 0/ Tty 0)26

duj . du; 1-u;(0)
where wj = (¢)')’ +(€)) + - + (e}, ) and A; = Y1y 7 with 57 > 5= for1<i<r.
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Step 6. Let z be any given point at oD?" ¢ R?". That s, z, is not necessary (ef)" +(e})" +-- -+ (le 1)’ Then

there exists a special kind of real-valued diagonal unitary matrix U, such that U (zy) = (el) (e5) +

(€3,_1) = zpo, referring to [7]. Assume f’ is the real version of f, and f’(z) = w(, where wj is not necessary
@) + (@) +---+ (e}, ;) at ID*". In the same way, there exists a real-valued diagonal unitary matrix U,
such that Uy, (wp) = (e)') + (€)Y + -+ (e}),_,)" = @}, Denote

gl(zl) — uw[,) o f/ ° uz: (Z’),Z’ c D2‘rl
and
g(z)=Uy, 0 fo UZTO(Z),Z eD"

where U,, and U, represent complex unitary matrices corresponding to U and Uy, such that Uy, (zo) =

Y.ioi€l and Uy (wo) = Ly e;\’ . It is easy to verify that ¢ is the real version of g and g(¥;_; ¢}) = L7, e}N .
Furthermore, the Jacobian matrix of g could be denoted as

Io(2) = Uy I (uZT (z’)) Ul ()2 e D (14)
According to Step 5, we have
]y (Z,nar)T w‘:zor = diag(/\h 0, Tty Ar; 0/ Tty O)Z,

nor

ou; ou 1-u;(0 . .
where A; = Z;”zl gx’ with o2 > 22,,{(1) for 1 <i <r. As aresult, we obtain

T
(uwé]f (U;E)(Z;or)) uzf)) w;’UT = diag(AL 0,---,A,0,--- ’O)Z:IUV
which equals to

uz(’)]f (ZO) UT Whor = dmg(/\lr oo, A0, IO)Z/

nor*

Multiplying U”, at both sides of the above equation gives
0
]} (zé) wp = diag(A1,0,-++ ,A,,0,-++,0)z)

ou; ou; 1-u;(0
where A; = Zml axl with =1 > 2%](1) forl1<i<r.

2) Accordmg to (7), 1t is not difficult to obtain

Y5

::1’

T

Lﬁ.

2
> —.
i

QO

Since tr (diag(A1,0,--- ,A,,0,--+,0)) = Xy Arand A; = ¥ gx it is obvious that

tr (diag(A1,0,--+, A, 0,--+,0)) >

:IIN

The proof of Theorem 1.6 is finished. [
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