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Abstract. Suppose G is a locally solid lattice group. It is known that there are non-equivalent classes of
bounded homomorphisms on G which have topological structures. In this paper, our attempt is to assign
lattice structures on them. More precisely, we use of a version of the remarkable Riesz-Kantorovich for-
mulae and Fatou property for bounded order bounded homomorphisms to allocate the desired structures.
Moreover, we show that unbounded convergence on a locally solid lattice group is topological and we
investigate some applications of it. Also, some necessary and sufficient conditions for completeness of
different types of bounded group homomorphisms between topological rings have been obtained, as well.

1. Introduction and Preliminaries

The concept of a lattice group (`-group, for short) was initially considered in [2, 3]. In addition,
topological `-groups as an extension of topological Riesz spaces were investigated in [11, 12]. Since the
most known classes of function spaces are Banach lattices: one of the most powerful tools in the theory
of Banach spaces, and Riesz spaces are the fundamental basis of Banach lattices, these notions have been
investigated extensively from the past until now. But topological `-groups are rarely utilized although
in general, topological groups have many applications in other disciplines for example Fourier analysis.
Recently, a suitable reference has been announced regarding basic properties of topological `-groups (see
[7] for more details on these expositions).

On the other hand, in [9], Kočinac and the author, considered three different kinds of bounded ho-
momorphisms on a topological group. They allocated each class of them to an appropriate topology and
showed that they form again topological groups. If the underlying group has a lattice structure (for ex-
ample, topological `-groups), it is of interest to ask whether bounded homomorphisms can have a lattice
construction, too? This question for bounded order bounded operators on locally solid Riesz spaces have
been answered affirmatively in [5]. Almost, the most fruitful structure for the lattice operations in order
bounded operators is the remarkable Riesz-Kantorovich formulae (see [1, Theorem 1.18] for more informa-
tion). Thus, in prior to anything, for order bounded homomorphisms on topological `-groups, we need a
version of this formulae; this is done recently in [14]. Then, we can consider lattice structures for classes
of bounded order bounded homomorphisms. A related and major point to consider is that although some
proofs in this paper might seem similar to the ones related to Riesz spaces at the first glance, It is obligatory
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to check them one by one because some known results in analysis rely heavily on scalar multiplication such
as the Hahn-Banach theorem and some consequences of it; so that we can not expect them in topological `-
groups. But order structure enables us to generalize some results in Riesz spaces which count on just group
and order structures. Recently, among other things, some extensions of this kind, have been considered in
[14].

We organize the paper as follows. First, we consider some preliminaries and terminology which will be
used in the sequel. In Section 2, we investigate a method which enables us to allocate lattice structures on
bounded homomorphisms between topological `-groups. In fact, we use the Fatou property with a version
of the Riesz-Kantorovich formulae to give a lattice structure to bounded order bounded homomorphisms.
Also, we see that unbounded convergence in a locally solid `-group is topological and we state some points
in this direction.

In Section 3, we show that each class of bounded group homomorphisms defined on a topological ring
is topologically complete if and only if so is the underlying topological ring.

By a lattice group (`-group), we mean a group which is also a lattice at the same time. Observe that
a subset B in an abelian topological group (G,+) is said to be bounded if for each neighborhood U of the
identity, there exists a positive integer n with B ⊆ nU, in which nU = {x1 + . . .+ xn : xi ∈ U}. An `-group G is
called Dedekind complete if every non-empty bounded above subset of G has a supremum. G is Archimedean
if nx ≤ y for each n ∈N implies that x ≤ 0. One may verify easily that every Dedekind complete `-group is
Archimedean. In this note, all groups are considered to be abelian. A set S ⊆ G is called solid if x ∈ G, y ∈ S
and |x| ≤ |y| imply that x ∈ S.

Note that by a topological lattice group, we mean a topological group which is simultaneously a lattice
whose lattice operations are also continuous with respect to the assumed topology.

Suppose G is a topological `-group. A net (xα) ⊆ G is said to be order convergent to x ∈ G if there exists a
net (zβ) (possibly over a different index set) such that zβ ↓ 0 and for every β, there is an α0 with |xα − x| ≤ zβ
for each α ≥ α0. A set A ⊆ G is called order closed if it contains limits of all order convergent nets which lie
in A.

Keep in mind that topology τ on a topological `-group (G, τ) is referred to as Fatou if it has a local basis
at the identity consisting of solid order closed neighborhoods. For undefined expressions and the related
topics, see [7].

