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Abstract. In this paper, a new open-loop PD2Dα type a fractional order iterative learning control (ILC) is
studied for joint space trajectory tracking control of a linearized uncertain robotic arm. The robust conver-
gent analysis of the tracking errors has been done in time domain where it is theoretically proven that the
boundednesses of the tracking error are guaranteed in the presence of model uncertainty. The convergence
of the proposed open-loop ILC law is proven mathematically using Gronwall integral inequality for a
linearized robotic system and sufficient conditions for convergence and robustness are obtained.

1. INTRODUCTION

The science of robotics has grown tremendously over the past twenty years, fueled by rapid advances
in computer and sensor technology, as well as theoretical advances in control theory, [1]. At present time,
the vast majority of robot applications deal with industrial robot arms operating in factory environments.
Robots are being deployed to accomplish tasks having strict requirements of accuracy, precision, repeata-
bility, mass production and quality in addition to ease of human effort and cost-effectiveness, [2]. The
investigation into the modeling of the dynamics and control of the robotic systems and mechanisms has
been an active topic of research which is stimulated by the different applications and by the increasing
demand for better performance of robotic systems, [3].

Taking advantage of the fact that robot manipulators are generally used in repetitive tasks, iterative
learning control (ILC) schemes [4-7] have been proposed for robot manipulators in the past three decades
to enhance the tracking accuracy from operation to operation for given systems. Also, various version
ILC strategies are proposed for different type dynamical systems [8-12] that utilize given objective systems
data and past information in the form of repetitions to track a reference trajectory over finite time intervals
without detail modeling. The basic idea of ILC is to improve the current tracking performance by fully
taking advantage of the past control experience. Since the structure of ILC can be viewed as a feedforward
control methodology in the time domain and it is simple and easy to implement, the ILC method is suitable
for designing a nonlinear tracking control system [13,14]. Also, many classical ILC algorithms have a
restriction that involves the assumption that the coupling matrix [CB] has a full-column rank where B
denotes the control matrix and C denotes the output matrix of state space for the linearized system. To
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overcome this lack, we introduced [14], open-closed ILC PIDD2/PID type which successfully resolves this
drawback.

Recently, increasing attention is dedicated to fractional differential equations and their applications
in various science and engineering fields [15-17]. Moreover, increasing attention has been dedicated to
fractional calculus (FC) and its application in the control and modeling of fractional-order systems [18-20].

Also, the application of ILC to the fractional-order system has become a new topic, [21-27] it does not
only retains the advantages of the classical ILC, but also offers potential for better performances in a variety
of complex physical processes. For example, a fractional-order D-type ILC algorithm was proposed in the
frequency domain [21], and PDα type ILC in the time domain [22]. Most of the existing fractional-order
ILC (FOILC) methods for fractional-order systems only focus on the regular and a few singular systems of
fractional order.

On the other hand, in many practical robotic control applications, the robotic systems can be presented
as nonlinear or linearized integer order dynamic systems. So, there is a difficulty to apply fractional order
ILC scheme to integer order system. Recently, authors [28] proposed PDα type FOILC schemes for already
obtained integer-order model (given as linear time-varying mechanical system) which is more practical
for control practice. Motivated by the search for new FOILC law and their application to mechanical
systems, the new open-loop PD2Dα-type FOILC law for a class of linearized robotic systems is suggested.
Particularly, term D2 in the proposed FOILC serves to overcome well-known restriction the coupling matrix
[CB] = 0 for a linear or linearized system [29], [30]. Sufficient conditions are derived in the time domain
which are our main contributions. Consequently, one may conclude proposed FOILC type is good basis
for further real-time robot control application.

”Preliminaries” section presents some of the norms and definitions of fractional derivative that are consid-
ered in this contribution. In ”Main results” section, first problem formulation is stated and then convergence
results for the proposed open-loop PD2Dα-type learning law are given. Finally, the ”Conclusion” section
concludes this contribution.

