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Abstract. The main aim of the paper is to give the crossing number of the join product G∗ + Dn for the
connected graph G∗ of order six consisting of P4 + D1 and of one leaf incident with some inner vertex of
the path P4 on four vertices, and where Dn consists of n isolated vertices. In the proofs, it will be extend
the idea of the minimum numbers of crossings between two different subgraphs from the set of subgraphs
which do not cross the edges of the graph G∗ onto the set of subgraphs by which the edges of G∗ are crossed
exactly once. Due to the mentioned algebraic topological approach, we are able to extend known results
concerning crossing numbers for join products of new graphs. The proofs are done with the help of software
that generates all cyclic permutations for a given number k, and creates a new graph COG for calculating
the distances between all (k − 1)! vertices of the graph. Finally, by adding one edge to the graph G∗, we are
able to obtain the crossing number of the join product of one other graph with the discrete graph Dn.

1. Introduction

The problem of reducing the number of crossings on the edges in the drawings of graphs was studied
in many areas, and the most prominent area is VLSI technology. Introduction of the VLSI technology
revolutionized circuit design and had a strong impact on parallel computing. A lot of research aiming at
efficient use of the new technologies has been done and further investigations are in progress. As a crossing
of two edges of the communication graph requires unit area in its VLSI-layout, the crossing number together
with the number of vertices of the graph immediately provide a lower bound for the area of the VLSI-layout
of the communication graph. The crossing numbers have been also studied to improve the readability of
hierarchical structures and automated graph drawings. The visualized graph should be easy to read and
understand. For the understandability of graph drawings, the reducing of crossings is by far the most
important.

The crossing number cr(G) of a simple graph G with the vertex set V(G) and the edge set E(G) is the
minimum possible number of edge crossings in a drawing of G in the plane. (For the definition of a drawing
see [11].) It is easy to see that a drawing with minimum number of crossings (an optimal drawing) is
always a good drawing, meaning that no edge crosses itself, no two edges cross more than once, and no two
edges incident with the same vertex cross. Let D (D(G)) be a good drawing of the graph G. We denote the
number of crossings in D by crD(G). Let Gi and G j be edge-disjoint subgraphs of G. We denote the number
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of crossings between edges of Gi and edges of G j by crD(Gi,G j), and the number of crossings among edges
of Gi in D by crD(Gi). It is easy to see that for any three mutually edge-disjoint subgraphs Gi, G j, and Gk of
G, the following equations hold:

crD(Gi ∪ G j) = crD(Gi) + crD(G j) + crD(Gi,G j) ,

crD(Gi ∪ G j,Gk) = crD(Gi,Gk) + crD(G j,Gk) .

In the paper, some proofs will be also based on the Kleitman’s result on crossing numbers of the complete
bipartite graphs [8]. More precisely, he proved that

cr(Km,n) =
⌊m

2

⌋⌊m − 1
2

⌋⌊n
2

⌋⌊n − 1
2

⌋
, if min{m,n} ≤ 6.

Using Kleitman’s result [8], the crossing numbers for the join product of two paths, the join product of two
cycles, and also for the join product of a path and a cycle were studied by Klešč [9]. Moreover, the exact
values for crossing numbers of G + Dn and of G + Pn for all graphs G of order at most four are given by Klešč
and Schrötter [13]. It is also important to note that the crossing numbers of the graphs G + Dn are known
for few graphs G of order five and six in [1], [3], [5], [7], [10], [11], [12], [14], and [16]. In all these cases,
the graph G is connected and contains at least one cycle. Obviously, with the growing number of edges in
graphs, it is much more difficult to determine their crossing numbers, and so the purpose of this article is to
extend the known results concerning this topic to new graphs G with |V(G)| < |E(G)|. The crossing numbers
of G + Dn are also known only for some disconnected graphs G, see [4], [15], and [17].

The methods presented in the paper are based on multiple combinatorial properties of the cyclic per-
mutations. The similar methods were partially used earlier by Hernández-Vélez et al. [6]. The properties
of cyclic permutations have been already verified with the help of software by Berežný and Staš in [3] and
[4]. Also in this article, some parts of proofs can be simplified by utilizing the work of the software COGA
that generates all cyclic permutations by Berežný and Buša [2]. C++ version of the program is located
on the website http://web.tuke.sk/fei-km/coga/. The list with the short names of 6!/6 = 120 cyclic
permutations of six elements are collected in Table 1 of [3]. Note that we were unable to determine the
crossing number of the join product G∗ + Dn using the methods used in [11], [13], and [14].

2. Cyclic Permutations and Configurations

Let G∗ be the connected graph of order six consisting of P4 + D1 and of one leaf incident with some
inner vertex of the path P4 on four vertices. We consider the join product of G∗ with the discrete graph on n
vertices denoted by Dn. The graph G∗+Dn consists of one copy of the graph G∗ and of n vertices t1, t2, . . . , tn,
where any vertex t j, j = 1, 2, . . . ,n, is adjacent to every vertex of G∗. Let T j, j = 1, . . . ,n, denote the subgraph
induced by the six edges incident with the vertex t j. This means that the graph T1

∪ · · · ∪ Tn is isomorphic
with the complete bipartite graph K6,n and therefore, we can write

G∗ + Dn = G∗ ∪ K6,n = G∗ ∪

 n⋃
j=1

T j

 . (1)

Let D be a good drawing of the graph G∗ + Dn. The rotation rotD(t j) of a vertex t j in the drawing D is
the cyclic permutation that records the (cyclic) counter-clockwise order in which the edges leave t j, see [6].
We use the notation (123456) if the counter-clockwise order the edges incident with the vertex t j is t jv1, t jv2,
t jv3, t jv4, t jv5, and t jv6. We emphasize that a rotation is a cyclic permutation; that is, (123456), (234561),
(345612), (456123), (561234), and (612345) denote the same rotation. Thus, 6!/6 = 120 different rotD(t j) can
appear in a drawing of the graph G∗ + Dn. By rotD(t j) we understand the inverse rotation of rotD(t j). In the
given drawing D, we separate all subgraphs T j, j = 1, . . . ,n, of the graph G∗+Dn into three mutually disjoint
subsets depending on how many times the considered T j crosses the edges of G∗ in D. For j = 1, . . . ,n, let
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RD = {T j : crD(G∗,T j) = 0} and SD = {T j : crD(G∗,T j) = 1}. Every other subgraph T j crosses the edges of G∗

at least twice in D. For T j
∈ RD ∪ SD, let F j denote the subgraph G∗ ∪ T j, j ∈ {1, 2, . . . ,n}, of G∗ + Dn and let

D(F j) be its subdrawing induced by D. Due to arguments in the proof of Theorem 3.4, at least one of the
sets RD and SD must be nonempty in a good drawing D of G∗ + Dn with the smallest number of crossings.
Thus, we will deal with only drawings of the graph G∗ with the possibility of an existence of a subgraph
T j that crosses the edges of G∗ at most once. This assumption confirms that there are five non isomorphic
planar drawings of G∗ given in Fig. 1 in which the vertex notation of the graph G∗ will be justified later.
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Figure 1: Five non isomorphic planar drawings of the graph G∗.

