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Determining Crossing Numbers of the Join Products of Two Specific
Graphs of Order Six With the Discrete Graph

Michal Stas?

*Department of Mathematics and Theoretical Informatics, FEEI TUKE, 042 00 Kosice, Slovak Republic.

Abstract. The main aim of the paper is to give the crossing number of the join product G* + D, for the
connected graph G* of order six consisting of P, + D; and of one leaf incident with some inner vertex of
the path P4 on four vertices, and where D,, consists of n isolated vertices. In the proofs, it will be extend
the idea of the minimum numbers of crossings between two different subgraphs from the set of subgraphs
which do not cross the edges of the graph G* onto the set of subgraphs by which the edges of G* are crossed
exactly once. Due to the mentioned algebraic topological approach, we are able to extend known results
concerning crossing numbers for join products of new graphs. The proofs are done with the help of software
that generates all cyclic permutations for a given number k, and creates a new graph COG for calculating
the distances between all (k — 1)! vertices of the graph. Finally, by adding one edge to the graph G*, we are
able to obtain the crossing number of the join product of one other graph with the discrete graph D,.

1. Introduction

The problem of reducing the number of crossings on the edges in the drawings of graphs was studied
in many areas, and the most prominent area is VLSI technology. Introduction of the VLSI technology
revolutionized circuit design and had a strong impact on parallel computing. A lot of research aiming at
efficient use of the new technologies has been done and further investigations are in progress. As a crossing
of two edges of the communication graph requires unit area in its VLSI-layout, the crossing number together
with the number of vertices of the graph immediately provide a lower bound for the area of the VLSI-layout
of the communication graph. The crossing numbers have been also studied to improve the readability of
hierarchical structures and automated graph drawings. The visualized graph should be easy to read and
understand. For the understandability of graph drawings, the reducing of crossings is by far the most
important.

The crossing number cr(G) of a simple graph G with the vertex set V(G) and the edge set E(G) is the
minimum possible number of edge crossings in a drawing of G in the plane. (For the definition of a drawing
see [11].) It is easy to see that a drawing with minimum number of crossings (an optimal drawing) is
always a good drawing, meaning that no edge crosses itself, no two edges cross more than once, and no two
edges incident with the same vertex cross. Let D (D(G)) be a good drawing of the graph G. We denote the
number of crossings in D by crp(G). Let G; and G; be edge-disjoint subgraphs of G. We denote the number
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of crossings between edges of G; and edges of G; by crp(G;, G;), and the number of crossings among edges
of G; in D by crp(G;). It is easy to see that for any three mutually edge-disjoint subgraphs G;, G;, and Gy of
G, the following equations hold:

crp(G; U Gj) = crp(G;)) + crp(G)) + crp(G;, Gj),

crp(Gi U Gj, Gi) = crp(Gi, Gx) + crp(Gj, Gy) -

In the paper, some proofs will be also based on the Kleitman's result on crossing numbers of the complete
bipartite graphs [8]. More precisely, he proved that

k) = | 2| T |5 ) i min,n) <6
Using Kleitman’s result [8], the crossing numbers for the join product of two paths, the join product of two
cycles, and also for the join product of a path and a cycle were studied by Kles¢ [9]. Moreover, the exact
values for crossing numbers of G + D, and of G + P, for all graphs G of order at most four are given by Kles¢
and Schroétter [13]. It is also important to note that the crossing numbers of the graphs G + D,, are known
for few graphs G of order five and six in [1], [3], [5], [7], [10], [11], [12], [14], and [16]. In all these cases,
the graph G is connected and contains at least one cycle. Obviously, with the growing number of edges in
graphs, it is much more difficult to determine their crossing numbers, and so the purpose of this article is to
extend the known results concerning this topic to new graphs G with [V(G)| < |[E(G)|. The crossing numbers
of G + D,, are also known only for some disconnected graphs G, see [4], [15], and [17].

The methods presented in the paper are based on multiple combinatorial properties of the cyclic per-
mutations. The similar methods were partially used earlier by Hernandez-Vélez et al. [6]. The properties
of cyclic permutations have been already verified with the help of software by Berezny and Sta$ in [3] and
[4]. Also in this article, some parts of proofs can be simplified by utilizing the work of the software COGA
that generates all cyclic permutations by BereZzny and Busa [2]. C++ version of the program is located
on the website http://web. tuke.sk/fei-km/coga/. The list with the short names of 6!/6 = 120 cyclic
permutations of six elements are collected in Table 1 of [3]. Note that we were unable to determine the
crossing number of the join product G* + D,, using the methods used in [11], [13], and [14].

2. Cyclic Permutations and Configurations

Let G* be the connected graph of order six consisting of P4 + D; and of one leaf incident with some
inner vertex of the path P, on four vertices. We consider the join product of G* with the discrete graph on n
vertices denoted by D,,. The graph G* + D,, consists of one copy of the graph G* and of n vertices t1, t5,.. ., t,,
where any vertex t;, j =1,2,...,n,is adjacent to every vertex of G*. Let T/, j=1,...,n, denote the subgraph
induced by the six edges incident with the vertex ;. This means that the graph T U --- U T" is isomorphic
with the complete bipartite graph Kq , and therefore, we can write

