

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Triple Reverse Order Law of Drazin Invertible Operators

Safae Alaoui Chrifia, Abdelaziz Tajmouatia

^aSidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar Al Mahraz, Laboratory of Mathematical Analysis and Applications, Fez, Morocco.

Abstract. In this paper we study the triple reverse-order law $(ABC)^D = C^D B^D A^D$ for the Drazin invertible operators A, B and C under the commutative relations [AB, B] = 0, [BC, B] = 0 and [AB, BC] = 0.

1. Introduction and preliminaries

Let X and Y be two infinite dimensional Banach spaces. Denote by $\mathcal{B}(X,Y)$ the Banach space of all bounded linear operators from X to Y. If X = Y, we will simply write $\mathcal{B}(X)$ instead of $\mathcal{B}(X,X)$. By N(T) and R(T), we denote the null space and the range of T, respectively. An operator $P \in \mathcal{B}(X)$ with the property $P^2 = P$ is called a projection. For any two operators $T, S \in \mathcal{B}(X)$, we define the commutator [T,S] to be TS - ST.

Recall that an operator $T \in \mathcal{B}(X)$ is Drazin invertible if there exists $S \in \mathcal{B}(X)$ that satisfies the following equations

$$TS = ST$$
, $S = STS$, $T^{k+1}S = T^k$. (1)

The third equation in (1) means that T - TST is nilpotent of index k, in this case we write $\operatorname{ind}(T) = k$. It is worth pointing out that the Drazin inverse S of T, when it exists, it is unique. In the sequel, S will be denoted by T^D .

It is also common to cite Koliha's paper [6] as the pioneering work on generalized Drazin inverses, his definition generalizes (1) by replacing the third equation with the assumption T - TST is quasi-nilpotent. Drazin invertible as well as generalized Drazin invertible operators have many suitable properties. Mainly, an operator $T \in \mathcal{B}(X)$ is Drazin invertible if and only if 0 is a pole of the resolvent and the spectral projection T^{π} of T corresponding to {0} is given by $T^{\pi} = I - TT^{D}$. It is extremely useful to mention that

$$X = N(T^{\pi}) \oplus R(T^{\pi}).$$

Consequently, $T = T_1 \oplus T_2$ with $T_1 = T_{N(T^{\pi})}$ is invertible and $T_2 = T_{R(T^{\pi})}$ is nilpotent.

Among other things, nilpotent operators of index n are Drazin invertible with $T^D = (T^D)^{n+1}T^n = 0$. Projections P are also Drazin invertible with $P^D = P$.

2010 Mathematics Subject Classification. Primary 15A09; Secondary 47A08

Keywords. Reverse order law, Drazin inverse, triple product, operator matrices.

Received: 29 February 2020; Revised: 27 September 2020; Accepted: 12 October 2020

Communicated by Dijana Mosić

Email addresses: safae.alaouichrifi@usmba.ac.ma (Safae Alaoui Chrifi), abdelaziz.tajmouati@usmba.ac.ma (Abdelaziz Tajmouati)

In the literature, it is a common knowledge that if $A, B \in \mathcal{B}(X)$ are invertible then AB is also invertible and $(AB)^{-1} = B^{-1}A^{-1}$, this is often known as the reverse order law for ordinary inverse. However, this rule is not well-adapted to other inverses, such as Drazin inverse. In fact, if A, B and AB are Drazin invertible $(AB)^D = B^DA^D$ is meaningless. This problem was a source of interesting research as operator theorists sought to determine exactly what properties A and B must possess in order to satisfy this equality. Among the many paper which featured the aforesaid problem are [9, 11] and [10]. One can find other related results for various inverses in [2-4] and references therein.

Let H be an infinite dimensional Hilbert space, by T^{\dagger} we denote the Moore-Penrose inverse of $T \in \mathcal{B}(H)$. With regard to the triple reverse order law for the Moore-Penrose inverses, the authors of [5] obtained necessary and sufficient conditions under which

$$(ABC)^{\dagger} = C^{\dagger}B^{\dagger}A^{\dagger}$$

where A, B, C and ABC are Hilbert space operators with closed ranges.