Let us first assume the drawing of G∗ with the corresponding vertex notation in such a way as shown
in Fig. 1(a). Our aim is to list all possible rotations rotD(t j) which can appear in D if the edges of T j do not
cross the edges of G∗. Since there is only one subdrawing of F j

\v5 represented by the rotation (16432), there
are two ways for how to obtain the subdrawing of F j depending on in which region the edge t jv5 is placed.
We denote these two possibilities under our consideration by R1 and R2. As for our considerations does
not play role which of the regions is unbounded, assume the drawings shown in Fig. 2.
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Figure 2: Drawings of two possible configurations fromM of the subgraph F j.
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In the rest of the paper, we represent a cyclic permutation by the permutation with 1 in the first position.
Thus, the configurations R1 and R2 are represented by the cyclic permutations (165432) and (156432),
respectively. Of course, in a fixed drawing of the graph G∗ + Dn, some configurations fromM = {R1,R2}

need not appear. So, we denote by MD the set of all configurations of M that appear in D. Now, we
deal with the minimum numbers of crossings between two different subgraphs Ti and T j depending on
the configurations of subgraphs Fi and F j. Let D be a good drawing of the graph G∗ + Dn, and let X,
Y be configurations from MD. We shortly denote by crD(X,Y) the number of crossings in D between
Ti and T j for different Ti,T j

∈ RD such that Fi,F j have configurations X, Y, respectively. Finally, let
cr(X,Y) = min{crD(X,Y)} over all pairs X and Y fromM among all good drawings of the graph G∗ + Dn.
Our aim is to establish cr(X,Y) for all pairs X,Y ∈ M.

Let P j denotes the inverse cyclic permutation to the permutation P j, for j = 1, . . . , 120, where the list
with the short names of 6!/6 = 120 cyclic permutations of six elements was collected in Table 1 of [3].
Woodall [18] has been defined the cyclic-ordered graph COG with the set of vertices V = {P1,P2, . . . ,P120},
and with the set of edges E, where two vertices are joined by the edge if the vertices correspond to the
permutations Pi and P j, which are formed by the exchange of exactly two adjacent elements of the 6-tuple
(i. e. an ordered set with 6 elements). Hence, if dCOG(”rotD(ti)”, ”rotD(t j)”) denotes the distance between
two vertices which correspond to the cyclic permutations rotD(ti) and rotD(t j) in the graph COG, then

crD(Ti,T j) ≥ Q(rotD(ti), rotD(t j)) = dCOG(”rotD(ti)”, ”rotD(t j)”) (2)

holds for any two different subgraphs Ti and T j, where Q(rotD(ti), rotD(t j)) was defined in [3] as the minimum
number of interchanges of adjacent elements of rotD(ti) required to produce the inverse cyclic permutation
of rotD(t j) or, equivalently, from rotD(t j) to the inverse of rotD(ti). In particular, the configurations R1 and
R2 are represented by the cyclic permutations P120 = (165432) and P119 = (156432), respectively. Since
P119 = (123465) = P25, we have cr(R1,R2) ≥ 5 using of dCOG(”P25”, ”P120”) = 5. Clearly, also cr(Rp,Rp) ≥ 6
for each p = 1, 2. Details have been worked out by Woodall [18]. For easier and more accurate labeling in
the proofs of assertions, let us define notation of regions in some subdrawings of G∗ + Dn. For T j

∈ RD,
the unique drawing of F j contains six regions with the vertex t j on its boundary. For example, if F j has the
configuration R1, then let us denote these six regions by ω1,2, ω2,3, ω3,4, ω4,5, ω5,6, and ω1,5,6 depending on
which of vertices are located on the boundary of the corresponding region. A similar designation may also
be used for the case of T j

∈ SD.
In the case of RD = ∅, our aim shall be to list all possible rotations rotD(t j) which can appear in D if

the edges of T j cross the edges of G∗ exactly once. Since the edge v2v3 can be crossed by t jv1 and the
edge t jv3 can cross one of the edges v1v2, v1v5, and v4v5, we obtain 4 × 2 = 8 possibilities depending on
in which region the edge t jv5 is placed. Further, if any of the edges t jv1 and t jv4 crosses the edge v5v6,
then there is only one possibility for a placement of the edge t jv5. Clarity of edge placing of t jv5 gives the
last way if the edge v3v4 is crossed by t jv5. We denote these eleven possibilities under our consideration
by Ap, for p = 1, . . . , 11. Again, as for our considerations, it does not play a role in which of the regions
is unbounded; assume the drawings shown in Fig. 3. Thus, the configurations Ap are represented by the
cyclic permutations given in Table 1.

conf(F j) rotD(t j) conf(F j) rotD(t j)
A1 (135642) A7 (136542)
A2 (126543) A8 (125643)
A3 (156423) A9 (165423)
A4 (164532) A10 (154326)
A5 (154632) A11 (156342)
A6 (165342)