n
G*+Dn=G*u1<6,n=G*u[UTf}. (1)
j=1

Let D be a good drawing of the graph G* + D,,. The rotation rotp(t;) of a vertex t; in the drawing D is
the cyclic permutation that records the (cyclic) counter-clockwise order in which the edges leave t;, see [6].
We use the notation (123456) if the counter-clockwise order the edges incident with the vertex ¢; is t;v1, tjvy,
tjvs, tjvg, tjvs, and tjve. We emphasize that a rotation is a cyclic permutation; that is, (123456), (234561),
(345612), (456123), (561234), and (612345) denote the same rotation. Thus, 6!/6 = 120 different rotp(t;) can
appear in a drawing of the graph G* + D,,. By rotp(t;) we understand the inverse rotation of rotp(t;). In the
given drawing D, we separate all subgraphs T/, j = 1,..., n, of the graph G* + D,, into three mutually disjoint
subsets depending on how many times the considered T/ crosses the edges of G*in D. For j = 1,...,n, let
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Rp = {Ti : crp(G*, T/) = 0} and Sp = {TV : crp(G*, T/) = 1}. Every other subgraph T/ crosses the edges of G*
at least twice in D. For T/ € Rp U Sp, let F/ denote the subgraph G* U T/, j € {1,2,...,n}, of G* + D, and let
D(F/) be its subdrawing induced by D. Due to arguments in the proof of Theorem 3.4, at least one of the
sets Rp and 5p must be nonempty in a good drawing D of G* + D,, with the smallest number of crossings.
Thus, we will deal with only drawings of the graph G* with the possibility of an existence of a subgraph
T/ that crosses the edges of G* at most once. This assumption confirms that there are five non isomorphic
planar drawings of G* given in Fig. 1 in which the vertex notation of the graph G* will be justified later.

Figure 1: Five non isomorphic planar drawings of the graph G*.

Let us first assume the drawing of G* with the corresponding vertex notation in such a way as shown
in Fig. 1(a). Our aim is to list all possible rotations rotp(t;) which can appear in D if the edges of T/ do not
cross the edges of G*. Since there is only one subdrawing of F/ \ v5 represented by the rotation (16432), there
are two ways for how to obtain the subdrawing of F/ depending on in which region the edge t;vs is placed.
We denote these two possibilities under our consideration by R; and R,. As for our considerations does
not play role which of the regions is unbounded, assume the drawings shown in Fig. 2.

R Ry

Figure 2: Drawings of two possible configurations from M of the subgraph F/.
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In the rest of the paper, we represent a cyclic permutation by the permutation with 1 in the first position.
Thus, the configurations R; and R, are represented by the cyclic permutations (165432) and (156432),
respectively. Of course, in a fixed drawing of the graph G* + D,,, some configurations from M = {R;, Ry}
need not appear. So, we denote by Mp the set of all configurations of M that appear in D. Now, we
deal with the minimum numbers of crossings between two different subgraphs T' and T/ depending on
the configurations of subgraphs F' and F/. Let D be a good drawing of the graph G* + D,, and let X,
Y be configurations from Mp. We shortly denote by crp(X,Y) the number of crossings in D between
T and T/ for different T!, T/ € Rp such that F/,F/ have configurations X, Y, respectively. Finally, let
cr(X, Y) = min{crp(X, Y)} over all pairs X and Y from M among all good drawings of the graph G* + D,,.
Our aim is to establish cr(X, Y) for all pairs X, Y € M.

Let IT] denotes the inverse cyclic permutation to the permutation Pj, for j = 1,...,120, where the list
with the short names of 6!/6 = 120 cyclic permutations of six elements was collected in Table 1 of [3].
Woodall [18] has been defined the cyclic-ordered graph COG with the set of vertices V = {P1, P, ..., Pix)},
and with the set of edges E, where two vertices are joined by the edge if the vertices correspond to the
permutations P; and P;, which are formed by the exchange of exactly two adjacent elements of the 6-tuple
(i.e. an ordered set with 6 elements). Hence, if dcoc("rotp(t;)”, “rotp(t;)”) denotes the distance between
two vertices which correspond to the cyclic permutations rotp(t;) and rotp(t;) in the graph COG, then

crp(T', TV) = Q(rotp (t:), rotn(t))) = dcoc("rotp(t)”, "rotp(t;)") 2)

holds for any two different subgraphs T' and T/, where Q(rotp(t;), rotp(t 7)) was defined in [3] as the minimum
number of interchanges of adjacent elements of rotp(t;) required to produce the inverse cyclic permutation
of rotp(t;) or, equivalently, from rotp(t;) to the inverse of rotp(t;). In particular, the configurations R; and
R, are represented by the cyclic permutations Piyg = (165432) and P19 = (156432), respectively. Since
P11 = (123465) = P,5, we have cr(Ry, Ry) > 5 using of dcog(”P2s”,”"P120”) = 5. Clearly, also cr(R,, Ry) = 6
for each p = 1,2. Details have been worked out by Woodall [18]. For easier and more accurate labeling in
the proofs of assertions, let us define notation of regions in some subdrawings of G* + D,,. For T/ € Rp,
the unique drawing of F/ contains six regions with the vertex t; on its boundary. For example, if F/ has the
configuration R;, then let us denote these six regions by w12, w23, W34, W5, Ws6, and w156 depending on
which of vertices are located on the boundary of the corresponding region. A similar designation may also
be used for the case of T/ € Sp.

In the case of Rp = 0, our aim shall be to list all possible rotations rotp(t;) which can appear in D if
the edges of T/ cross the edges of G* exactly once. Since the edge v,v3 can be crossed by tjv; and the
edge t;v3 can cross one of the edges v1v;, v105, and v4v5, we obtain 4 X 2 = 8 possibilities depending on
in which region the edge t;vs is placed. Further, if any of the edges t;v; and t;vy crosses the edge vsv,
then there is only one possibility for a placement of the edge t;vs. Clarity of edge placing of t;us5 gives the
last way if the edge v3v; is crossed by tjus. We denote these eleven possibilities under our consideration
by A,, forp = 1,...,11. Again, as for our considerations, it does not play a role in which of the regions
is unbounded; assume the drawings shown in Fig. 3. Thus, the configurations A, are represented by the
cyclic permutations given in Table 1.