The issue to be discussed in this paper concerns some reverse order law for Drazin invertible operators A, B and C under the commutative relations [AB, B] = 0, [BC, B] = 0 and [AB, BC] = 0. In the light of these relations, we are interested in the relationship between A, B, C and A^D , B^D , C^D . Consequently, we provide some necessary and sufficient conditions for which

$$(BCAB)^D = B^D A^D C^D B^D.$$

Additionally, we obtain several triple reverse order law corresponding to $(ABC)^D$.

2. Preparations

We drawn particular attention in this paper to 2×2 operator matrices on the Banach space $X \oplus Y$ defined by

$$\begin{pmatrix} T_1 & T_2 \\ T_3 & T_4 \end{pmatrix}$$

where $T_1 \in \mathcal{B}(X)$, $T_2 \in \mathcal{B}(Y, X)$, $T_3 \in \mathcal{B}(X, Y)$ and $T_4 \in \mathcal{B}(Y)$. The important point to note here is that every bounded operator on $X \oplus Y$ has the aforementioned form.

We are now going to concern our self with operators $A, B, C \in \mathcal{B}(X)$. If B is Drazin invertible with ind(B) = n then the Banach space X obeys the following decomposition $X = N(B^{\pi}) \oplus R(B^{\pi})$ and A, B, C have these forms

$$A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}, \qquad B = \begin{pmatrix} B_1 & 0 \\ 0 & N_1 \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix}. \tag{2}$$

Such that $B_1 \in \mathcal{B}(N(B^{\pi}))$ is invertible, $N_1 \in \mathcal{B}(R(B^{\pi}))$ is nilpotent, $B^n = B_1^n \oplus 0$ and $B^D = B_1^{-1} \oplus 0$.

Before going any further we began by the following lemmas which have an adequate amount of properties required.

Lemma 2.1. [6, 11] $A, B, C, N \in \mathcal{B}(X)$, requiring N to be nilpotent of index n.

- (1) If [N, AN] = 0 then AN and NA are nilpotent with max $\{ind(NA), ind(AN)\} \le n$;
- (2) If [N, NC] = 0 then NC and CN are nilpotent with max $\{ind(NC), ind(CN)\} \le n$;
- (3) If A, B, C are Drazin invertible and $\{A, B, C\}$ are mutual-commutative then A, B, C, A^D , B^D and C^D are all commute with

$$(ABC)^D = A^D B^D C^D = C^D B^D A^D.$$

Lemma 2.2. [8] For $A \in \mathcal{B}(X)$, $B \in \mathcal{B}(Y,X)$, $C_1 \in \mathcal{B}(Y,X)$ and $C_2 \in \mathcal{B}(X,Y)$. We denote by

$$M_{C_1} = \begin{pmatrix} A & C_1 \\ 0 & B \end{pmatrix} \qquad M_{C_2} = \begin{pmatrix} A & 0 \\ C_2 & B \end{pmatrix}$$

where the two operators M_{C_1} and M_{C_2} are in $\mathcal{B}(X \oplus Y)$.

- (1) If two of M_{C_1} , A and B are Drazin invertible, then the third is also Drazin invertible;
- (2) If two of M_{C_2} , A and B are Drazin invertible, then the third is also Drazin invertible;
- (3) If A and B are Drazin invertible with ind(A) = s and ind(B) = t. Then

$$M_{C_1}^D = \begin{pmatrix} A^D & X \\ 0 & B^D \end{pmatrix} \qquad M_{C_2}^D = \begin{pmatrix} A^D & 0 \\ Y & B^D \end{pmatrix}$$

where

$$X = (A^{D})^{2} \left[\sum_{n=0}^{t-1} (A^{D})^{n} C_{1} B^{n} \right] B^{\pi} + A^{\pi} \left[\sum_{n=0}^{s-1} A^{n} C_{1} (B^{D})^{n} \right] (B^{D})^{2} - A^{D} C_{1} B^{D};$$

and

$$Y = (B^D)^2 \left[\sum_{n=0}^{s-1} (B^D)^n C_2 A^n \right] A^{\pi} + B^{\pi} \left[\sum_{n=0}^{t-1} B^n C_2 (A^D)^n \right] (A^D)^2 - B^D C_2 A^D.$$