Table 1: The corresponding rotations of t j for F j = G∗ ∪ T j, where T j
∈ SD.
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Figure 3: Drawings of eleven possible configurations fromN of the subgraph F j.
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Of course, in a fixed drawing of the graph G∗ + Dn, some configurations from N = {A1, . . . ,A11}

need not appear. So, we denote by ND the subset of N consisting of all configurations that exist in
the drawing D. Due to the properties of the cyclic rotations, one can easily verify that cr(A1,A2) ≥ 2,
cr(A1,A3) ≥ 5, cr(A1,A4) ≥ 2, cr(A1,A5) ≥ 3, cr(A1,A6) ≥ 3, cr(A1,A7) ≥ 5, cr(A1,A8) ≥ 3, cr(A1,A9) ≥
4, cr(A1,A10) ≥ 4, cr(A1,A11) ≥ 4, cr(A2,A3) ≥ 3, cr(A2,A4) ≥ 4, cr(A2,A5) ≥ 3, cr(A2,A6) ≥ 4,
cr(A2,A7) ≥ 3, cr(A2,A8) ≥ 5, cr(A2,A9) ≥ 4, cr(A2,A10) ≥ 4, cr(A2,A11) ≥ 4, cr(A3,A4) ≥ 3, cr(A3,A5) ≥
4, cr(A3,A6) ≥ 3, cr(A3,A7) ≥ 4, cr(A3,A8) ≥ 4, cr(A3,A9) ≥ 5, cr(A3,A10) ≥ 3, cr(A3,A11) ≥ 4,
cr(A4,A5) ≥ 3, cr(A4,A6) ≥ 4, cr(A4,A7) ≥ 3, cr(A4,A8) ≥ 3, cr(A4,A9) ≥ 4, cr(A4,A10) ≥ 4, cr(A4,A11) ≥
4, cr(A5,A6) ≥ 4, cr(A5,A7) ≥ 2, cr(A5,A8) ≥ 4, cr(A5,A9) ≥ 3, cr(A5,A10) ≥ 4, cr(A5,A11) ≥ 4,
cr(A6,A7) ≥ 4, cr(A6,A8) ≥ 4, cr(A6,A9) ≥ 4, cr(A6,A10) ≥ 4, cr(A6,A11) ≥ 5, cr(A7,A8) ≥ 2, cr(A7,A9) ≥
5, cr(A7,A10) ≥ 4, cr(A7,A11) ≥ 3, cr(A8,A9) ≥ 3, cr(A8,A10) ≥ 4, cr(A8,A11) ≥ 4, cr(A9,A10) ≥ 4,
cr(A9,A11) ≥ 3, and cr(A10,A11) ≥ 3. Moreover, by a discussion of possible subdrawings, we can verify
that cr(A1,A5) ≥ 4, cr(A2,A4) ≥ 6, cr(A4,A8) ≥ 4, cr(A5,A7) ≥ 4, cr(A5,A9) ≥ 4, cr(A7,A8) ≥ 4,
cr(A7,A11) ≥ 4, cr(A8,A9) ≥ 4, cr(A9,A11) ≥ 4, and cr(A10,A11) ≥ 4. Clearly, also cr(Ap,Ap) ≥ 6 for
any p = 1, . . . , 11. The resulting lower bounds for the number of crossings of configurations from N are
summarized in the symmetric Table 2 (here,Ap andAq are configurations of the subgraphs Fi and F j, where
p, q ∈ {1, . . . , 11}).

− A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

A1 6 2 5 2 4 3 5 3 4 4 4
A2 2 6 3 6 3 4 3 5 4 4 4
A3 5 3 6 3 4 3 4 4 5 3 4
A4 2 6 3 6 3 4 3 4 4 4 4
A5 4 3 4 3 6 4 4 4 4 4 4
A6 3 4 3 4 4 6 4 4 4 4 5
A7 5 3 4 3 4 4 6 4 5 4 4
A8 3 5 4 4 4 4 4 6 4 4 4
A9 4 4 5 4 4 4 5 4 6 4 4
A10 4 4 3 4 4 4 4 4 4 6 4
A11 4 4 4 4 4 5 4 4 4 4 6

Table 2: The necessary number of crossings between two different subgraphs Ti and T j for the configurationsAp andAq.

Now, let us suppose the drawing of G∗ with the considered vertex notations in such a way as shown
in Fig. 1(d). In this case, the set RD is empty, and our aim is to list again all possible rotations rotD(t j)
which can appear in D if T j crosses the edges of G∗ exactly once. Of course, the vertex t j must be placed
in the pentagonal region of D(G∗) and the edge t jv2 have to cross one edge of G∗. Since there is only
one subdrawing of F j

\ {v2, v5} represented by the rotation (1643), there are four ways for how to obtain
the subdrawing of F j depending on in which region the edge t jv5 is placed and which of the edges of G∗

is crossed by t jv2. These four possibilities under our consideration are denoted by Dp, for p = 1, 2, 3, 4.
Again, as for our considerations, it does not play a role in which of the regions is unbounded; assume
the drawings shown in Fig. 4. Thus, the configurations D1, D2, D3, and D4 are represented by the cyclic
permutations (126543), (156432), (165432), and (125643), respectively. Of course, in a fixed drawing of the
graph G∗+Dn, some configurations fromO = {D1,D2,D3,D4} need not appear. We denote byOD the subset
of O consisting of all configurations that exist in the drawing D. The verification of the lower bounds for
number of crossings of two configurations from O proceeds in the same way like above, and so they can
be summarized in the symmetric Table 3 (here, Dp and Dq are configurations of the subgraphs Fi and F j,
where p, q ∈ {1, 2, 3, 4}).
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Figure 4: Drawings of four possible configurations from O of the subgraph F j.

− D1 D2 D3 D4

D1 6 5 5 5
D2 5 6 5 5
D3 5 5 6 4
D4 5 5 4 6

Table 3: The necessary number of crossings between two different subgraphs Ti and T j for the configurationsDp andDq.

Finally, without loss of generality, we consider the drawing with vertex notations of the graph G∗ in such
a way as shown in Fig. 1(e). In this case, the set RD is also empty, and our aim is to list again all possible
rotations rotD(t j) which can appear in D if T j

∈ SD. Of course, the vertex t j must be placed in the pentagonal
region of D(G∗) and the edge t jv4 have to cross one edge of G∗. Since there is only one subdrawing of
F j
\ {v4, v5} represented by the rotation (1236), there are four ways for how to obtain the subdrawing of

F j depending on in which region the edge t jv5 is placed and which of the edges of G∗ is crossed by t jv4.
These four possibilities under our consideration are denoted by Ep, for p = 1, 2, 3, 4. Again, as for our
considerations, it does not play a role in which of the regions is unbounded; assume the drawings shown
in Fig. 5. Thus, the configurations E1, E2, E3, and E4 are represented by the cyclic permutations (123465),
(123456), (123564), and (123654), respectively. Similarly, we denote by PD the subset of P = {E1,E2,E3,E4}

consisting of all configurations that exist in the drawing D. Further, due to the properties of the cyclic
rotations, all lower bounds of number of crossings of two configurations from P can be summarized in the
symmetric Table 4 (here, Ep and Eq are configurations of the subgraphs Fi and F j, where p, q ∈ {1, 2, 3, 4}).
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Figure 5: Drawings of four possible configurations from P of the subgraph F j.