[ conf(F/) [[ rotp(t;) [| conf(F)) [ rotp(t)) |
Fn || (135682 | A, | (136542)
A, | (126583) || As | (125643)
A, || (156423) | A, | (165423)

(

(

(

Ay 164532) || Ay | (154326)
As 154632) || An | (156342)
Ao 165342)

Table 1: The corresponding rotations of ¢; for Fl =G UT/, where T/ € Sp.
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Figure 3: Drawings of eleven possible configurations from A of the subgraph F/.
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Of course, in a fixed drawing of the graph G* + D,, some configurations from N = {Aj,..., A}
need not appear. So, we denote by Np the subset of N consisting of all configurations that exist in
the drawing D. Due to the properties of the cyclic rotations, one can easily verify that cr(A;, Ay) = 2,
cr(ﬂl,?h) > 5, Cr(ﬂ1,ﬂ4) > 2, cr(ﬂl,ﬂ5) >3, cr(ﬂl,?k) >3, Cr(ﬂl,ﬂﬂ > 5, Cr(ﬂhﬂg) >3, Cr(ﬂl,ﬂg) >
4, cr(Ay, Aw) = 4, cr(A, An) = 4, a(Ay, Az) > 3, ar(Ay, Ay) = 4, cr(Ay, As) = 3, cr(Ay, Ag) = 4,
cr(Ay, A7) = 3, cr(Ap, Ag) = 5, cr(Ap, Ag) > 4, cr(Ay, Arg) = 4, cr(Ap, A1) = 4, cr(Az, Ay) > 3, cr(Asz, As) >
4, cr(Asz, Ag) = 3, cr(Asz, A7) = 4, cr(As, Ag) = 4, cr(Az, Ag) = 5, cr(Az, Ay) = 3, cr(As, App) = 4,
cr(Ay, As) = 3, cr(Ay, Ag) = 4, cr(Ay, A7) = 3, cr(Ay, Ag) = 3, cr( Ay, Ag) > 4, cr(Ay, Ar) = 4, cr(Ayg, A1r) =
4, cr(As, Ag) > 4, cx(As, Ay) > 2, cr(As, Ag) > 4, cx(As, Ag) > 3, cr(As, Ag) > 4, cr(As, App) > 4,
cr(Ag, A7) = 4, cr(Ag, Ag) > 4, cr(Ag, Ag) > 4, cr(Ag, Arg) = 4, cr(Ag, A1) = 5, cr(Ay, Ag) > 2, cr(Ay, Ag) >
5, cr(Ay, Aig) > 4, cx(Ay, An) = 3, cr(Ag, Ag) > 3, cr(Ag, A1) > 4, cr(Ag, A1) > 4, cr(Ag, Arg) > 4,
cr(Ag, A1) = 3, and cr(Ag, A1) = 3. Moreover, by a discussion of possible subdrawings, we can verify
that cr(Ay, As) = 4, cr(Ay, Ay) = 6, cr(Ay, Ag) = 4, cv(As, A7) = 4, cr(As, Ag) = 4, cr(Ay, Ag) = 4,
cr(Az, Anr) > 4, cr(Ag, Ag) > 4, cr(Ag, A1r) = 4, and cr(Ay, A1) = 4. Clearly, also cr(A,, A,) > 6 for
any p = 1,...,11. The resulting lower bounds for the number of crossings of configurations from N are
summarized in the symmetric Table 2 (here, A, and A, are configurations of the subgraphs F and F/, where
p,qefl,..., 11}).
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Table 2: The necessary number of crossings between two different subgraphs T! and T/ for the configurations A, and A,.

Now, let us suppose the drawing of G* with the considered vertex notations in such a way as shown
in Fig. 1(d). In this case, the set Rp is empty, and our aim is to list again all possible rotations rotp(t;)
which can appear in D if T/ crosses the edges of G exactly once. Of course, the vertex t; must be placed
in the pentagonal region of D(G") and the edge tju; have to cross one edge of G*. Since there is only
one subdrawing of Fi\ {v,, vs) represented by the rotation (1643), there are four ways for how to obtain
the subdrawing of F/ depending on in which region the edge t;vs is placed and which of the edges of G*
is crossed by t;jvo. These four possibilities under our consideration are denoted by D,, for p = 1,2,3,4.
Again, as for our considerations, it does not play a role in which of the regions is unbounded; assume
the drawings shown in Fig. 4. Thus, the configurations D, D,, D3, and D, are represented by the cyclic
permutations (126543), (156432), (165432), and (125643), respectively. Of course, in a fixed drawing of the
graph G*+ D,,, some configurations from O = {D;, D,, D3, D4} need not appear. We denote by Op the subset
of O consisting of all configurations that exist in the drawing D. The verification of the lower bounds for
number of crossings of two configurations from O proceeds in the same way like above, and so they can
be summarized in the symmetric Table 3 (here, D, and D, are configurations of the subgraphs F’ and F/,
where p,q € {1,2,3,4}).
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Figure 4: Drawings of four possible configurations from O of the subgraph F/.

| D1 [D: | Ds | D]

Dy 6 5 5 5
D, 5 6 5 5
Ds 5 5 6 4
Dy 5 5 4 6

Table 3: The necessary number of crossings between two different subgraphs T' and T/ for the configurations D, and Dj.