2. PRELIMINARIES

2.1. Notations, the λ-norm
In this paper, the following norms are adopted [6] for n -dimensional Euclidean space Rn : sup-norm

‖x‖∞ = sup
1≤i≤n

|xi| , x = [x1, x2, . . . , xn]T matrix norm as ‖A‖∞ = max
1≤i≤m

(
n∑

j=1

|ai j|) , A = [ai j]m×n where ‖A‖∞ denotes

the infinite norm of a matrix. Particularly, the standard λ -norm for a real function 1(t), (t ∈ [0,T]), 1 :
[0,T]→ Rn is defined as:

‖1(t)‖λ = sup
t∈[0,T]

e−λt
‖1(t)‖, λ > 0 (1)

Especially when is norm ‖(.)‖∞ , it follows ‖Ax‖∞ ≤ ‖A‖∞‖x‖∞. Also, for the previous norms, one can
easily prove that the λ-norm is equivalent to the∞ -norm.

(i) Property 1: λ norm has the next property

sup
t∈[0,T]

e−λt
∫ t

0
‖1(.)‖ea(t−τ)dτ = sup

t∈[0,T]

∫ t

0
e−λteλτea(t−τ)e−λτ‖1(.)‖τdτ

≤ ‖1(.)‖λ sup
t∈[0,T]

∫ t

0
e(a−λ)(t−τ)dτ ≤ ‖1(.)‖λ

1 − e−(a−λ)T

λ − a
≤

1
λ − a

‖1(.)‖λ

(2)

Before presenting the main results, we first introduce the following Lemma 2.1 [6].

Lemma 2.1. [6] Suppose a real positive series {qk}
∞

1 satisfies

qk ≤ ρqk−1 + ε̃ (3)
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where ρ ≥ 0, ε̃ > 0 and p < 1. Then the following holds:

lim
k→∞

qk ≤ ε̃/(1 − ρ) (4)

One can notice that in case of ε̃ = 0, lim
k→∞

qk → 0.

Lemma 2.2. (Bellman-Gronwall inequality) [31] Let f1(t), 11(t) , and h1(t) be nonnegative continuous functions
in the interval [0,T]. Moreover, if there is a nonnegative constant a such that left inequality holds, then the right
inequality also holds.

f (t) ≤ h(t) +

∫ t

0
a f (τ)dτ +

∫ t

0
1(τ)dτ,⇒ f (t) ≤ h(t) +

∫ t

0
exp(a · (t − τ))[ah(τ) + 1(τ)]dτ (5)

2.2. Preliminary notes on fractional calculus
The theory of fractional order calculus can be traced back to 300 years ago, and now, it plays role in

modern science particularly in the field of control engineering [16,32]. In the present section, we shortly
review some basic definitions and properties of Riemann-Liouville (RL) and Caputo fractional operators
[16,17]. Let f (.) ∈ AC[a, b] be a continuous function over the finite interval [a, b] having the first derivative
almost everywhere in [a, b] , being integrable, that is, it is in L1[a, b]. Also, the space ACm([a, b])is the space
of functions with continuous m − 1 derivatives on [a, b] , and m-th derivative in L1[a, b]. The definition of
RL fractional integral of order µ is described by:

aIµt f (t) =a D−µt f (t) =
1

Γ(µ)

∫ t

a
(t − τ)µ−1 f (τ)dτ, µ ∈ R+ (6)

where Γ(.) is the well-known Euler’s gamma function, which is defined by Γ(z) =

∫
∞

0
e−ztz−1dt. The RL

operator aIµt (.) possesses the semigroup property, i.e. aIµt ·a Iξt =a Iµ+ξ
t The RL derivative of the fractional

order µ of a function f (t) is given as

RL
a Dµ

t f (t) = Dn(aI−(n−µ)
t f (t)) =

dn

dtn (aI−(n−µ)
t f (t)) =

1
Γ(n − µ)

dn

dtn [
∫ t

a
(t − τ)n−µ−1 f (τ)dτ], (7)

where n − 1 ≤ µ < n ∈ Z+ and Dn(.) = dn(.)/dtn,n ∈ N is the classical n-order derivative. If we introduce
n = [µ] ∈Nwhich stands for integer part of µ , and α = (µ−[µ]) ∈ (0, 1) it follows next form for RL fractional
order:

RL
a Dµ

t f (t) =RL
a D[µ]+α

t f (t) =RL
a Dn+α

t f (t) =
dn+1

dtn+1 (aI−(1−α)
t f (t)) (8)

Also, the definition of Caputo derivative of fractional order µ is introduced [16,17] as follows:

C
a Dµ

t f (t) =a Dµ−n
t Dn f (t) =a In−µ

t ( f (n)(t)) =
1

Γ(n − µ)

∫ t

a
(t − τ)n−µ−1 f (n)(τ)dτ, (9)

where n − 1 < µ < n ∈ Z+ . Also, we have:

C
a Dµ

t f (t) =a Dµ−[µ]−1
t D[µ]+1 f (t) =a In+1−µ

t ( f (n+1)(t)) =a I1−α
t ( f (n+1)(t)) (10)

In this case n = 1 , for 0 ≤ α < 1 we obtain:

RL
a Dα

t f (t) =
1

Γ(1 − α)
d
dt

[
∫ t

a
(t − τ)−α f (τ)dτ, ]

C
a Dα

t f (t) =
1

Γ(1 − α)
[
∫ t

a
(t − τ)−α

d f (τ)
dt

dτ, ]
(11)
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In the following sections, Dα will denote CDα
t , RLDα

t
C
toDα

t for the brevity of notation. If f (0) = 0 , we can
easily prove that in case a = t0 it yields:

t0D−αt (t0 Dα
t f (t)) = f (t) (12)

3. MAIN RESULTS

3.1. Problem formulation
It is well known that many different schemes of robot control exist in literature. Here we consider

robot arm control, where dynamics of our robot can be obtained using the procedure for symbolic form
computation of the complete dynamics of a robotic system with kinematic chain structures based on the
Rodriquez approach, [33]. Differential equations of a robotic system can be presented in the covariant form
of Lagrange equations with corresponding external generalized forces. Moreover, the robot arm dynamics
can be obtained in compact form as:

a(q)q̈ + (N(q, q̇) −Q1) = a(q)q̈ + n(q, q̇) = Qm (13)

where a(q) = [aαβ] ∈ Rnxn denotes inertia matrix, N(q, q̇) is the matrix that includes centrifugal and Coriolis
effects, and Q1 and Qm = U are gravity term and motor torque vectors, respectively [2]. Here, a model
based fractional order control scheme is introduced and implemented, which includes the application of
the feedback linearization technique [34]. As result one can linearize the dynamics of robot as

q̈(t) = u(t) (14)

where u(t)is the new control signal, or in the case of the existence of the model uncertainty η = η(t) , we
have:

q̈(t) = u(t) + η(t) (15)

or in state-space

ẋ(t) = Ax(t) + Bu(t) + Dη(t) ,A =

[
0 I
0 0

]
2nx2n

,B = D =

[
0
I

]
2nx2n

(16)

y(t) = Cx(t) =
[
I 0
]

nx2n
· x(t) (17)

We introduce the following assumptions:

A1. The desired trajectories yd(t) , xd(t) are continuously differentiable on [0,T] Al is a reasonable assump-
tion that makes possible calculating ėi(t) = ẏd(t) − ẏi(t), ëi(t) = Cδẍi(t) = C(ẍd(t) − ẍi(t)), eαi (t) = Cδeαi (t).

A2. The system (16), (17) is causal. Specifically, the existence of unique bounded control input ud(t) and
xd(t) makes the output of the system (17) to be ud(t) , i.e.