− E1 E2 E3 E4

E1 6 5 4 4
E2 5 6 4 3
E3 4 4 6 5
E4 4 3 5 6

Table 4: The necessary number of crossings between two different subgraphs Ti and T j for the configurations Ep and Eq.

3. The Crossing Number of G∗ + Dn

Two vertices ti and t j of the graph G∗ + Dn are antipodal in a drawing of G∗ + Dn if the subgraphs Ti

and T j do not cross. A drawing is antipode-free if it has no antipodal vertices. In the proof of Theorem 3.4,
the following statements related to some restricted subdrawings of the graph G∗+Dn are needful. Let us first
note that if D is a good and antipode-free drawing of G∗+Dn with the vertex notation of the graph G∗ in such
a way as shown in Fig. 1(a), and T j

∈ SD such that F j has configuration Ap ∈ ND, then crD(G∗ ∪ T j,Tl) ≥ 3
holds for any Tl, l , j, see Fig. 3. Further, there are possibilities of obtaining a subgraph Tl < RD ∪ SD with
crD(G∗ ∪ T j,Tl) = 3 only for the cases of the configurationsA1,A2, andA4 of F j.

Lemma 3.1. Let D be a good and antipode-free drawing of G∗ + Dn, for n > 2, with the vertex notation of the
graph G∗ in such a way as shown in Fig. 1(a). If Ti, T j

∈ SD are different subgraphs such that Fi, F j have different
configurations from any of the sets {A1,A2} and {A1,A4}, then

crD(G∗ ∪ Ti
∪ T j,Tl) ≥ 7 for any Tl < RD ∪ SD.

Proof. Let us assume the configurations A1 of Fi and A2 of F j, and remark that they are represented by
the cyclic permutations P109 = (135642) and P87 = (126543), respectively. Let Tl be any subgraph with l , i, j.
We are able to use the property of crossings among edges of its subgraph K6,2 with the help of Woodall’s
results in [18], that is, crD(Ti

∪ T j,Tl) ≥ Q
(
rotD(ti), rotD(t j)

)
in the subdrawing of Ti

∪ T j
∪ Tl induced by
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D for any l , i, j. As dCOG(”P109”, ”P87”) = 4, this enforces crD(Ti
∪ T j,Tl) ≥ 4. It is obvious that the case

crD(G∗,Tl) ≥ 3 implies crD(G∗ ∪ Ti
∪ T j,Tl) ≥ 3 + 4 = 7. In addition, we will only deal with a subgraph Tl

that crosses the edges of G∗ exactly twice.
Moreover, if we still assume a Tl with crD(Ti,Tl) = 1, then the vertex tl must be placed in the quadrangular

region of D(Fi) with three vertices v2, v3, and v4 of G∗ on its boundary, i.e., tl ∈ ω2,3,4. This enforces that the
edge v2v3 and v3v4 of the graph G∗ must be crossed by the edge tlv1 and tlv5, respectively, and crD(Ti,Tl) = 1
only for Tl with rotD(tl) = (126453) = P81. Using P87 = (134562) = P97, and dCOG(”P81”, ”P97”) = 5 we
obtain crD(T j,Tl) ≥ 5. Hence, crD(G∗ ∪ Ti

∪ T j,Tl) ≥ 2 + 1 + 5 = 8. Since we can apply the same idea
for the case of crD(T j,Tl) = 1, in addition, let us suppose that crD(Ti,Tl) ≥ 2 and crD(T j,Tl) ≥ 2 for any
such Tl with crD(G∗,Tl) = 2. Of course, if crD(Ti,Tl) > 2 or crD(T j,Tl) > 2, we obtain the considered result
crD(G∗ ∪ Ti

∪ T j,Tl) ≥ 2 + 3 + 2 = 7.
Finally, let us assume a Tl with crD(G∗,Tl) = 2, crD(Ti,Tl) = 2, and crD(T j,Tl) = 2. The vertex tl must be

placed in one quadrangular region of D(Fi) with three vertices of G∗ on its boundary, i.e., tl ∈ ω2,3,4 ∪ ω4,5,6.
We can easy to verify if tl ∈ ω2,3,4 then tlv3 does not cross any edge of G∗, and the edge v4v5 of G∗ must be
crossed by tlv3 in the case of tl ∈ ω4,5,6. As in both cases the edge tlv4 cannot cross any edge of G∗, likewise,
it must be true for the subdrawing D(F j). The assumptions crD(G∗,Tl) = 2 and crD(T j,Tl) = 2 imply that
the vertex tl must be placed in the pentagonal region of D(F j) with four vertices of G∗ on its boundary, i.e.,
tl ∈ ω1,2,5,6. Since the edge tlv4 cannot cross any edge of G∗, then tlv4 have to cross exactly two edges of the
subgraph Ti. This enforces that no edge of tlv1, tlv2, tlv5, and tlv6 is crossed in the subdrawing D(Fi

∪ F j).
Since the edge tlv3 cannot cross two edges of G∗, we obtain a contradiction.

The similar arguments can be applied for the pair {A1,A4}, and the proof is done.

Lemma 3.2. Let D be a good and antipode-free drawing of G∗ + Dn, for n > 2, with the vertex notation of the
graph G∗ in such a way as shown in Fig. 1(a). If Ti, T j

∈ SD are different subgraphs such that Fi, F j have
different configurations from any of the sets {A1,A8}, {A2,A3}, {A2,A5}, {A2,A7}, {A3,A4}, {A3,A6}, {A3,A10},
{A4,A5}, and {A4,A7}, then

crD(G∗ ∪ Ti
∪ T j,Tl) ≥ 7 for any Tl with crD(G∗,Tl) = 2.