Now, we recall some terminology we need in the sequel (see [9] for further notifications about these
facts).

Definition 1.1. Let G and H be topological groups. A homomorphism T : G→ H is said to be

(1) nb-bounded if there exists a neighborhood U of eG such that T(U) is bounded in H;

(2) bb-bounded if for every bounded set B ⊆ G, T(B) is bounded in H.

The set of all nb-bounded (bb-bounded) homomorphisms from a topological group G to a topological
group H is denoted by Homnb(G,H) (Hombb(G,H)). We write Hom(G) instead of Hom(G,G). Here, we
emphasize the group operation in Hom(G,H) is pointwise, that is (T + S)(x) := T(x) + S(x).

Now, assume G is a topological group. The class of all nb-bounded homomorphisms on G equipped
with the topology of uniform convergence on some neighborhood of eG is denoted by Homnb(G). Observe
that a net (Sα) of nb-bounded homomorphisms converges uniformly on a neighborhood U of eG to a
homomorphism S if for each neighborhood V of eG there exists anα0 such that for eachα ≥ α0, (Sα−S)(U) ⊆ V.

The class of all bb-bounded homomorphisms on G endowed with the topology of uniform convergence
on bounded sets is denoted by Hombb(G). Note that a net (Sα) of bb-bounded homomorphisms uniformly
converges to a homomorphism S on a bounded set B ⊆ G if for each neighborhood V of eG there is an α0
with (Sα − S)(B) ⊆ V for each α ≥ α0.

The class of all continuous homomorphisms on G equipped with the topology of c-convergence is
denoted by Homc(G). A net (Sα) of continuous homomorphisms c-converges to a homomorphism S if for
each neighborhood W of eG, there is a neighborhood U of eG such that for every neighborhood V of eG there
exists an α0 with (Sα − S)(U) ⊆ V + W for each α ≥ α0.
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Note that Homnb(G), Homc(G), and Hombb(G) form subgroups of the group of all homomorphisms on
G.

2. Topological Lattice Groups

Remark 2.1. As opposed to topological vector spaces, in topological groups, not every singleton is bounded.
In fact, scalar multiplication is a fruitful tool in this direction that we lack in topological groups; suppose
G is an abelian topological group and put H = G × Z2. Then, H is a topological group which contains
unbounded singletons. Nevertheless, in some cases such as many classical topological groups or connected
topological groups, we do have this mild property. In this paper, we always assume that all topological
groups have this mild property.

Example 2.2. Consider the additive group Z of integer numbers. It can be seen easily that with discrete
topology, it is a locally solid topological group. Furthermore, it can be verified that it possesses Fatou
property. But it is not a Riesz space, certainly.

Recall that a homomorphism T : G → H is said to be order bounded if it maps order bounded sets
into order bounded ones. The set of all order bounded homomorphisms from G into H is denoted by
Homb(G,H). One may justify that under group operations of homomorphisms defined in [9] and invoking
[7, Theorem 4.9], Homb(G,H) is a group.

Lemma 2.3. Suppose G is a Dedekind complete locally solid `-group with Fatou topology and Homb
n(G) is the group

of all order bounded nb-bounded homomorphisms. Then Homb
n(G) is an `-group.

Proof. We need to prove that for a homomorphism T ∈ Homb
n(G), T+

∈ Homb
n(G). By [14, Theorem 1], we

have

T+(x) = sup{T(u) : 0 ≤ u ≤ x}.

Choose a neighborhood U ⊆ G of the identity such that T(U) is bounded. So, for arbitrary neighborhood
V, there is n ∈N with T(U) ⊆ nV. Therefore, for each x ∈ U+, T(x) ∈ nV, so that T+(x) ∈ nV using solidness
of U and order closedness of V. Thus, we see that T+(U) is also bounded.

Theorem 2.4. Suppose G is a Dedekind complete locally solid `-group with Fatou topology. Then Homb
n(G) is locally

solid with respect to the uniform convergence topology on some neighborhood at the identity.

Proof. Let T ∈ Homb
n(G) and x ∈ G+. By [14, Theorem 1], we have

T+(x) = sup{T(u) : 0 ≤ u ≤ x}.