ẋd(t) = Axd(t) + Bud(t), (18)

yd(t) = Cxd(t), (19)

A3. The initial resetting conditions hold for all iterations, i.e.

xi(0) = xd(0), i = 0, 1, 2 . . . , (20)

Assumption A3. restricts the initial states or the initial outputs in each repetition operation should be
equal with the desired initial ones so one can achieve a perfect tracking, from the beginning demands
the perfect initial condition, that is, ∀i, δxi(0) = xd(0)−xi(0) = 0, ei(0) = yd(0)− yi(0) = 0. Many practical
control problems require such a perfect tracking over the entire transient period including the initial
one.
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A4. The uncertainty ηi(t) ∈ Rn, is uniformly bounded. In the sequel, we use positive constant dη , to denote
the upper bounds for ηi(t) , i.e, ∀t ∈ [0,T] and ∀i→ ‖ηi(t)‖ ≤ dη Assumption 4. puts the boundedness
restrictions of the ηi(t) on given time interval ∀t ∈ [0,T]. Based on contraction mapping, all existing
ILC methods require Assumption 4. The reason is as follows. ILC methodology tries to use as little
system prior knowledge as possible in its design, and the lack of such system knowledge, however,
gives rise to a difficulty in designing a suitable (stable) closed-loop controller.

3.2. Convergence results

3.2.1. Open-loop PD2Dα learning law
As we stated previously, many ILC laws have a restriction which involves the assumption that the

coupling matrix [CB] has a full-column rank where B denotes the control matrix and C denotes the output
matrix of state space for the linearized system (18),(19). To resolve this drawback, as well as improving
the performance of robot control taking into account the properties of fractional operators we consider the
following open-loop PD2Dα learning law, see Figure 1:

ui+1(t) = ui(t) + Γ1ëi(t) + R1ei(t) + R2e(α)
i (t) (21)

where ei(t) = yd(t) − yi(t) is the trajectory tracking error in i − th iteration, ei+1(t) = yd(t) − yi+1(t) is the
trajectory tracking error in i + 1 − th iteration. r1 , R1,R2 ∈ Rnxn denote open-closed-loop positive-definite
diagonal learning matrices ,i.e. R(.) = dia1(r(.)1, r(.)2, . . . , r(.)n),Γ(.) = dia1(1(.)1, 1(.)2, . . . , 1(.)n) .

Lemma 3.1. For the system (16), (17) and the reference system (18), (19) then there exists a sufficient large λ
satisfying

‖δx(α)
i (t)‖λ ≤ ρ′0‖δui(t)‖λ + εη (22)

where o(λ−1) =
(1 − e−λT)

λ
≤

1
λ

and ρ′0 = ρ0 + h0o(λ−1), εη = (h1 + h2T)dη , ρ0 , h0 , h1 , h2 , dη some positive
constants.

Figure 1: Block diagram of the open-loop PD2Dα law for the robot control
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Proof.
We can obtain the solution of equation (17), that is, the state response xi(t) is expressed by

xi(t) = Φ(t)xi(0) +

∫ t

0
Φ(t − τ)Bui(τ)dτ +

∫ t

0
Φ(t − τ)Dηi(τ)dτ

= 1i(t) +

∫ t

0
Φ(t − τ)Bui(τ)dτ +

∫ t

0
Φ(t − τ)Dηi(τ)dτ

(23)

as well as output response yi(t)

yi(t) = Cxi(t) (24)

Where 1i(t) ∈ Rr and Φ(t − τ) ∈ Rrxr are continuously differentiable in t and τ, and xi(0) is an initial
condition of state variable xi(t) for the i-th iteration. In similar manner, we have solution for the equation
(18),

xd(t) = 1d(t) +

∫ t

0
Φ(t − τ)Bud(τ)dτ (25)