Proof. Let us assume the configurations A1 of Fi and A8 of F j, and note that they are represented by
the cyclic permutations P109 = (135642) and P85 = (125643), respectively, and let also Tl < RD ∪ SD be
a subgraph that crosses the edges of G∗ exactly twice. If crD(Ti,Tl) = 1, then the subdrawing D(Fl)
can be represented only by the cyclic permutation P81 = (126453) due to the arguments in the proof
of Lemma 3.1. Using P85 = (134652) = P103, and dCOG(”P81”, ”P103”) = 4 we obtain crD(T j,Tl) ≥ 4. Thus,
crD(G∗∪Ti

∪T j,Tl) ≥ 2+1+4 = 7. We can apply the same idea for the case of crD(T j,Tl) = 2. Let us assume that
crD(Ti,Tl) ≥ 2 and crD(T j,Tl) ≥ 3 for any such subgraph Tl, which yields that crD(G∗∪Ti

∪T j,Tl) ≥ 2+2+3 = 7
clearly holds for any Tl < RD∪SD with crD(G∗,Tl) = 2. The similar arguments can be used for the remaining
pairs of configurations, and this completes the proof.

We have to emphasize that, in Lemma 3.2, the assumption crD(G∗,Tl) = 2 is inevitable. For Tl < RD∪SD with
crD(G∗,Tl) = 3, the reader can easily find a subdrawing of G∗ ∪ Ti

∪ T j
∪ Tl in which crD(Ti

∪ T j,Tl) = 3, i.e.,
crD(G∗ ∪ Ti

∪ T j,Tl) = 6. Further, we cannot generalize Lemma 3.2 for all pairs of different configurations
from N . If we consider the configurations A1 of Fi and A6 of F j, then the reader also can easily find
a subdrawing of G∗ ∪ Ti

∪ T j
∪ Tl in which crD(G∗ ∪ Ti

∪ T j,Tl) = 6 with crD(G∗,Tl) = 2.

Lemma 3.3. Let D be a good and antipode-free drawing of G∗ + Dn, n > 2, with the vertex notation of the graph G∗

in such a way as shown in Fig. 1(a). Let T j
∈ RD be a subgraph such that F j has configuration R1 ∈ MD. If there is

a subgraph Tk
∈ SD with crD(T j,Tk) = 3, then

a) crD(G∗ ∪ Tk
∪ T j,Tl) ≥ 8 for any subgraph Tl

∈ SD, l , k;
b) crD(G∗ ∪ Tk

∪ T j,Tl) ≥ 7 for any subgraph Tl < RD ∪ SD with crD(G∗,Tl) = 2.

Proof. Let us assume the configuration R1 of F j, and remark that it is represented by the cyclic permutation
P120 = (165432). The unique drawing of F j contains six regions with the vertex t j on their boundaries,
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see Fig. 2. If there is a subgraph Tk
∈ SD with crD(T j,Tk) = 3, then the vertex tk must be placed in

the quadrangular region of D(F j) with three vertices of G∗ on its boundary, i.e., tk ∈ ω1,5,6. This enforces
that the edge v1v5 of the graph G∗ must be crossed by the edge tkv3 and crD(T j,Tk) = 3 only for Tk with
rotD(tk) = (135642) = P109.

a) As Tk
∈ SD and rotD(tk) = (135642) = P109, the considered subdrawing D(Fk) can be described as the

configurationA1, for more see Fig. 3. Now, for each Tl
∈ SD with l , k, we are able to determine the

minimum numbers of crossings of Tl with the subgraphs Tk and T j in the first two columns of Table 5.
The values in the first column of Table 5 are given by the lower bounds from the first column of Table 2.
Since P120 = (123456) = P1, the values in the second column can be determined by dCOG(”P1”, ”Pi”),
where Pi are the corresponding cyclic permutations for all possible configurationsAp, p = 1, . . . , 11 of
the subgraph Fl. The smallest value in the last column of Table 5 gives the required minimum number
of crossings.

conf(Fl) crD(Tk,Tl) crD(T j,Tl) crD(Tk
∪ T j,Tl) crD(G∗ ∪ Tk

∪ T j,Tl)
A1 6 3 9 10
A2 2 5 7 8
A3 5 4 9 10
A4 2 5 7 8
A5 4 4 8 9
A6 3 5 8 9
A7 5 4 9 10
A8 3 4 7 8
A9 4 5 9 10
A10 4 5 9 10
A11 4 4 8 9

Table 5: All possibilities of the subgraph Fl for Tl
∈ SD with crD(T j,Tk) = 3, and Tk

∈ SD.

b) Let Tl < RD ∪ SD be a subgraph with crD(G∗,Tl) = 2, that is, the vertex tl cannot be placed inside
the triangular region of D(G∗). If crD(T j,Tl) = 2, then tl must be placed in the quadrangular region
of D(F j) with three vertices of G∗ on its boundary, i.e., tl ∈ ω1,5,6. This enforces that the edge v1v5
and v5v6 of G∗ must be crossed by the edge tlv3 and tlv4, respectively, and crD(T j,Tl) = 2 only for Tl

with rotD(tl) = (135462) = P99. Using P99 = (126453) = P81, and dCOG(”P81”, ”P109”) = 5 we obtain
crD(Tk,Tl) ≥ 5. Thus, crD(G∗ ∪ Tk

∪ T j,Tl) ≥ 2 + 5 + 2 = 9. We can apply the similar idea in the
case of crD(Tk,Tl) = 1, i.e., rotD(tl) = (126453) = P81, and the distance dCOG(”P99”, ”P120”) = 4 implies
crD(G∗ ∪ Tk

∪ T j,Tl) ≥ 2 + 1 + 4 = 7. It remains to consider the case where crD(T j,Tl) ≥ 3 and
crD(Tk,Tl) ≥ 2, which yields that crD(G∗∪Tk

∪T j,Tl) ≥ 2+2+3 = 7 trivially holds for each Tl < RD∪SD
with crD(G∗,Tl) = 2.

Theorem 3.4. cr(G∗ + Dn) = 6
⌊

n
2

⌋⌊
n−1

2

⌋
+ 3

⌊
n
2

⌋
for n ≥ 1.

Proof. Fig. 6 shows the drawing of G∗ + Dn with exactly 6b n
2 cb

n−1
2 c + 3b n

2 c crossings. Thus,

cr(G∗ + Dn) ≤ 6
⌊n

2

⌋ ⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.