Lemma 2.3. [7] Let $A, B \in \mathcal{B}(X)$. If AB is Drazin invertible then BA is also Drazin invertible. In this case:

$$(AB)^D = A((BA)^D)^2 B.$$

3. Main results

Let $A, B, C \in \mathcal{B}(X)$. Suppose that B is Drazin invertible having index n. First we assume that [B, AB] = 0, then $[B^n, AB] = 0$. From (2) it follows that

$$A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_4 \end{pmatrix} \qquad B = \begin{pmatrix} B_1 & 0 \\ 0 & N_1 \end{pmatrix} \quad \text{and} \quad AB = \begin{pmatrix} A_1 B_1 & 0 \\ 0 & A_4 N_1 \end{pmatrix}, \tag{3}$$

according to the Banach space decomposition $X = N(B^{\pi}) \oplus R(B^{\pi})$. This gives

$$[A_1, B_1] = 0,$$
 $[N_1, A_4N_1] = 0$ and $A_2N_1 = 0.$ (4)

We next suppose that [B, BC] = 0, thus $[B^n, BC] = 0$ with respect to (2)

$$B = \begin{pmatrix} B_1 & 0 \\ 0 & N_1 \end{pmatrix} \qquad C = \begin{pmatrix} C_1 & 0 \\ C_3 & C_4 \end{pmatrix} \quad \text{and} \quad BC = \begin{pmatrix} B_1 C_1 & 0 \\ 0 & N_1 C_4 \end{pmatrix}. \tag{5}$$

Continually on $X = N(B^{\pi}) \oplus R(B^{\pi})$. Hence:

$$[B_1, C_1] = 0,$$
 $[N_1, N_1C_4] = 0$ and $N_1C_3 = 0.$ (6)

We thus get $ABC = \begin{pmatrix} A_1B_1C_1 & 0 \\ 0 & A_4N_1C_4 \end{pmatrix}$.

To sharpen these forms we further assume that [AB, BC] = 0, then:

$$[A_1, C_1] = 0$$
 and $[A_4N_1, N_1C_4] = 0.$ (7)

This yields that A_1, B_1 and C_1 are pairwise commutative. Nevertheless A, B and C are not necessary commutative (e.g. $AC \neq CA$).

The following lemma is essential to prove certain results.

Lemma 3.1. *Let* A, C, $N \in \mathcal{B}(X)$, *where* N *is nilpotent.*

- (1) If [N, AN] = 0 and [AN, ANC] = 0 then CAN is also nilpotent;
- (2) If [N, NC] = 0 and [AN, NC] = 0 then NCA is also nilpotent;

(3) If [N, AN] = 0 (or, [N, NC] = 0) and [AN, NC] = 0 then ANC is also nilpotent.

Proof. (1) As N is nilpotent and [N, AN] = 0 we have AN is also nilpotent with index m (see Lemma 2.1). Further, by [AN, ANC] = 0, it is easily seen that $[(AN)^k, ANC] = 0$ for every $k \in \mathbb{N}$. Therefore:

$$(CAN)^{m} = (CAN)^{m-2}CANCAN = (CAN)^{m-2}CANANC$$

$$= (CAN)^{m-2}C(AN)^{2}C$$

$$= (CAN)^{m-3}CANC(AN)^{2}C$$

$$= (CAN)^{m-3}C(AN)^{3}C^{2}$$

$$= ...$$

$$= C(AN)^{m}C^{m-1}.$$

(2) From Lemma 2.1, NC is nilpotent having index n. It is clear that $[AN, (NC)^k] = 0$ and $[N, (NC)^k] = 0$ for every $k \in \mathbb{N}$, so:

$$(NCA)^{n} = NCANCA(NCA)^{n-2} = ANNCCA(NCA)^{n-2}$$

 $= ANCNCA(NCA)^{n-2}$
 $= A(NC)^{2}ANCA(NCA)^{n-3}$
 $= AAN(NC)^{2}CA(NCA)^{n-3}$
 $= A^{2}(NC)^{2}NCA(NCA)^{n-3}$
 $= A^{2}(NC)^{3}A(NCA)^{n-3}$
 $= ...$
 $= A^{n-1}(NC)^{n}A.$

(3) In the same way we have $[N, (AN)^k] = 0$ and $[(AN)^k, NC] = 0$ (or, $[N, (NC)^k] = 0$) and $[AN, (NC)^k] = 0$) for each $k \in \mathbb{N}$. Thus one can show that $(ANC)^m = (AN)^m C^m$ (or, $(ANC)^n = A^n (NC)^n$). □

We can now formulate our first main result.