Applying α-th order fractional derivative to the (25), (27) we obtain:

x(α)
d (t) = 1(α)

d (t) + lim
τ→t−0

[τDα−1
t Φ(t − τ)Bud(τ)] −

∫ t

0
τDα

t Φ(t − τ)Bud(τ)dτ (26)

Let

δxi = xd(t) − xi(t), δẋi = ẋd(t) − ẋi(t)
δui = ud(t) − ui(t), δu̇i = u̇d(t) − u̇i(t)

(27)

Dα(δxi(t)) = δx(α)
i = x(α)

d (t) − x(α)
i (t) (28)

Also, it follows from (26)-(28) it yields, [35]:

δx(α)
i (t) = x(α)

d (t) − x(α)
i (t) = 1(α)

d (t) − 1(α)
i (t) + lim

τ→t−0
[τDα−1

t Φ(t − τ)Bud(τ)]−

lim
τ→t−0

[τDα−1
t Φ(t − τ)Bui(τ)] +

∫ t

τ
τDα

t Φ(t − τ)Bud(τ)dτ −
∫ t

τ
τDα

t Φ(t − τ)Bui(τ)dτ

− lim
τ→t−0

[τDα−1
t Φ(t − τ)Dηi(τ)] −

∫ t

0
τDα

t Φ(t − τ)Dηi(τ)dτ

(29)

Taking into account assumption A3, it follows:

1
(α)
d (t) − 1(α)

i (t) = 0. (30)

Hence, expression (29) takes the form:

δx(α)
i (t) = τDα−1

t (Φ(t − τ))B|τ=tδui(t) +

∫ t

0
τDαΦ(t − τ)Bδui(τ)dτ

−[τDα−1
t Φ(t − τ)Dηi(τ)|τ=t] −

∫ t

0
τDαΦ(t − τ)Dηi(τ)dτ

(31)
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Taking λ− norm of (31) it yields:

‖δx(α)
i (t)‖λ ≤ sup

0≤t≤T
‖τDα−1

t Φ(t − τ)B|τ=t‖∞‖δui(t)‖λ + sup
0≤t,τ≤T

‖τDα
t Φ(t − τ)B‖∞

∫ t

0
e−λt
· ‖δui(τ)‖∞dτ

+ sup
0≤t≤T

‖τDα−1
t Φ(t − τ)D‖∞‖ηi(t)‖∞ + sup

0≤t,τ≤T
‖τDα

t Φ(t − τ)D‖∞

∫ t

0
e−λt
‖ηi(τ)‖∞dτ

‖δx(α)
i (t)‖λ ≤ sup

0≤t≤T
‖τDα−1

t Φ(t − τ)B|τ=t‖∞‖δui(t)‖λ

+ sup
0≤t,τ≤T

‖τDα
t Φ(t − τ)B‖∞

∫ t

0
e−λ(t−τ)

· sup
0≤τ≤T

e−λτ‖δui(τ)‖∞dτ

+ sup
0≤t≤T

‖τDα−1
t Φ(t − τ)D‖∞ · dη + sup

0≤t,τ≤T
‖τDα

t Φ(t − τ)D‖∞

∫ t

0
e−λtdηdτ

(32)

or

‖δxαi (t)‖λ ≤ ρ0‖δui(t)‖λ + h0 · ‖δui(τ)‖λ sup
0≤t≤T

∫ t

0
e−λ(t−τ)

· dτ + h1dη + h2dη · sup
0≤t≤T

∫ t

0
e−λtdτ

‖δxαi (t)‖λ ≤ ρ0‖δui(t)‖λ + h0‖δui(τ)‖λO(λ−1) + h1dη + h2dηT
(33)

where

ρ0 = sup
0≤t≤T

‖τDα−1
t Φ(t − τ)B|τ=t‖∞, h0 = sup

0≤t,τ≤T
‖τDα

t Φ(t − τ)B‖∞,

h1 = sup
0≤t≤T

‖τDα−1
t Φ(t − τ)D‖∞ , h2 = sup

0≤t,τ≤T
‖τDα

t Φ(t − τ)D‖∞

o(λ−1) =
(1 − e−λT)