We prove the reverse inequality by induction on n. The graph G∗ + D1 is planar; hence, cr(G∗ + D1) = 0. The
graph G∗ + D2 contains a subgraph that is a subdivision of the graph P4 + C3. It was proved by Klešč [9]



M. Staš / Filomat 34:9 (2020), 2829–2846 2839

 

v
4

v
5

v
3

v
2

v
1

v
6

Figure 6: The drawing of G∗ + Dn with 6
⌊

n
2

⌋⌊
n−1

2

⌋
+ 3

⌊
n
2

⌋
crossings.

that cr(P4 + C3) = 3. So, the result is true for n = 1 and n = 2. Suppose now that, for some n ≥ 3, there is
a drawing D with

crD(G∗ + Dn) < 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
, (3)

and that

cr(G∗ + Dm) = 6
⌊m

2

⌋⌊m − 1
2

⌋
+ 3

⌊m
2

⌋
for any positiver integer m < n. (4)

We claim that the considered drawing D must be antipode-free. For a contradiction suppose, without
loss of generality, that crD(Tn−1,Tn) = 0. Using positive values in Tables 2, 3 and 4, one can easily verify that
both subgraphs Tn−1 and Tn cannot be from the set SD. If at least one of Tn−1 and Tn, say Tn, does not cross
G∗, it is not difficult to verify in Fig. 2 that Tn−1 must cross G∗∪Tn at least trice, that is, crD(G∗,Tn−1

∪Tn) ≥ 3.
By Kleitman [8], we already know that cr(K6,3) = 6, which yields that each Tk, k = 1, 2, . . . ,n − 2, crosses the
edges of the subgraph Tn−1

∪ Tn at least six times. So, for the number of crossings in D we have

crD(G∗ + Dn) = crD (G∗ + Dn−2) + crD(Tn−1
∪ Tn) + crD(K6,n−2,Tn−1

∪ Tn) + crD(G∗,Tn−1
∪ Tn)

≥ 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 3

⌊n − 2
2

⌋
+ 0 + 6(n − 2) + 3

= 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.

This contradiction with the assumption (3) confirms that D is antipode-free. Moreover, if r = |RD| and
s = |SD|, the assumption (4) together with the well-known fact cr(K6,n) = 6b n

2 cb
n−1

2 c imply that, in D, if r = 0
then there are at least d n

2 e + 1 subgraphs T j by which the edges of the graph G∗ are crossed exactly once.
More precisely:

crD(G∗) + crD(G∗,K6,n) < 3
⌊n

2

⌋
,

i.e.,

crD(G∗) + 0r + 1s + 2(n − r − s) < 3
⌊n

2

⌋
. (5)
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This forces that 2r + s ≥ 2n− 3b n
2 c+ 1, and if r = 0 then s ≥ 2n− 3b n

2 c+ 1 ≥ d n
2 e+ 1. Now, for T j

∈ RD ∪SD,
we will discuss about the existence of possible configurations of subgraph F j = G∗ ∪ T j in the drawing D
and we will show that in all cases a contradiction with the assumption (3) is obtained.

Case 1: crD(G∗) = 0 and there is the possibility of obtaining a subdrawing of G∗ ∪ T j in D for some
T j
∈ RD. Without loss of generality, we can choose the vertex notation of the graph G∗ in such a way as

shown in Fig. 1(a). As the set RD can be empty, two subcases may occur:

a) Let RD be the nonempty set, i.e., there is a subgraph T j
∈ RD. Let us first note that if we denote

by t the number of subgraphs Tk whose edges cross the graph G∗ exactly twice then the modified
inequality (5), for 1s + 2t + 3(n − r − s − t) < 3b n

2 c, forces that r + s + t ≥ d n
2 e and 3r + 2s + t > 3n − 3b n

2 c.
As we deal with the configurations belonging to the nonempty setMD, we consider two possibilities.
In the case of R2 ∈ MD, let us assume that T j

∈ RD with the configuration R2 of F j. By fixing the
subgraph G∗ ∪ T j and using a discussion in all possible regions of D(F j) for R2 in Fig. 2, we have

crD(G∗ + Dn) = crD(K6,n−1) + crD(K6,n−1,G∗ ∪ T j) + crD(G∗ ∪ T j)

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 5(r − 1) + 5s + 5t + 4(n − r − s − t) + 0

= 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4n + (r + s + t) − 5

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4n +

⌈n
2

⌉
− 5

≥ 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.

This contradicts the assumption of D, and therefore, in the next part, let R2 <MD, that is,MD = {R1}.
Without lost of generality, we can assume the configurationR1 of Fn. It is not difficult to verify that the
edges of Tn are crossed by each subgraph Tk

∈ SD at least thrice. So, let us denote SD(Tn) = {Tk
∈ SD :

crD(Tn,Tk) = 3}. If Tk is a subgraph from the nonempty set SD(Tn) then crD(G∗∪Tn
∪Tk,Tl) ≥ 6 + 3 = 9

is fulfilling for any Tl
∈ RD, l , n provided by rotD(tn) = rotD(tl). As crD(G∗ ∪ Tn

∪ Tk) = 4, by fixing
the subgraph G∗ ∪ Tn

∪ Tk and using Lemma 3.3, we have

crD(G∗ + Dn) ≥ 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 9(r − 1) + 8(s − 1) + 7t + 6(n − r − s − t) + 4

= 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 6n + (3r + 2s + t) − 13

≥ 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 6n +

(
3n − 3

⌊n
2

⌋
+ 1

)
− 13

≥ 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.

If the set SD(Tn) is empty then, by fixing the subgraph G∗ ∪ Tn, we have

crD(G∗ + Dn) ≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 6(r − 1) + 5s + 4(n − r − s) + 0

= 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4n + (2r + s) − 6

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4n +

(
2n − 3

⌊n
2

⌋
+ 1

)
− 6

≥ 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.

Both subcases confirm a contradiction with the assumption in D.
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b) Let RD be the empty set, that is, each subgraph T j crosses the edges of G∗ at least once in D. Thus, we
deal with the configurations belonging to the nonempty setND. Let us first assume that {A1,Ap} ⊆ ND
for some p ∈ {2, 4}. Without lost of generality, let us consider two different subgraphs Tn−1, Tn

∈ SD
such that Fn−1 and Fn have different configurations from {A1,A2}. Then, crD(Tn−1

∪ Tn,Tl) ≥ 7 is
true for any Tl

∈ SD with l , n − 1,n by summing the values in all columns in the first two rows of
Table 2. Moreover, crD(G∗ ∪ Tn−1

∪ Tn,Tl) ≥ 7 is fulfilling for any subgraph Tl < SD by Lemma 3.1. As
crD(G∗ ∪ Tn−1

∪ Tn) ≥ 1 + 1 + 2 = 4, by fixing the subgraph G∗ ∪ Tn−1
∪ Tn, we have

crD(G∗ + Dn) ≥ 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 8(s − 2) + 7(n − s) + 4

= 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 7n + s − 12

≥ 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 7n +

(⌈n
2

⌉
+ 1

)
− 12

≥ 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.