Finally, without loss of generality, we consider the drawing with vertex notations of the graph G in such
a way as shown in Fig. 1(e). In this case, the set Rp is also empty, and our aim is to list again all possible
rotations rotp(t;) which can appearin D if T/ € Sp. Of course, the vertex t; must be placed in the pentagonal
region of D(G") and the edge t;vs have to cross one edge of G*. Since there is only one subdrawing of
F'\ {vs,vs} represented by the rotation (1236), there are four ways for how to obtain the subdrawing of
F/ depending on in which region the edge ;vs is placed and which of the edges of G* is crossed by t;v4.
These four possibilities under our consideration are denoted by &,, for p = 1,2,3,4. Again, as for our
considerations, it does not play a role in which of the regions is unbounded; assume the drawings shown
in Fig. 5. Thus, the configurations &;, &;, &3, and &, are represented by the cyclic permutations (123465),
(123456), (123564), and (123654), respectively. Similarly, we denote by $p the subset of P = (&1, Ey, E3, E4)
consisting of all configurations that exist in the drawing D. Further, due to the properties of the cyclic
rotations, all lower bounds of number of crossings of two configurations from # can be summarized in the
symmetric Table 4 (here, &, and &, are configurations of the subgraphs F and F/, where p,q€{1,2,3,4}).
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Figure 5: Drawings of four possible configurations from ¥ of the subgraph Fi.

| & [&[&]&]

& 6| 5| 4| 4
& 51 6| 4| 3
Es 41 4| 6| 5
Ey 4| 3| 5] 6

Table 4: The necessary number of crossings between two different subgraphs T' and T/ for the configurations Sp and 84.

3. The Crossing Number of G* + D,,

Two vertices t; and t; of the graph G* + D, are antipodal in a drawing of G* + D, if the subgraphs T’
and T/ do not cross. A drawing is antipode-free if it has no antipodal vertices. In the proof of Theorem 3.4,
the following statements related to some restricted subdrawings of the graph G*+ D,, are needful. Let us first
note that if D is a good and antipode-free drawing of G* + D,, with the vertex notation of the graph G* in such
a way as shown in Fig. 1(a), and T/ € Sp such that F/ has configuration A, € Np, then crp(G* U T/, T > 3
holds for any T, 1+ j, see Fig. 3. Further, there are possibilities of obtaining a subgraph T! ¢ Rp U Sp with
crp(G* U T/, T') = 3 only for the cases of the configurations A;, Ay, and Ay of F/.

Lemma 3.1. Let D be a good and antipode-free drawing of G* + D, for n > 2, with the vertex notation of the
graph G* in such a way as shown in Fig. 1(a). If T', T/ € Sp are different subgraphs such that F', F/ have different
configurations from any of the sets (A1, Az} and (A1, Ay}, then

crp(GUTUT, T >7 forany T' ¢ Rp U Sp.

Proof. Let us assume the configurations A of F' and A, of F/, and remark that they are represented by
the cyclic permutations P1g9 = (135642) and Pg; = (126543), respectively. Let T! be any subgraph with [ # i, j.
We are able to use the property of crossings among edges of its subgraph Ks» with the help of Woodall’s

results in [18], that is, crp(T' U T/, T') > Q (rotD(ti),rotD(tj)) in the subdrawing of T' U T/ U T induced by
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D for any I #i,j. As dcoc("P19”,”Ps;”) = 4, this enforces crp(TP U T/, T > 4. Tt is obvious that the case
crp(G*, T') > 3 implies crp(G* U T U T/, T') > 3 + 4 = 7. In addition, we will only deal with a subgraph T’
that crosses the edges of G exactly twice.

Moreover, if we still assume a T with crp(T?, T') = 1, then the vertex t; must be placed in the quadrangular
region of D(F!) with three vertices v», v3, and v4 of G* on its boundary, i.e., t; € wa34. This enforces that the
edge v,v3 and v3v4 of the graph G* must be crossed by the edge t;v; and t;us, respectively, and crp(T, TH =1
only for T' with rotp(t;) = (126453) = Pg. Using Pg; = (134562) = Pgy, and dcoc("Ps1”,”Po;”) = 5 we
obtain crp(T/,T') > 5. Hence, crp(G*UT U T/, T)) > 2+1+5 = 8. Since we can apply the same idea
for the case of crp(T/, T') = 1, in addition, let us suppose that crp(T, T') > 2 and crp(T/, T') > 2 for any
such T! with crp(G*, T') = 2. Of course, if crp(T!, T) > 2 or crp(T/, T') > 2, we obtain the considered result
crp(GUT UT, TY>2+3+2=7.

Finally, let us assume a T' with crp(G*, T') = 2, crp(T?, T') = 2, and crp(T/, T') = 2. The vertex t; must be
placed in one quadrangular region of D(F’) with three vertices of G* on its boundary, i.e., f; € w234 U wa55.
We can easy to verify if {; € wo 34 then tjv3 does not cross any edge of G*, and the edge v4v5 of G* must be
crossed by t/v; in the case of t; € wys56. As in both cases the edge t;v4 cannot cross any edge of G*, likewise,
it must be true for the subdrawing D(F/). The assumptions crp(G*, T') = 2 and crp(T/, T') = 2 imply that
the vertex #; must be placed in the pentagonal region of D(F/) with four vertices of G* on its boundary, i.e.,
] € wip56. Since the edge tv4 cannot cross any edge of G*, then t;v4 have to cross exactly two edges of the
subgraph T!. This enforces that no edge of tjv1, vy, tjus, and tve is crossed in the subdrawing D(F U FJ).
Since the edge t;v3 cannot cross two edges of G*, we obtain a contradiction.

The similar arguments can be applied for the pair {A, A4}, and the proof is done. [

Lemma 3.2. Let D be a good and antipode-free drawing of G* + D,, for n > 2, with the vertex notation of the
graph G* in such a way as shown in Fig. 1(a). If T', T/ € Sp are different subgraphs such that F', Fi have
different configurations from any of the sets {Ay, Ag}, (A, Az}, (Ao, As), (Ar, Az}, (A3, Asl, (A3, As), Az, Aro),
{Ay, As}, and {Ay, A7}, then

crp(GUT UT, T >7 for any T! with crp(G*, T = 2.