Theorem 3.2. Let $A, B, C \in \mathcal{B}(X)$, B is Drazin invertible with B, AB and BC are all commute. Write

```
\mathcal{A} = \{ABC, BCA, CAB, ABCB, BCAB, ABCB^{D}, B^{D}ABC, ABB^{D}C, B^{D}CAB, BCAB^{D}, CABB^{D}, ABCBB^{D}, BB^{D}ABC\};
\mathcal{B} = \{B, B^{D}, BB^{D}, AB, BC, ABC, (ABC)^{D}, BB^{D}(ABC)^{D}, (ABC)^{D}BB^{D}\}.
```

- (1) If only one element of \mathcal{A} is Drazin invertible, then all elements of \mathcal{A} are Drazin invertible.
- (2) If only one element of \mathcal{A} is Drazin invertible, then all elements of \mathcal{B} commute.
- (3) If only one element of \mathcal{A} is Drazin invertible, then each of the following statements hold:

(*i*)

$$(ABC)^{D} = (ABC)^{D}BB^{D} = BB^{D}(ABC)^{D} = (ABCB^{D})^{D}B^{D} = B^{D}(ABCB^{D})^{D}$$

= $(B^{D}ABC)^{D}B^{D} = B^{D}(B^{D}ABC)^{D};$

- (ii) $ABC(ABB^DC)^{\pi}$ and $ABC (ABC)^2(B^DABC)^DB^D$ are nilpotent;
- $(iii) \ (B^DABC)^D = (ABC)^DB = B(ABC)^D;$
- (iv) $[(ABC)^DB, ABC(B)^D] = 0$;
- (v) $BB^{\pi}(ABC)^{D} = (ABC)^{D}BB^{\pi} = 0.$

Proof. (1) Formulas (3) and (5) provided the forms of A, B, C and ABC. Note that $\{A_1, B_1, C_1\}$ are mutually commutative, $[N_1, A_4N_1] = 0$, $[N_1, N_1C_4] = 0$ and $[A_4N_1, N_1C_4] = 0$. Hence, from Lemma 3.1 $A_4N_1C_4$ is nilpotent. Further

ABC is Drazin invertible \iff $A_1B_1C_1$ is Drazin invertible

$$\iff$$
 $A_1C_1 = (A_1B_1C_1)B_1^{-1}$ is Drazin invertible (since $[A_1B_1C_1, B_1^{-1}] = 0$).

Also, we have
$$CAB = \begin{pmatrix} C_1A_1B_1 & 0 \\ C_3A_1B_1 & C_4A_4N_1 \end{pmatrix}$$
, and $BCA = \begin{pmatrix} B_1C_1A_1 & B_1C_1A_2 \\ 0 & N_1C_4A_4 \end{pmatrix}$. By Lemma 3.1 $C_4A_4N_1$ and $N_1C_4A_4$ are nilpotent. Again, CAB and BCA are Drazin invertible if and only if

 C_1A_1 is Drazin invertible. In this case

$$(ABC)^{D} = \begin{pmatrix} (A_{1}C_{1})^{D}B_{1}^{-1} & 0 \\ 0 & 0 \end{pmatrix};$$

$$(CAB)^{D} = \begin{pmatrix} (A_{1}C_{1})^{D}B_{1}^{-1} & 0 \\ C_{3}A_{1}((A_{1}C_{1})^{D})^{2}B_{1}^{-1} & 0 \end{pmatrix};$$

$$(BCA)^{D} = \begin{pmatrix} (A_{1}C_{1})^{D}B_{1}^{-1} & C_{1}((A_{1}C_{1})^{D})^{2}B_{1}^{-1}A_{2} \\ 0 & 0 \end{pmatrix}.$$

We deduce that Drazin invertibility of each element of \mathcal{A} lies in Drazin invertibility of A_1C_1 .

(2) The set $\{B, AB, BC\}$ is commutative, then from (4), (6) and (7), the set $\{A_1, B_1, C_1\}$ is also commutative and $[N_1, A_4N_1] = [N_1, N_1C_4] = [A_4N_1, N_1C_4] = 0$. So clearly

$$N_1 A_4 N_1 C_4 = A_4 N_1 N_1 C_4 = A_4 N_1 C_4 N_1$$

that is $[N_1, A_4N_1C_4] = 0$ and, in consequence, [B, ABC] = 0. Similarly,

$$A_4N_1A_4N_1C_4 = A_4A_4N_1N_1C_4 = A_4N_1C_4A_4N_1$$

which means that $[A_4N_1C_4, A_4N_1] = 0$, hence [ABC, AB] = 0. Besides this, [ABC, BC] = 0 as well. On the other hand all the element of \mathcal{B} can be written as diagonal matrix forms, and this imply that all the elements of \mathcal{B} commute.