This also contradicts the assumption of D and the same arguments can be used for the case of different
configurations from {A1,A4} due to their symmetry. In addition, let us suppose that {A1,Ap} * ND
for p = 2, 4. Now, let us assume that some of the sets {A1,A8}, {A2,A3}, {A2,A5}, {A2,A7}, {A3,A4},
{A3,A6}, {A3,A10}, {A4,A5}, and {A4,A7} is a subset ofND. Without lost of generality, let us consider
two different subgraphs Tn−1, Tn

∈ SD such that Fn−1 and Fn have different configurations A1 and
A8, respectively. Then, crD(Tn−1

∪ Tn,Tl) ≥ 7 is also true for any Tl
∈ SD, l , n − 1,n by summing

of two corresponding values of Table 2. Moreover, crD(G∗ ∪ Tn−1
∪ Tn,Tl) ≥ 7 is fulfilling for any

subgraph Tl < SD with crD(G∗,Tl) = 2 by Lemma 3.2. Again, if we denote by t the number of
subgraphs Tk by which the edges of G∗ are crossed exactly twice then the modified inequality (5), for
1s + 2t + 3(n − s − t) < 3b n

2 c, confirms that 2s + t > 3n − 3b n
2 c. As crD(G∗ ∪ Tn−1

∪ Tn) ≥ 1 + 1 + 3 = 5, by
fixing the subgraph G∗ ∪ Tn−1

∪ Tn, we have

crD(G∗ + Dn) ≥ 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 8(s − 2) + 7t + 6(n − s − t) + 5

= 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 6n + (2s + t) − 11

≥ 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 6n +

(
3n − 3

⌊n
2

⌋
+ 1

)
− 11

≥ 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.

All these pairs of configurations confirm a contradiction with the assumption in D, and so in the next,
suppose that this case does not occur. Further, at this point, if we consider {A1,A6} ⊆ ND then, by
fixing the subgraph G∗ ∪ Tn−1

∪ Tn withA1 of Fn−1 andA6 of Fn, we have

crD(G∗ + Dn) ≥ 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 9(s − 2) + 6(n − s) + 5

= 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 6n + 3s − 13

≥ 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 6n + 3

(⌈n
2

⌉
+ 1

)
− 13

≥ 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.
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In addition, let us also suppose that {A1,A6} * ND. Therewith, the minimal numbers of crossings
between the edges of two different subgraphs from the set SD are at least four in the following two
subcases:

If we assume Ap ∈ ND for some p ∈ {3, 5, 6, 7, 8, 9, 10, 11} then, for T j
∈ SD with Ap ∈ ND of F j, one

can easily verify that crD(G∗ ∪ T j,Tl) ≥ 4 holds for any subgraph Tl < SD using the subdrawing of F j

induced by D, see Fig. 3. Hence, by fixing the subgraph G∗ ∪ T j, we have

crD(G∗ + Dn) ≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 5(s − 1) + 4(n − s) + 1

= 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4n + s − 4

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4n +

(⌈n
2

⌉
+ 1

)
− 4

≥ 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.

Finally, in the case either ND = {Ap} for only one p ∈ {1, 2, 4} or ND = {A2,A4}, without lost of
generality, let us assume that Tn

∈ SD with the configurationAp of Fn. Then, crD(Tn,Tl) ≥ 6 holds for
any Tl

∈ SD, l , n by the remaining values of Table 2. Thus, by fixing the subgraph G∗ ∪ Tn, we have

crD(G∗ + Dn) ≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 7(s − 1) + 3(n − s) + 1

= 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 3n + 4s − 6

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 3n + 4

(⌈n
2

⌉
+ 1

)
− 6

≥ 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.

Case 2: crD(G∗) = 0 and there is no possibility of an existence of subgraph T j
∈ RD. Since the set RD is

empty, we only need to consider the four subdrawings of G∗ in D shown in Fig. 1(b)-(e). In all considered
cases, the inequality (5) enforces that there are at least d n

2 e+ 1 subgraphs T j by which the edges of the graph
G∗ are crossed exactly once.

b) crD(G∗) = 0 and we consider the drawing of G∗ with the vertex notation as shown in Fig. 1(b). For
T j
∈ SD, our aim is to list again all possible rotations rotD(t j) which can appear in D. Since there

is only one subdrawing of F j
\ v6 represented by the rotation (15432), there are two ways for how

to obtain the subdrawing of F j depending on which edge of G∗ is crossed by the edge t jv6. These
two possibilities under our consideration are denoted by B1 and B2, and they are represented by the
cyclic permutations (154632) and (156432), respectively. Further, due to the properties of the cyclic
permutations, we can easily verify that cr(B1,B2) ≥ 5 (let us note that this idea has been used for an
establishing the values in Table 2). As there is a T j

∈ SD, by fixing the subgraph G∗ ∪ T j, we have

crD(G∗ + Dn) ≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 6(s − 1) + 3(n − s) + 1

= 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 3n + 3s − 5

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 3n + 3

(⌈n
2

⌉
+ 1

)
− 5

≥ 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.
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c) crD(G∗) = 0 and we choose the drawing with the vertex notation of G∗ as shown in Fig. 1(c). In this
case, for a T j

∈ SD, the reader can easily verify that the subgraph F j = G∗ ∪ T j is uniquely represented
by rotD(t j) = (165432) and crD(T j,Tl) ≥ 6 holds for any Tl

∈ SD, l , j provided by rotD(t j) = rotD(tl).
Thus, we can apply the same idea as in the previous subcase.

d) crD(G∗) = 0 and we consider the drawing with the vertex notation of G∗ as shown in Fig. 1(d). In this
case, we deal with the configurations belonging to the nonempty set OD. Note that the lower bounds
for the number of crossings of two configurations from O have been already established in Table 3.
Since there is the possibility to find a subdrawing of G∗ ∪ T j

∪ Tl in which crD(G∗ ∪ T j,Tl) = 3 with
T j
∈ SD and Tl < SD, we discuss two following subcases. If we consider a subgraph T j

∈ SD with the
configuration Dp ∈ OD of F j, where p ∈ {3, 4}, then crD(G∗ ∪ T j,Tl) ≥ 1 + 4 = 5 holds for any Tl

∈ SD,
l , j using the smallest values of Table 3. Moreover, it is not difficult to verify in possible regions of
D(G∗∪T j) that crD(G∗∪T j,Tl) ≥ 4 is fulfilling for any subgraph Tl < SD. Hence, by fixing the subgraph
G∗ ∪ T j, we have

crD(G∗ + Dn) ≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 5(s − 1) + 4(n − s) + 1

= 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4n + s − 4

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4n +

(⌈n
2

⌉
+ 1

)
− 4

≥ 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.