Proof. Let us assume the configurations A; of F' and As of F/, and note that they are represented by
the cyclic permutations P1p9 = (135642) and Pgs = (125643), respectively, and let also T! ¢ Rp U Sp be
a subgraph that crosses the edges of G* exactly twice. If crp(T’,T') = 1, then the subdrawing D(F')
can be represented only by the cyclic permutation Pg; = (126453) due to the arguments in the proof
of Lemma 3.1. Using Pgs = (134652) = Pig3, and dcoc(”Ps1”, ”Pios”) = 4 we obtain crp(T/, T') > 4. Thus,
crp(G*UT'UT/, T') > 2+1+4 = 7. We can apply the same idea for the case of crp(T/, T') = 2. Let us assume that
crp(T!, TY) > 2and crp(T/, T') > 3 for any such subgraph T', which yields that crp(G*UT'UT/, T') > 2+2+3 = 7
clearly holds for any T ¢ Rp U Sp with crp(G*, T') = 2. The similar arguments can be used for the remaining
pairs of configurations, and this completes the proof. [

We have to emphasize that, in Lemma 3.2, the assumption crp(G*, T!) = 2is inevitable. For T' ¢ RpUSp with
crp(G*, T') = 3, the reader can easily find a subdrawing of G* U T* U T/ U T' in which crp(T' U T/, T') = 3, i.e.,
crp(G* U T' U T/, T') = 6. Further, we cannot generalize Lemma 3.2 for all pairs of different configurations
from N. If we consider the configurations A; of F' and Ag of F/, then the reader also can easily find
a subdrawing of G* U T' U T/ U T! in which crp(G* U T' U T/, T') = 6 with crp(G*, T') = 2.

Lemma 3.3. Let D be a good and antipode-free drawing of G* + Dy, n > 2, with the vertex notation of the graph G*
in such a way as shown in Fig. 1(a). Let T € Rp be a subgraph such that F/ has configuration Ry € Mp. If there is
a subgraph T* € Sp with crp(T/, T%) = 3, then

a) crp(G* U TFU T/, T') > 8 for any subgraph T' € Sp, | # k;

b) crp(G*UTFU TI, T > 7 for any subgraph T' ¢ Rp U Sp with crp(G*, T') = 2.

Proof. Let us assume the configuration R of F/, and remark that it is represented by the cyclic permutation
P1yo = (165432). The unique drawing of F/ contains six regions with the vertex t; on their boundaries,
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see Fig. 2. If there is a subgraph T* € Sp with crp(T/, T¥) = 3, then the vertex f; must be placed in
the quadrangular region of D(F’) with three vertices of G* on its boundary, i.e., t € wi56. This enforces
that the edge v1v5 of the graph G* must be crossed by the edge #v; and crp(T/, TF) = 3 only for TF with
I‘OtD(tk) = (135642) = Pl()g.

a) As TF € Sp and rotp(k) = (135642) = Py, the considered subdrawing D(F¥) can be described as the

configuration A;, for more see Fig. 3. Now, for each T! € Sp with I # k, we are able to determine the
minimum numbers of crossings of T' with the subgraphs T* and T/ in the first two columns of Table 5.
The values in the first column of Table 5 are given by the lower bounds from the first column of Table 2.
Since Pyo = (123456) = P, the values in the second column can be determined by dcoc(”"P1”, ”Pi”),
where P; are the corresponding cyclic permutations for all possible configurations A,, p = 1,...,11 of
the subgraph F'. The smallest value in the last column of Table 5 gives the required minimum number
of crossings.

[ conf(F) [[ erp(TF, T) [ crp(T,T) [ crp(T"U T, T) [ erp(G'UT U T/, T |

Ay 6 3 9 10
A 2 5 7 8
As 5 4 9 10
Ay 2 5 7 8
As 4 4 8 9
As 3 5 8 9
Ay 5 4 9 10
Ag 3 4 7 8
HAg 4 5 9 10
Ao 4 5 9 10
An 4 4 8 9

Table 5: All possibilities of the subgraph F for T! € Sp with ch(Tj , Tk) =3,and T" € Sp.

b) Let T' ¢ Rp U Sp be a subgraph with crp(G*, T') = 2, that is, the vertex f; cannot be placed inside

O

the triangular region of D(G*). If crp(T/, T') = 2, then t; must be placed in the quadrangular region
of D(F/) with three vertices of G* on its boundary, i.e., t; € wis6. This enforces that the edge vivs
and v5vs of G* must be crossed by the edge t;v; and #v4, respectively, and crp(T/, TH = 2 only for T!
with rotp(t;)) = (135462) = Pg9. Using Pog = (126453) = Pg1, and dcog("Ps1”,”"P1gy”’) = 5 we obtain
crp(TF, TY) > 5. Thus, crp(G* U TF U T/, T!) > 2+ 5+ 2 = 9. We can apply the similar idea in the
case of crp(T¥, T') = 1, i.e., rotp(t;) = (126453) = Pg;, and the distance dcog(”Pas”, ”"P120”) = 4 implies
crp(GUTFUTHT) >2+1+4 =7 It remains to consider the case where crp(T/,T") > 3 and
crp(TF, T > 2, which yields that crp(G* U TFUT/, TY >2+2+3=7 trivially holds for each T ¢ RpbUSpH
with crp(G*, T!) = 2.