Now, suppose (Tα) and (Sα) are nets of order bounded nb-bounded homomorphisms that (Tα−Sα) converges
uniformly on some neighborhood U ⊆ G to zero. Choose arbitrary neighborhood W ⊆ G. Fix x ∈ U+. Now,
observe the following lattice inequality:

sup{Tα(u) : 0 ≤ u ≤ x} − sup{Sα(u) : 0 ≤ u ≤ x}

≤ sup{(Tα − Sα)(u) : 0 ≤ u ≤ x}.

There exists an α0 such that (Tα − Sα)(U) ⊆ W for each α ≥ α0. Therefore, using the order closedness of
neighborhood W and solidness of neighborhood U, we have

Tα+(x) − Sα+(x) ≤ (Tα − Sα)+(x) ∈W.

Now, by considering [7, Theorem 4.1], the proof would be complete.
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Lemma 2.5. Suppose G is a Dedekind complete locally solid `-group with Fatou topology and Homb
c(G) is the group

of all order bounded continuous homomorphisms. Then Homb
c(G) is an `-group.

Proof. We need to prove that for a homomorphism T ∈ Homb
c(G), T+

∈ Homb
c(G). By [14, Theorem 1], we

have

T+(x) = sup{T(u) : 0 ≤ u ≤ x}.

Suppose W ⊆ G is an arbitrary order closed neighborhood at the identity. There exists a solid neighborhood
U with T(U) ⊆ V. Therefore, for each x ∈ U+, T(x) ∈ V, so that T+(x) ∈ V using solidness of U and order
closedness of V. Thus, we see that T+(U) ⊆ V.

Theorem 2.6. Suppose G is a Dedekind complete locally solid `-group with Fatou topology. Then Homb
c(G) is locally

solid with respect to the c-convergence topology.

Proof. Let T ∈ Homb
c(G) and x ∈ G+. By [14, Theorem 1], we have

T+(x) = sup{T(u) : 0 ≤ u ≤ x}.

Suppose (Tα) and (Sα) are nets of order bounded continuous homomorphisms that (Tα − Sα) c-converges to
zero in Homb

c(X). Choose arbitrary neighborhood W ⊆ G. There is a neighborhood U such that for every
neighborhood V there exists an α0 with (Tα − Sα)(U) ⊆ V + W for each α ≥ α0. Fix x ∈ U+. Now, observe the
following lattice inequality:

sup{Tα(u) : 0 ≤ u ≤ x} − sup{Sα(u) : 0 ≤ u ≤ x}

≤ sup{(Tα − Sα)(u) : 0 ≤ u ≤ x}.

Therefore, by considering the order closedness of neighborhoods V and W and also solidness of neighbor-
hood U, we have

Tα+(x) − Sα+(x) ≤ (Tα − Sα)+(x) ∈ V + W.

Now, using [7, Theorem 4.1], yields the desired result.

Lemma 2.7. Suppose G is a Dedekind complete locally solid `-group with Fatou topology and Homb
b(X) is the group

of all order bounded bb-bounded homomorphisms. Then Homb
b(G) is an `-group.

Proof. It suffices to prove that for a homomorphism T ∈ Homb
b(G), T+

∈ Homb
b(G). By [14, Theorem 1], we

have

T+(x) = sup{T(u) : 0 ≤ u ≤ x}.

Suppose V ⊆ G is an arbitrary neighborhood at the identity. Fix a bounded set B ⊆ G. Without loss of
generality, we may assume B is solid, otherwise, consider the solid hull of B which is certainly bounded.
There exists a positive integer n with T(B) ⊆ nV. Therefore, for each x ∈ B+, T(x) ∈ V, so that T+(x) ∈ V
using solidness of B and order closedness of V. Thus, we see that T+(B) ⊆ nV.

Theorem 2.8. Suppose G is a Dedekind complete locally solid `-group with Fatou topology. Then the lattice operations
in Homb

b(G) are uniformly continuous with respect to the uniform convergence topology on bounded sets.

Proof. Let T ∈ Homb
b(G) and x ∈ G+. By [14, Theorem 1], we have

T+(x) = sup{T(u) : 0 ≤ u ≤ x}.

Suppose (Tα) and (Sα) are nets of order bounded bb-bounded homomorphisms that (Tα − Sα) converges
uniformly to zero on bounded sets in Homb

b(X). Fix a bounded set B ⊆ G which can be chosen solid as in
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the proof of Lemma 2.7. Choose arbitrary neighborhood W ⊆ G. Fix x ∈ B+. Now, observe the following
lattice inequality:

sup{Tα(u) : 0 ≤ u ≤ x} − sup{Sα(u) : 0 ≤ u ≤ x}

≤ sup{(Tα − Sα)(u) : 0 ≤ u ≤ x}.