This subcase contradicts the assumption of D, and therefore, in the next part, suppose thatDp ∈ MD

only for some p ∈ {1, 2}. By fixing the subgraph G∗ ∪ T j for T j
∈ SD with the configuration either D1

orD2 of F j, we have

crD(G∗ + Dn) ≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 6(s − 1) + 3(n − s) + 1

= 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 3n + 3s − 5

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 3n + 3

(⌈n
2

⌉
+ 1

)
− 5

≥ 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.

e) crD(G∗) = 0 and we consider the drawing of G∗ with the vertex notation as shown in Fig. 1(e). Now,
we deal with the configurations belonging to the nonempty set PD. The lower bounds of number of
crossings of two configurations from P have been also already established in Table 4. Again, since
there is the possibility to find a subdrawing of G∗ ∪ T j

∪ Tl in which crD(G∗ ∪ T j,Tl) = 3 with T j
∈ SD

and Tl < SD, we discuss three following subcases:

First, let us assume that {E2,E4} ⊆ PD and, in the rest of paper, let us consider two different subgraphs
Tn−1, Tn

∈ SD such that Fn−1 and Fn have different configurations E2 and E4, respectively. Then,
crD(Tn−1

∪ Tn,Tl) ≥ 9 holds for any Tl
∈ SD, l , n − 1,n by summing of two corresponding values in

all columns of Table 4. As crD(G∗ ∪ Tn−1
∪ Tn) ≥ 1 + 1 + 3 = 5, by fixing the subgraph G∗ ∪ Tn−1

∪ Tn,
we have

crD(G∗ + Dn) ≥ 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 10(s − 2) + 5(n − s) + 5

= 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 5n + 5s − 15
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≥ 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 5n + 5

(⌈n
2

⌉
+ 1

)
− 15

≥ 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.

For the subcase {E2,E4} * PD, if we consider a subgraph T j
∈ SD with the configuration Ep ∈ PD of F j,

where p ∈ {3, 4}, then crD(G∗ ∪ T j,Tl) ≥ 1 + 4 = 5 holds for any Tl
∈ SD, l , j by the remaining values

in Table 4. Moreover, we can easy to verify in possible regions of D(G∗ ∪ T j) that crD(G∗ ∪ T j,Tl) ≥ 4
is also true for any subgraph Tl < SD. Hence, by fixing the subgraph G∗ ∪ T j, we have

crD(G∗ + Dn) ≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 5(s − 1) + 4(n − s) + 1

= 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4n + s − 4

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4n +

(⌈n
2

⌉
+ 1

)
− 4

≥ 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.

Both subcases contradict the assumption of D, and therefore, in the next part, suppose that Ep ∈ PD

only for some p ∈ {1, 2}. Finally, by fixing the subgraph G∗ ∪ T j for T j
∈ SD with the configuration

either E1 or E2 of F j, we have

crD(G∗ + Dn) ≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 6(s − 1) + 3(n − s) + 1

= 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 3n + 3s − 5

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 3n + 3

(⌈n
2

⌉
+ 1

)
− 5

≥ 6
⌊n

2

⌋⌊n − 1
2

⌋
+ 3

⌊n
2

⌋
.

Case 3: crD(G∗) ≥ 1. For all possible subdrawings of the graph G∗ in D with at least one crossing among
edges of G∗ and also with a possibility of obtaining a subgraph T j that crosses the edges of G∗ at most once,
we are able to apply one of the ideas of the previous subcases.

Let us turn to the possible subdrawings of G∗ with crD(G∗) = 1. Since the graph G∗ contains P4 + D1
as a subgraph, we only need to consider possibilities either of crossings between planar subdrawings of
P4 + D1 and the bridge of G∗, or of subdrawings of P4 + D1 with exactly one crossing and with the placement
of the bridge of G∗ without any new crossing. Thus, assuming a subgraph T j

∈ RD ∪ SD, we obtain twelve
possible non isomorphic drawings of G∗ with one crossing among its edges shown in Fig. 7. If we consider
the drawings with the vertex notation of G∗ as shown in Fig. 7(a)-(c), the proof can proceed in the similar
way as in Case 1. For the subdrawings of G∗ in D as shown in Fig. 7(d)-(l), we can use one of the ideas of
Case 2. Obviously, with the growing number of crossings in the induced subdrawing D(G∗) for T j

∈ RD∪SD,
the edges of the subgraph G∗ ∪ T j will be crossed by Tl, l , j more often, and therefore, the considered
subcases will be easier to discuss than in Cases 1 and 2.
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Figure 7: Twelve non isomorphic drawings of the graph G∗ with crD(G∗) = 1.

Thus, it was shown in all mentioned cases that there is no good drawing D of the graph G∗ + Dn with
fewer than 6b n

2 cb
n−1

2 c + 3b n
2 c crossings, and the proof of the theorem is complete.
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4. One Other Graph

Figure 8: One graph G1 by adding one edge to the graph G∗.

Finally, into the drawing in Fig. 6, we are able to add the edge v1v6 to the graph G∗ without additional
crossings, and we obtain new graph G1 represented in Fig. 8. Therefore, the drawing of the graph G1 + Dn

with 6
⌊

n
2

⌋⌊
n−1

2

⌋
+ 3

⌊
n
2

⌋
crossings is obtained. On the other hand, G∗ + Dn is a subgraph of G1 + Dn, and

therefore, cr(G1 + Dn) ≥ cr(G∗ + Dn). Thus, the next result is obvious.

Corollary 4.1. cr(G1 + Dn) = 6
⌊

n
2

⌋⌊
n−1

2

⌋
+ 3

⌊
n
2

⌋
for n ≥ 1.
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