Theorem 3.4. cr(G* + D,) = 6[§J[”T_1J + 3[§Jfor n>1

Proof. Fig. 6 shows the drawing of G* + D,, with exactly 6|_§J|_%J + 3|5 ] crossings. Thus,

cr(G +D,) < 6EJ {” - 1J + 3EJ

We prove the reverse inequality by induction on n. The graph G* + D; is planar; hence, cr(G* + D;) = 0. The
graph G* + D, contains a subgraph that is a subdivision of the graph P, + C3. It was proved by Kles¢ [9]
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Figure 6: The drawing of G* + D,, with 6L§JL%J + ?{%J crossings.

that cr(P4 + C3) = 3. So, the result is true for n = 1 and n = 2. Suppose now that, for some n > 3, there is
a drawing D with

(G + D) <65 ]| "5+ +3]5) ®)
and that
cr(G*+ D) = 6[%“%_” + BL%J for any positiver integer m < n. 4)

We claim that the considered drawing D must be antipode-free. For a contradiction suppose, without
loss of generality, that crp(T"~!, T") = 0. Using positive values in Tables 2, 3 and 4, one can easily verify that
both subgraphs T"~! and T" cannot be from the set Sp. If at least one of T"~! and T", say T", does not cross
G*, it is not difficult to verify in Fig. 2 that T" ! must cross G* U T" at least trice, that is, crp(G*, T" 1 U T") > 3.
By Kleitman [8], we already know that cr(Ks3) = 6, which yields that each Tk k=1,2,...,n -2, crosses the
edges of the subgraph T"~! U T" at least six times. So, for the number of crossings in D we have

crp(G* + Dy,) = crp (G* + Dy_s) + crp(T U T + crp(Kgnoa, T" P U T") + crp(G, T U T")

6|22+ 3 2+ 0+ 602 -2) 43

npn-1 n
o515 +3l3)
This contradiction with the assumption (3) confirms that D is antipode-free. Moreover, if ¥ = |Rp| and
s = |Spl, the assumption (4) together with the well-known fact cr(Ks ,) = 6L§JI_"T_1J imply that, in D, ifr =0

then there are at least [4] + 1 subgraphs T/ by which the edges of the graph G* are crossed exactly once.
More precisely:

v

crp(GY) + crp(G*, Ko ) < 3 EJ )
ie.,

crp(G)+0r+1s+2(n—r—ys) <3EJ. (5)
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This forces that 2r +s > 2n—3[ 5] +1,and if r = 0 thens > 2n -3 5] +1 =[]+ 1. Now, for T/ e RpUSp,
we will discuss about the existence of possible configurations of subgraph F/ = G* U T/ in the drawing D
and we will show that in all cases a contradiction with the assumption (3) is obtained.

Case 1: crp(G*) = 0 and there is the possibility of obtaining a subdrawing of G* U T/ in D for some
T/ € Rp. Without loss of generality, we can choose the vertex notation of the graph G* in such a way as
shown in Fig. 1(a). As the set Rp can be empty, two subcases may occur:

a) Let Rp be the nonempty set, i.e., there is a subgraph T/ € Rp. Let us first note that if we denote
by t the number of subgraphs T* whose edges cross the graph G exactly twice then the modified
inequality (5), for 1s + 2t +3(n —r —s —t) <3| 5], forces that r + s+t > [5]and 3r + 2s + t > 3n - 3| 7 ].
As we deal with the configurations belonging to the nonempty set Mp, we consider two possibilities.
In the case of R, € Mp, let us assume that T/ € Rp with the configuration R, of FI, By fixing the
subgraph G* U T/ and using a discussion in all possible regions of D(F/) for R, in Fig. 2, we have

crp(G* + Dy) = crp(Keu-1) + crp(Kg -1, G*' U T + crp(G* U TV)

z6[”;1J[”;2J+5(r—1)+5s+5t+4(n—r—s—t)+o

6[nglﬂn;2j+4n+(r+s+t)—5

6[”;1J[”;2J+4n+(g1_5

nyn-—1 n
265 5= 1+35)
This contradicts the assumption of D, and therefore, in the next part, let R, ¢ Mp, thatis, Mp = {R1}.
Without lost of generality, we can assume the configuration R, of F". It is not difficult to verify that the
edges of T" are crossed by each subgraph T* € Sp, at least thrice. So, let us denote Sp(T") = {T* € Sp :
crp(T", TF) = 3}. If T is a subgraph from the nonempty set Sp(T") then crp(G*UT*UT, T!) > 6 +3 = 9
is fulfilling for any T' € Rp, [ # n provided by rotp(t,) = rotp(t;). As crp(G* U T" U T) = 4, by fixing
the subgraph G*U T" U T* and using Lemma 3.3, we have

v

ch(G*+D,,)26[”_2J[” 3J+9(r—1)+8(s—l)+7t+6(n—r—s—t)+4

:6[7122“ J+6n+(3r+25+t)—
26[”22J[ J+6n+(3n 3[2J+1)—13

26| 5] "5 +3l5)

If the set Sp(T™) is empty then, by fixing the subgraph G* U T", we have

n—lHn—Z

crp(G” +Dy) 2 6| > >

J+6(r—1)+53+4(n—r—s)+0

6[n;1J[n;2J+4n+(2r+s)—

6[n;1J[n;2J+4n+(2n—3[gJ+1)—6

o315 l2)

Both subcases confirm a contradiction with the assumption in D.