(3) Observe that, $ABCB^D = AB^DBC = ABB^DC$

$$ABCB^D = \begin{pmatrix} A_1C_1 & 0 \\ 0 & 0 \end{pmatrix} \qquad (ABCB^D)^D = \begin{pmatrix} (A_1C_1)^D & 0 \\ 0 & 0 \end{pmatrix}.$$

In addition, $ABC(ABB^DC)^{\pi} = \begin{pmatrix} A_1B_1C_1(A_1C_1)^{\pi} & 0 \\ 0 & A_4N_1C_4 \end{pmatrix}$ is nilpotent. Finally, we can verify by a simple computation the other equalities.

The following theorem gives a partial solution of the reverse order law for the triple product ABC.

Theorem 3.3. Let $A, B, C \in \mathcal{B}(X)$. If B, AB, BC, C are Drazin invertible and B, AB, BC are all commute, then ABCis Drazin invertible and the following reverse order laws conditions are equivalent.

- (i) $(ABC)^D = C^D(AB)^D$;
- (ii) $((AB)^DABC)^D = C^D(AB)^DAB$;
- (iii) $(ABC)^D AB = C^D (AB)^D AB$.

Proof. If *B* is Drazin invertible and {*B*, *AB*, *BC*} are mutually commutative, then by (3) and (5):

$$AB = \begin{pmatrix} A_1B_1 & 0 \\ 0 & A_4N_1 \end{pmatrix} \qquad C = \begin{pmatrix} C_1 & 0 \\ C_3 & C_4 \end{pmatrix} \quad \text{and} \quad ABC = \begin{pmatrix} A_1B_1C_1 & 0 \\ 0 & A_4N_1C_4 \end{pmatrix}.$$

From the proof of [11, Theorem 3.1] AB is Drazin invertible if and only if A_1 is Drazin invertible. In this case

$$(AB)^D = \begin{pmatrix} A_1^D B_1^{-1} & 0 \\ 0 & 0 \end{pmatrix}.$$

Also the Drazin invertibility of BC implies that C_1 is Drazin invertible. Now since C and C_1 are Drazin invertible then by Lemma 2.2 C_4 is also Drazin invertible.

By assuming that $\operatorname{ind}(C_1) = s$ and $\operatorname{ind}(C_4) = t$, we can assert that $C^D = \begin{pmatrix} C_1^D & 0 \\ Y & C_4^D \end{pmatrix}$, where

$$Y = (C_4^D)^2 \left[\sum_{n=0}^{s-1} (C_4^D)^n C_3 C_1^n \right] C_1^n + C_4^n \left[\sum_{n=0}^{t-1} C_4^n C_3 (C_1^D)^n \right] (C_1^D)^2 - C_4^D C_3 C_1^D.$$

Also, from Lemma 3.1, $A_4N_1C_4$ is nilpotent $\{A_1, B_1, C_1\}$ are mutually commutative and A_1, B_1, C_1 are all Drazin invertible. Hence, ABC is also Drazin invertible and

$$(ABC)^D = \begin{pmatrix} A_1^D B_1^{-1} C_1^D & 0 \\ 0 & 0 \end{pmatrix}.$$

Now let's mention that

$$(AB)^D ABC = \begin{pmatrix} A_1^D B_1^{-1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A_1 B_1 C_1 & 0 \\ 0 & A_4 N_1 C_4 \end{pmatrix} = \begin{pmatrix} A_1^D A_1 C_1 & 0 \\ 0 & 0 \end{pmatrix},$$

$$((AB)^D ABC)^D = \begin{pmatrix} A_1^D A_1 C_1^D & 0 \\ 0 & 0 \end{pmatrix}, \text{ (since } [C_1, A_1 A_1^D] = 0 \text{ and } A_1 A_1^D \text{ is a projection)}$$

$$C^D (AB)^D = \begin{pmatrix} C_1^D & 0 \\ Y & C_4^D \end{pmatrix} \begin{pmatrix} A_1^D B_1^{-1} & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} C_1^D A_1^D B_1^{-1} & 0 \\ Y A_1^D B_1^{-1} & 0 \end{pmatrix},$$

$$C^D (AB)^D AB = \begin{pmatrix} C_1^D A_1^D A_1 & 0 \\ Y A_1^D A_1 & 0 \end{pmatrix}.$$

We can deduce that $(i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow YA_1^D = 0$. \square

A similar observation gives the following theorem and its proof will be omitted.