There exists an α0 such that (Tα − Sα)(B) ⊆ W for each α ≥ α0. Therefore, using the order closedness of
neighborhood W and solidness of subset B, we have

Tα+(x) − Sα+(x) ≤ (Tα − Sα)+(x) ∈W.

Again, [7, Theorem 4.1] does the job. This would complete our claim.

Remark 2.9. As a side note, it can be noticed that if G is a locally solid `-group, then Homb
n(G), Homb

c(G),
and Homb

b(G) are ideals in Homb(G).

2.1. Unbounded Topology
In this part, we investigate unbounded topology on topological `-groups.
A net (xα) in a topological `-group (G, τ) is said to be unbounded τ-convergent to x ∈ G (in notation, xα

uτ
−→ x)

provided that |xα − x| ∧ u τ
−→ 0 for each positive u ∈ G. Note that for order bounded nets, uτ-convergence

and τ-convergence agree. However, consider the additive group c0 with topology τ induced by uniform
norm and pointwise ordering; indeed, it is a topological `-group. Consider the sequence (en) consisting of
the standard basis of c0. Indeed, en

uτ
−→ 0 but not in the τ-topology.

Now, we show that this type of convergence is topological; more precisely, we prove that this kind of
convergence on a locally solid `-group is again locally solid. For locally solid Riesz spaces, it is proved in
[4, Section 2] and [13, Theorem 2.3]. We recall an elementary lemma which is a version of [1, Lemma 1.4] in
Riesz spaces.

Lemma 2.10. If x, x1, x2 are positive elements in an `-group, then x ∧ (x1 + x2) ≤ x ∧ x1 + x ∧ x2.

Theorem 2.11. Suppose (G, τ) is a locally solid `-group. Then (G,uτ) is again a locally solid `-group. If τ is
Hausdorff, so is uτ.

Proof. Suppose {Ui}i∈I is a local basis of solid neighborhoods at identity for G. For each positive u ∈ G, put

Ui,u = {x ∈ G, |x| ∧ u ∈ Ui}.

We show that B := {Ui,u} forms a basis for a locally solid topology on G whose convergence is as the same
as unbounded convergence. Note that since every Ui is solid, we conclude that Ui,u is also solid. In fact,
we investigate properties of [7, Theorem 3.5]. For every index i, there is an j, such that U j + U j ⊆ Ui. Thus,
for every positive element u ∈ G, one may verify U j,u + U j,u ⊆ Ui,u. It can be easily seen that each Ui,u is
symmetric. For each Ui,u and for each y ∈ Ui,u, there exists an index j with |y| ∧ u + U j ⊆ Ui. Now, observe
that y + U j,u ⊆ Ui,u. For every U ∈ B and for every x ∈ G, we must show that there is a neighborhood V ∈ B
such that (V − x+) ∧ (V + x−) ⊆ U. Suppose U = Ui,u for some i and for some u. There exists an j with
(U j − x+) ∨ (U j + x−) ⊆ Ui. We claim that V := U j,u does the job. Let z ∈ V be fixed. By solidness of U j,u,
without loss of generality, we may assume that z ≥ 0; otherwise consider |z|. We see that z ∧ u ∈ U j. So,

0 ≤ (z + x−) ∧ u ≤ z ∧ u + x− ∧ u ≤ z ∧ u + x−.

By hypothesis, z ∧ u + x− ∈ Ui so that (z + x−) ∧ u ∈ Ui. Moreover, for each w ∈ V, we have

|(w − x+) ∧ (z + x−)| ≤ |w − x+
| ∧ (z + x−) ≤ z + x−.

This implies that (U j,u − x+) ∧ (U j,u + x−) ⊆ Ui,u.
Finally, suppose τ is Hausdorff. We show that uτ is also Hausdorff. By [7, Theorem 3.3], it is enough to

prove that ∩U∈BU = {0}. Suppose x ∈ Ui,u for all i and for all u ∈ G+. In particular, this means that x ∈ Ui,|x|
for all i ∈ I. Since τ is Hausdorff, we obtain the desired result.
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This point helps us to generalize some results dealing with unbounded convergence in locally solid
Riesz spaces to locally solid `-groups; for example, a homomorphism T between locally solid `-groups
(G, τ) and (H, τ′) is said to be unbounded Dunford-Pettis (uτ-Dunford-Pettis) if it maps every τ-bounded
uτ-null net into τ′-null nets. We finish this note with an extension of [5, Proposition 4], in this theme.