\%
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b) Let Rp be the empty set, that is, each subgraph T/ crosses the edges of G* at least once in D. Thus, we
deal with the configurations belonging to the nonempty set Np. Let us first assume that {A;, A,} € Np
for some p € {2,4}. Without lost of generality, let us consider two different subgraphs "1 T e Sp
such that F*~! and F" have different configurations from {A;, A,}. Then, cp(T-1u T, T > 7 is
true for any T' € Sp with | # n — 1,n by summing the values in all columns in the first two rows of
Table 2. Moreover, crp(G* U T"" 1 U T", T') > 7 is fulfilling for any subgraph T' ¢ Sp by Lemma 3.1. As
crp(G'U T U T > 1+ 1+ 2 =4, by fixing the subgraph G* U T""! U T", we have

n—ZHn—S

crp(G*+ D,,) > 6[ >

|+86-2)+7(n-s)+4

6|2 2 47512

6ln;2J[n;3J+7n+([g]+1)—12

nn-1 n
265 5= +3l3)

This also contradicts the assumption of D and the same arguments can be used for the case of different
configurations from {A;, Ay} due to their symmetry. In addition, let us suppose that {A;, A,} £ Np
for p = 2,4. Now, let us assume that some of the sets {A;, A}, (Az, Az}, (Az, As}, {(Az, A7}, (A3, Aul,
(A, Agl, (A3, Ao}, {As, As}, and {Ay, Ay} is a subset of Np. Without lost of generality, let us consider
two different subgraphs T"™!, T" € Sp such that F*! and F" have different configurations A; and
As, respectively. Then, crp(T1 U T, T > 7 is also true for any T e Sp,l+n—-1,n by summing
of two corresponding values of Table 2. Moreover, crp(G* U T'uT,TY > 7is fulfilling for any
subgraph T' ¢ Sp with crp(G*,T') = 2 by Lemma 3.2. Again, if we denote by ¢ the number of
subgraphs T* by which the edges of G* are crossed exactly twice then the modified inequality (5), for
1s + 2t +3(n —s — t) < 3|5, confirms that 2s + t > 3n — 3|5 |. As crp(G* U T1uT)>1+1+3=5, by
fixing the subgraph G* U T""! U T", we have

\%

n—ZHn—3

crp(G*+ D,,) > 6[ 5

|+86-2+7t+6(n—s-1)+5

6|2 | M2+ en+ s+ -1

[”;2“”;3J+6n+(3n—3[gj+1)—11

55 1+al5)

All these pairs of configurations confirm a contradiction with the assumption in D, and so in the next,
suppose that this case does not occur. Further, at this point, if we consider {A;, As} € Np then, by
fixing the subgraph G* U T""! U T" with A; of F*~! and Ay of F", we have

\%
(o

\%

crp(G* + Dy) 26[”;2“”;3J+9(s—2)+6(n—s)+5
:6[’1;2“";3J+6n+35—13
26[n;2J[n;3J+6n+3([g]+1)—13
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In addjition, let us also suppose that {A;, Ag} € Np. Therewith, the minimal numbers of crossings
between the edges of two different subgraphs from the set Sp are at least four in the following two
subcases:

If we assume A, € Np for some p € {3,5,6,7,8,9,10,11} then, for T/ € Sp with A, € Np of F/, one
can easily verify that crp(G* U T/, T') > 4 holds for any subgraph T' ¢ Sp using the subdrawing of F/
induced by D, see Fig. 3. Hence, by fixing the subgraph G* U T/, we have

crp(G* + D) > 6[”;1J[” 2J +5(5—1)+4(n—s)+1

2215
= —2J+4n+([g]+1)_4

o 21252 +3(2)

Finally, in the case either Np = {A,} for only one p € {1,2,4} or Np = {Ay, Ay}, without lost of
generality, let us assume that T" € Sp with the configuration A, of F". Then, crp(T", T') > 6 holds for
any T' € Sp, | # n by the remaining values of Table 2. Thus, by fixing the subgraph G* U T", we have

1l
(o)

2J+4n+s—4

\%
(o)

crp(G* + Dy) 26[”2 J[” 2 1) +3(n—s) + 1
:6[”;1J[”;2J+3n+4s—6
> o || 552+ an w4 ([5]+1) -6
2o| 51571 +35)

Case 2: crp(G*) = 0 and there is no possibility of an existence of subgraph T/ € Rp. Since the set Rp is
empty, we only need to consider the four subdrawings of G* in D shown in Fig. 1(b)-(e). In all considered
cases, the inequality (5) enforces that there are at least [47+ 1 subgraphs T/ by which the edges of the graph
G” are crossed exactly once.

b) crp(G*) = 0 and we consider the drawing of G* with the vertex notation as shown in Fig. 1(b). For
T/ € Sp, our aim is to list again all possible rotations rotp(t;) which can appear in D. Since there
is only one subdrawing of F/ \ vs represented by the rotation (15432), there are two ways for how
to obtain the subdrawing of F/ depending on which edge of G* is crossed by the edge tjvs. These
two possibilities under our consideration are denoted by 8; and $,, and they are represented by the
cyclic permutations (154632) and (156432), respectively. Further, due to the properties of the cyclic
permutations, we can easily verify that cr(81, 8;) > 5 (let us note that this idea has been used for an
establishing the values in Table 2). As there is a T/ € Sp, by fixing the subgraph G* U T/, we have

n—lHn—Z

Jl

crp(G* + Dy) > 6[ |+66-1)+30n-5)+1

1l
N

J+3n+3s—5
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¢) crp(G*) = 0 and we choose the drawing with the vertex notation of G* as shown in Fig. 1(c). In this
case, for a T/ € Sp, the reader can easily verify that the subgraph F/ = G* U T/ is uniquely represented
by rotp(t;) = (165432) and crp(T/, T') > 6 holds for any T' € Sp, [ # j provided by rotp(t;) = rotp(t).
Thus, we can apply the same idea as in the previous subcase.