λ
≤

1
λ
, ‖ηi(t)‖∞ ≤ dη

(34)

Thus, we have:

‖δxαi (t)‖λ ≤ ρ′0‖δui(t)‖λ + εη (35)

where

ρ0 = ρ0 + h0O(λ−1) , εη = (h1 + h2T)dη (36)

This completes the proof.
A sufficient condition for convergence of a proposed open-loop ILC is given by the Theorem 3.2 and

proved as follows.

Theorem 3.2. Considering system (16), (17) under assumptions A1-A4 . If

ρ + ρ̃0 < 1 (37)

where ρ = ‖(I − Γ1CAB)‖∞ , ρ̃0 = β3 · ρ0 = ‖R2C‖ · sup
0≤t≤T

‖τDα−1
t (Φ(t − τ)B|τ=t‖∞ , then, the open-loop PD2Dα

learning law (21) guarantees that when i → ∞ bounds of the tracking errors ‖xd(t) − xi(t)‖ , ‖yd(t) − yi(t)‖ , and

‖ud(t)−ui(t)‖ converge asymptotically into the specified bounds. The bounds ε̃x, ε̃y, ε̃u are given by ε̃u =
1

1 − ρ̃
ε̃, ε̃x =

d1dηT + bO(λ−1
1 )

1
1 − ρ̃

ε̃ , ε̃y = c · ε̃x where ρ̃ = ρ + β3(ρ0 + h0O(λ−1)) + β1bO(λ−1
1 ) , ε̃ = β1d1dηT + β2dη + β3εη
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Proof: Note that the tracking error and its derivatives integer and fractional can be obtained:

ei = Cδxi , e(α)
i = Cδx(α)

i , ėi = Cδẋi = C(Aδxi + Bδui −Dη j)

ëi = Cδiẍi = CA2δxi + CABδui − CDη̇i − CADηi
(38)

According to the proposed ILC law (21), we obtain

δui+1(t) = ud(t) − ui+1(t) = δui(t) − Γ1ëi(t) − R1ei(t) − R2e(α)
i (t) (39)

Substituting (38) into (39) we can get

δui+1(t) = [I − Γ1CAB]δu j(t) − (Γ1CA2 + R1C)δxi(t) − R2Cδx(α)
i (t) + Γ1CADηi(t) + Γ1CDη̇i(t) (40)

One can observe, that in our case that the matrices CAB,CAD have a full column rank and the matrices
CB,CD have not a full column rank, ([C][B] = 0) , ([C][D] = 0) . From previous eq. (28), we get:

δui+1(t) = [I − Γ1CAB]δui(t) − (Γ1CA2 + R1C)δxi(t) − R2Cδx(α)
i (t) + Γ1CADηi(t) (41)

Taking the standard norm for equation (41) and using the condition of Theorem 3.2 as well as assumption
A4 we have

‖δui+1(t)‖ ≤ ρ‖δui(t)‖ + ‖[Γ1CA2 + R1C]‖‖δxi(t)‖ + ‖Γ1CAD‖‖ηi(t)‖ + ‖R2C‖‖δx(α)
i (t)‖ (42)

Then we can arrive

‖δui+1(t)‖ ≤ ρ‖δui(t)‖ + β1‖δxi(t)‖ + β2dη + β3‖δx(α)
i (t)‖ (43)

where

β1 = ‖[Γ1CA2 + R1C]‖ , β2 = ‖Γ1CAD‖ , β3 = ‖R2C‖ (44)

Also, we have from (17) and (38)

δxi =

∫ t

0
(Aδxi(τ) + Bδui(τ) −Dηi(τ))dτ (45)

Taking the norm on the both sides of(33) it follows:

‖δxi‖ =

∫ t

0
(a‖δx(τ)‖ + b‖δui(τ)‖ + d1‖ηi(τ)‖µτ (46)

where a = ‖A‖ , b = ‖B‖ , d1 = ‖D‖. From assumption A4, we have:

d1

∫ t

0
(‖ηi(τ)‖ dτ ≤ d1 · dηT (47)

which implies that

‖δxi‖ ≤ d1dηT +

∫ t

0
(a‖δx(τ)‖ + b‖δui(τ)‖ dτ (48)

Applying the Bellman-Grownwall lemma [28], we obtain

‖δxi‖ ≤ d1dηTeat +

∫ t

0
ea(t−τ)b‖δui(τ)‖dτ (49)
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and multiplying the previous inequality by e−λt, λ > a and taking the λ-norm, we get

‖δxi‖λ ≤ d1dηT +
1 − e(a−λ)T

λ − a
b‖δui‖λ ≤ d1dηT + bo(λ−1

1 )‖δu j‖λ ,O(λ−1
1 ) =

1
λ − a

(50)

Taking into account (43), and applying the λ-norm, we have

‖δui+1(t)‖λ ≤ ρ‖δui(t)‖λ + β1‖δxi(t)‖λ + β2dη + β3‖δx(α)
i (t)‖λ (51)

Now, linking (22), (50) with (51), we can get

‖δui+1(t)‖λ ≤ ρ‖δui(t)‖λ + β1(d1dηT + bO(λ−1
1 )‖δui‖λ) + β2dη + β3(ρ′0 ‖δui(t)‖λ + εη) (52)

‖δui+1(t)‖λ ≤ ρ̃‖δui(t)‖λ + ε̃ (53)

where are

ρ̃ = ρ + β3(ρ0 + h0O(λ−1)) + β1bO(λ−1
1 ), ε̃ = β1d1dηT + β2dη + β3Eη (54)

Since ρ + β3ρ0 < 1 by assumption, it is possible to choose λ sufficiently large so that ρ̃ < 1. Therefore,
according to Lemma 2.1, it implies that:

lim
i→∞
‖δui‖λ ≤

1
1 − ρ̃

ε̃ = ε̃u (55)

Submitting eq. (55) into eq. (59), as well as into eq. (38) we have

lim
i→∞
‖δxi‖λ ≤ d1dηT + bO(λ−1

1 )(
1

1 − ρ̃
ε̃) = ε̃x,

lim
i→∞
‖ei‖λ ≤ c(d1dηT + bO(λ−1

1 )(
1

1 − ρ̃
ε̃)) = ε̃y

(56)

This concludes the proof.

Remark 3.3. In the case of without disturbance and uncertainty of the system, ξi(t) = 0, ηi(t) = 0. i.e dξ , dη , dηα
tend to zero, these bounds also tend to zero. Namely, one can obtain when i → ∞ the bounds of the tracking errors
‖xd(t) − xi(t)‖ , ‖yd(t) − yi(t)‖ , ‖ud(t) − ui(t)‖ , converge asymptotically to zero. Proof is similar with the proof of
Theorem 3.2, taking into account ξi(t) = 0, ηi(t) = 0 , i.e. ε = δ = 0.

lim
i→∞
‖δui‖λ = 0 (57)

According to the existence and uniqueness theorem of integer-order differential equation, it is obtained that

lim
i→∞

yi(t) = yd(t) (58)

4. Conclusion

In this article, we studied the tracking problem of the robotic arm via ILC. For the first time the open-loop
PD2Dα type fractional-order ILC law is proposed for a given linearized robotic arm. The proposed FOILC
scheme for the already obtained integer-order model of robotic arm is more practical for control practice. In
particular, the sufficient conditions for the robust convergence in time domain of the proposed FOILC were
defined, by the corresponding theorem, and proved. For analysis, it is found that the sufficient conditions
of convergence not only depend on all of system dynamics, but also rely on learning matrices.
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