Proposition 2.12. Let T : G → H be a positive uτ-Dunford-Pettis homomorphism between locally solid `-groups
with H Dedekind complete. Then the Kantorovich-like extension S : G→ H defined via

S(y) = sup
{
T(y ∧ yα) : (yα) ⊆ G+, yα

uτ
−→ 0

}
for every y ∈ G+ is again uτ-Dunford-Pettis.

Proof. Suppose y, z ∈ G+. Then

S(y + z) = supβ{T((y + z) ∧ γβ)} ≤ supβ{T(y ∧ γβ)} + supβ{T(z ∧ γβ)} ≤ S(y) + S(z),

in which, (γβ) is a positive net that is uτ-null. On the other hand,

T(y ∧ aα) + T(z ∧ bβ) = T(y ∧ aα + z ∧ bβ) ≤ T((y + z) ∧ (aα + bβ)) ≤ S(y + z),

provided that two positive nets (aα), (bβ) are uτ-null so that S(y) + S(z) ≤ S(y + z). Therefore, by [14, Lemma
1], S extends to a positive homomorphism. Denote by S the extended homomorphism S : G→ H.

We show that S is also uτ-Dunford-Pettis. Suppose bounded net (yα) ⊆ X is uτ-null. Therefore, we have

S(yα) = supβ T(yα ∧ bβ) ≤ T(yα)→ eH,

in which (bβ) is a positive net in G which is convergent to the identity in the uτ-topology.

Remark 2.13. Finally, it is worthwhile to mention that if a positive homomorphism T is dominated by a
uτ-Dunford-Pettis homomorphism S, then T is necessarily uτ-Dunford-Pettis.

Observation 2.14. Let us end this section with some motivation for the next section. It is observed in
[6] that each class of bounded operators defined on a topological vector space X (with respect to the
assigned topology) is complete if and only if so is X. The useful tool in this direction is the remarkable
Hahn-Banach theorem that we lack in the category of all topological groups. So, when we work with
bounded homomorphisms on a topological group, we miss this equivalent condition (see [9, Theorem
2.13 and Theorem 2.14] for one implication). Nevertheless, when we consider topological rings, the ring
multiplication turns out to be a suitable replacement for the lack of the Hahn-Banach theorem. In the next
section, we try to prove that each class of bounded group homomorphisms on a topological ring X (with
respect to an appropriate topology) is complete if and only if so is X.

3. Topological Rings

Now, we consider a version of [10, Proposition 2.1] while scalar multiplication is absent. Recall that
subset B from a topological ring X is called bounded if for each zero neighborhood V ⊆ X, there exists a
zero neighborhood U ⊆ X with UB ⊆ V and BU ⊆ V.

Proposition 3.1. Suppose X is a topological ring with unity that singletons in the underlying topological group is
bounded. Then a set B ⊆ X is bounded if and only if so is in the sense of the topological group.

Proof. First, consider X as a topological group and assume that B ⊆ X is bounded. Furthermore, suppose
W is an arbitrary zero neighborhood. There is a zero neighborhood V with VV ⊆ W. Find positive integer
n such that B ⊆ nV. Choose zero neighborhood V0 with nV0 ⊆ V. Therefore, V0B ⊆ nV0V ⊆ VV ⊆ W.
Similarly, BV0 ⊆W.

For the converse, consider X as a topological ring and suppose B ⊆ X is bounded. For an arbitrary zero
neighborhood W , there is a neighborhood V with VV ⊆ W, BV ⊆ W and VB ⊆ W. We claim there exists
n ∈N such that B ⊆ nW. Suppose on a contrary, for any n ∈N, B * nW. So, there exists a sequence (xn) ⊆ B
such that xn < nW. Moreover, since singletons are bounded in X, one can find m ∈ N with 1 ∈ mV. Thus,
xm ∈ mVB ⊆ mW a contradiction.
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Now, we recall some notes about bounded group homomorphisms between topological rings; for more
expositions on this concept, see [10].