d) crp(G*) = 0 and we consider the drawing with the vertex notation of G* as shown in Fig. 1(d). In this
case, we deal with the configurations belonging to the nonempty set Op. Note that the lower bounds
for the number of crossings of two configurations from O have been already established in Table 3.
Since there is the possibility to find a subdrawing of G* U T/ U T! in which crp(G* U T/, T') = 3 with
T/ € Sp and T' ¢ Sp, we discuss two following subcases. If we consider a subgraph T/ € Sp with the
configuration D, € Op of F/, where p € (3,4}, then crp(G* U T/, T') > 1 + 4 = 5 holds for any T' € Sp,
[ # j using the smallest values of Table 3. Moreover, it is not difficult to verify in possible regions of
D(G'UT/) thatcrp(G*UT/, T') > 4 s fulfilling for any subgraph T' ¢ Sp. Hence, by fixing the subgraph
G* U T/, we have

crp(G’ + Dy) > 6] 7 1“” 2

N

= o215 32

This subcase contradicts the assumption of D, and therefore, in the next part, suppose that D, € Mp
only for some p € {1,2}. By fixing the subgraph G* U T/ for T/ € Sp with the configuration either D,
or D, of F/, we have

crp(G’ +Dy) > 6 - > 1“

S an s -5

l
o™ 1“ J+3n+3([51+1)_5

= o215 32

e) crp(G*) = 0 and we consider the drawing of G* with the vertex notation as shown in Fig. 1(e). Now,
we deal with the configurations belonging to the nonempty set £p. The lower bounds of number of
crossings of two configurations from $ have been also already established in Table 4. Again, since
there is the possibility to find a subdrawing of G* U T/ U T in which crp(G* U T/, T') = 3 with T/ € Sp
and T! ¢ Sp, we discuss three following subcases:

J D+3n—-s)+1

6

IV

First, let us assume that {&;, &4} € Pp and, in the rest of paper, let us consider two different subgraphs
T"-1 T" € Sp such that F*~! and F" have different configurations &, and &y, respectively. Then,
crp(T"1 U T", T') > 9 holds for any T' € Sp, | # n — 1,n by summing of two corresponding values in
all columns of Table 4. As crp(G*UT* 1 UT") > 1+ 1+ 3 =5, by fixing the subgraph G- U T" 1 U T",
we have

-2

crp(G” + Dy) > 6 - J[”T_?’J +10(s —2) + 51 —s) +5

N

=6[”_2J[”;3J+5n+55—15
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z6[”;2J[”;3J+5n+5([g]+1)—15

nyn-1 n
> 6|51 +33)
For the subcase {&;, &4} € Pp, if we consider a subgraph T/ € Sp with the configuration &, € Pp of F,
where p € (3,4}, then crp(G* U T/,T") > 1+ 4 = 5 holds for any T' e Sp, 1+ j by the remaining values

in Table 4. Moreover, we can easy to verify in possible regions of D(G* U T/) that crp(G* U T/, T') > 4
is also true for any subgraph T' ¢ Sp. Hence, by fixing the subgraph G* U T/, we have

ch(G*+Dn)26[”;1“”;2J+5(s—1)+4(n—s)+1
:6[n51J[n52J+4n+s—4
z6[”;1J[”;2J+4n+([_]+1)_4

2o 21252 32

Both subcases contradict the assumption of D, and therefore, in the next part, suppose that &, € Pp
only for some p € { 1,2}. Finally, by fixing the subgraph G* U T/ for T/ € Sp with the configuration
either &; or &, of F/, we have

n—lHn—Z

crp(G” +Dy) 2 6| 5 >

J+6(s—1)+3(n—s)+1

[ PR S

6[”;1J[”;2J+3n+3([g]+1)—5

2 o 21252 32

Case 3: crp(G”) > 1. For all possible subdrawings of the graph G* in D with at least one crossing among
edges of G* and also with a possibility of obtaining a subgraph T/ that crosses the edges of G* at most once,
we are able to apply one of the ideas of the previous subcases.

Let us turn to the possible subdrawings of G* with crp(G*) = 1. Since the graph G* contains P4 + D;
as a subgraph, we only need to consider possibilities either of crossings between planar subdrawings of
P4+ D and the bridge of G*, or of subdrawings of P4 + D; with exactly one crossing and with the placement
of the bridge of G* without any new crossing. Thus, assuming a subgraph T/ € Rp U Sp, we obtain twelve
possible non isomorphic drawings of G* with one crossing among its edges shown in Fig. 7. If we consider
the drawings with the vertex notation of G* as shown in Fig. 7(a)-(c), the proof can proceed in the similar
way as in Case 1. For the subdrawings of G* in D as shown in Fig. 7(d)-(1), we can use one of the ideas of
Case 2. Obviously, with the growing number of crossings in the induced subdrawing D(G*) for T/ € RpUSp,
the edges of the subgraph G* U T/ will be crossed by T, I # j more often, and therefore, the considered
subcases will be easier to discuss than in Cases 1 and 2.

\%
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(a) (b)

(d) (e) (f)

(9) (h) (i)

) (k) (1

Figure 7: Twelve non isomorphic drawings of the graph G* with crp(G*) = 1.

Thus, it was shown in all mentioned cases that there is no good drawing D of the graph G* + D,, with
fewer than 6|_§J|_%J + 3| 5] crossings, and the proof of the theorem is complete. [
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4. One Other Graph

Figure 8: One graph G; by adding one edge to the graph G".

Finally, into the drawing in Fig. 6, we are able to add the edge v1vs to the graph G* without additional
crossings, and we obtain new graph G; represented in Fig. 8. Therefore, the drawing of the graph G; + D,

with 6[§JL%J + 3[§J crossings is obtained. On the other hand, G* + D, is a subgraph of G; + D, and
therefore, cr(Gy + D) > cr(G* + D). Thus, the next result is obvious.

Corollary 4.1. cr(G1 + D,) = 6[%Jl%J + SHJfor n>1
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