Definition 3.2. Let X and Y be topological rings. A group homomorphism T : X→ Y is said to be

(1) nr-bounded if there exists a zero neighborhood U ⊆ X such that T(U) is bounded in Y;

(2) br-bounded if for every bounded set B ⊆ X, T(B) is bounded in Y.

The set of all nr-bounded (br-bounded) homomorphisms from a topological ring X to a topological ring
Y is denoted by Homnr(X,Y) (Hombr(X,Y)). We write Hom(X) instead of Hom(X,X).

Now, assume X is a topological ring. The class of all nr-bounded group homomorphisms on X equipped
with the topology of uniform convergence on some zero neighborhood is denoted by Homnr(X). Observe that
a net (Sα) of nr-bounded homomorphisms converges uniformly on a neighborhood U to a homomorphism
S if for each neighborhood V there exists an α0 such that for each α ≥ α0, (Sα − S)(U) ⊆ V.

The class of all br-bounded group homomorphisms on X endowed with the topology of uniform
convergence on bounded sets is denoted by Hombr(X). Note that a net (Sα) of br-bounded homomorphisms
uniformly converges to a homomorphism S on a bounded set B ⊆ X if for each zero neighborhood V there
is an α0 with (Sα − S)(B) ⊆ V for each α ≥ α0.

The class of all continuous group homomorphisms on X equipped with the topology of cr-convergence
is denoted by Homcr(X). A net (Sα) of continuous homomorphisms cr-converges to a homomorphism S if
for each zero neighborhood W, there is a neighborhood U such that for every zero neighborhood V there
exists an α0 with (Sα − S)(U) ⊆ VW for each α ≥ α0.

Note that Homnr(X), Hombr(X), and Homcr(X) form subrings of the ring of all group homomorphisms
on X, in which, the multiplication is given by function composition.

In contrast with the case of all bounded homomorphisms between topological groups (considered in [9]),
there are no more relations between these classes of bounded group homomorphisms between topological
rings; see [10, Example 2.1, Example 2.2, Example 3.1] for some examples which illustrate the situation.

Theorem 3.3. Suppose X is a topological ring with unity. Then, Homcr(X) is complete if and only if so is X.

Proof. Suppose X is complete and (Tα) is a Cauchy net of continuous group homomorphisms on X. Assume
that W is an arbitrary zero neighborhood. There is a zero neighborhood U such that for any neighborhood
V we can choose an α0 with (Tα − Tβ)(U) ⊆ VW for each α ≥ α0 and β ≥ α0. For any fixed x ∈ X, find
a positive integer n such that x ∈ nU. Pick a zero neighborhood V0 such that V0V0 ⊆ W and nV0 ⊆ W.
Therefore, for sufficiently large α and β, (Tα − Tβ)(x) ∈ nV0V0 ⊆ W. Thus, (Tα(x)) is a Cauchy net in X so
that convergent. Suppose Tα(x)→ αx ∈ X. Define T : X→ X via T(x) = αx. Since this convergence holds in
Homcr(X), by [10, Proposition 3.1], T is also continuous.

For the converse, assume that Homcr(X) is complete and (xα) is a Cauchy net in X. Suppose W is
an arbitrary zero neighborhood in X. Define Tα : X → X via Tα(x) = xαx. It can be verified that each
Tα is a continuous group homomorphism. Furthermore, (Tα) is a Cauchy net in Homcr(X); consider any
neighborhood U ⊆W, for any zero neighborhood V choose index α0 such that (xα − xβ) ∈ V for each α ≥ α0
and β ≥ α0 so that

(Tα − Tβ)(U) = (xα − xβ)U ⊆ VU ⊆ VW.

Therefore, it converges to some T ∈ Homcr(X). Thus, it is pointwise convergent so that xα → T(1), as
claimed.

Theorem 3.4. Suppose X is a topological ring with unity. Then, Hombr(X) is complete if and only if so is X.
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Proof. Suppose X is complete and (Tα) is a Cauchy net of br-bounded group homomorphisms on X. Assume
that W is an arbitrary zero neighborhood in X and fix x ∈ X which is certainly bounded. There is an α0
such that (Tα − Tβ)(x) ∈W for each α ≥ α0 and β ≥ α0. Thus, (Tα(x)) is a Cauchy net in X so that convergent.
Suppose Tα(x)→ αx ∈ X. Define T : X→ X via T(x) = αx. Since this convergence holds in Hombr(X), by [10,
Proposition 2.2], T is also br-bounded.

For the converse, assume that Hombr(X) is complete and (xα) is a Cauchy net in X. Suppose W is an
arbitrary zero neighborhood in X. Define Tα : X → X via Tα(x) = xαx. It can be verified that each Tα is a
br-bounded group homomorphism. Furthermore, (Tα) is a Cauchy net in Hombr(X); for a fixed bounded
set B ⊆ X, there is a zero neighborhood V with VB ⊆ W. Choose index α0 such that (xα − xβ) ∈ V for each
α ≥ α0 and β ≥ α0 so that

(Tα − Tβ)(B) = (xα − xβ)B ⊆ VB ⊆W.

Therefore, it converges to some T ∈ Hombr(X). Thus, it is pointwise convergent so that xα → T(1), as
desired.

Corollary 3.5. Suppose X is a topological ring with unity. Then, Hombr(X) is complete if and only if so is Homcr(X).

Remark 3.6. As opposed to the preceding cases, Homnr(X) does not behave well for completeness, in
general. Consider [10, Remark 2.2] for more details. Furthermore, we do not know if being unital is an
essential assumption for Theorem 3.3 and Theorem 3.4.

Finally, we proceed with an affirmative answer for completeness of Homnr(X). First, we have the
following fact.

Proposition 3.7. Suppose X is a topological ring whose topological group is locally bounded. If (Tα) is a net of
nr-bounded group homomorphisms which is convergent uniformly on a zero neighborhood U ⊆ X to a homomorphism
T. Then T is also nr-bounded.

Proof. Assume that W is an arbitrary neighborhood in X. There are a neighborhood V with V + V ⊆W and
a neighborhood V1 such that V1V1 ⊆ V. Find an α0 such that (Tα−T)(U) ⊆ V1 for each α ≥ α0. Fix an α ≥ α0.
There is a neighborhood U1 such that Tα(U1) is bounded in X. Since U is bounded, there is an n ∈ N with
U ⊆ nU1 so that Tα(U) ⊆ nTα(U1). Observe that by hypothesis, nTα(U1) is bounded in X. So, there is a zero
neighborhood V0 such that V0 ⊆ V1 and V0nTα(U1) ⊆ V. Therefore,

V0T(U) ⊆ V0Tα(U) + V0V1 ⊆ V0nTα(U1) + V1V1 ⊆ V + V ⊆W.

Now, we consider a completeness characterization for Homnr(X).

Theorem 3.8. Suppose X is a topological ring whose topological group is locally bounded. Then Homnr(X) is complete
if and only if so is X.

Proof. Suppose X is complete and (Tα) is a net which is uniformly Cauchy on some zero neighborhood
U ⊆ X of nr-bounded group homomorphisms. Assume that W is an arbitrary zero neighborhood in X.
There is an α0 such that (Tα − Tβ)(U) ⊆ W for each α ≥ α0 and β ≥ α0. Thus, for each x ∈ U, (Tα(x)) is a
Cauchy net in X so that convergent. Fix any x ∈ X. There is a positive integer n such that x = ny for some
y ∈ U. This means that Tα(x) is also Cauchy so that convergent. Suppose Tα(x)→ αx ∈ X. Define T : X→ X
via T(x) = αx. Since this convergence holds in Homnr(X), by Proposition 3.7, T is also nr-bounded.

For the converse, assume that Homnr(X) is complete and (xα) is a Cauchy net in X. Suppose W is an
arbitrary zero neighborhood in X. Define Tα : X → X via Tα(x) = xαx. It can be verified that each Tα is an
nr-bounded group homomorphism. Furthermore, (Tα) is a Cauchy net in Homnr(X); by assumption, there
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is a zero neighborhood U which is bounded. So, there exists a zero neighborhood V with VU ⊆W. Choose
index α0 such that (xα − xβ) ∈ V for each α ≥ α0 and β ≥ α0 so that

(U) = (xα − xβ)U ⊆ VU ⊆W.

Therefore, it converges to some T ∈ Homnr(X). Thus, it is pointwise convergent so that xα → T(1). This
would complete the proof.

Observe that local boundedness is an essential hypothesis for Theorem 3.8 and can not be removed;
consider X = RNwith the product topology and coordinate-wise multiplication. It is a complete topological
ring which is not locally bounded. We have seen in [10, Remark 2.2] that Homnr(X) is not complete.
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