Theorem 3.4. Let $A, B, C \in \mathcal{B}(X)$. If A, B, AB, BC are Drazin invertible and B, AB, BC are all commute, then ABC is Drazin invertible and the following reverse order laws conditions are equivalent.

- (i) $(ABC)^D = (BC)^D A^D$;
- (ii) $(ABC(BC)^{D})^{D} = (BC)^{D}(BC)A^{D}$;
- (iii) $BC(ABC)^D = (BC)^D(BC)A^D$.

Theorem 3.5. Let $A, B, C \in \mathcal{B}(X)$. If A, B, C, AB, BC are Drazin invertible and B, AB, BC are all commute, then the following reverse order law conditions are equivalent:

- (i) $(BCAB)^D = B^D A^D C^D B^D$;
- (ii) $(ABB^DC)^D = BB^DA^DC^DB^DB$;
- (iii) $B(BCAB)^DB = BB^DA^DC^DB^DB$

Proof. The Drazin invertibility of *A*, *B*, *C*, *AB*, *BC* combined with the commutativity conditions of *B*, *AB*, *BC* provided the following matrix forms

$$A^{D} = \begin{pmatrix} A_1^D & X \\ 0 & A_4^D \end{pmatrix} \qquad C^{D} = \begin{pmatrix} C_1^D & 0 \\ Y & C_4^D \end{pmatrix}, \tag{8}$$

with

$$X = (A_1^D)^2 \left[\sum_{n=0}^{t_1-1} (A_1^D)^n A_2 A_4^n \right] A_4^{\pi} + A_1^{\pi} \left[\sum_{n=0}^{s_1-1} A_1^n A_2 (A_4^D)^n \right] (A_4^D)^2 - A_1^D A_2 A_4^D,$$

$$Y = (C_4^D)^2 \left[\sum_{n=0}^{s_2-1} (C_4^D)^n C_3 C_1^n \right] C_1^{\pi} + C_4^{\pi} \left[\sum_{n=0}^{t_2-1} C_4^n C_3 (C_1^D)^n \right] (C_1^D)^2 - C_4^D C_3 C_1^D.$$

Here $\operatorname{ind}(A_1) = s_1$, $\operatorname{ind}(A_4) = t_1$, $\operatorname{ind}(C_1) = s_2$ as well as $\operatorname{ind}(C_4) = t_2$. Also $BCAB = \begin{pmatrix} C_1(B_1)^2 A_1 & 0 \\ 0 & N_1 C_4 A_4 N_1 \end{pmatrix}$. Certainly, $N_1 C_4 A_4 N_1$ is nilpotent and $(BCAB)^D = \begin{pmatrix} C_1^D (B_1^{-1})^2 A_1^D & 0 \\ 0 & 0 \end{pmatrix}$. Moreover, $ABB^DC = \begin{pmatrix} A_1 C_1 & 0 \\ 0 & 0 \end{pmatrix}$ and $(ABB^DC)^D = \begin{pmatrix} A_1^D C_1^D & 0 \\ 0 & 0 \end{pmatrix}$. By a simple calculation, we can obtain the following:

$$\begin{split} B^DA^DC^DB^D &= \begin{pmatrix} A_1^D(B_1^{-1})^2C_1^D + B_1^{-1}XYB_1^{-1} & 0 \\ 0 & 0 \end{pmatrix}, \\ BB^DA^DC^DB^DB &= \begin{pmatrix} A_1^DC_1^D + XY & 0 \\ 0 & 0 \end{pmatrix}, \\ B(BCAB)^DB &= \begin{pmatrix} C_1^DA_1^D & 0 \\ 0 & 0 \end{pmatrix}. \end{split}$$

This gives the following equivalences (i) \iff (ii) \iff (iii) \iff XY = 0.

In the following theorem, we get a first glimpse of $(ABC)^D = C^D B^D A^D$.

Theorem 3.6. Let $A, B, C \in \mathcal{B}(X)$. If A, B, C, AB, BC are Drazin invertible and B, AB, BC are all commute, then ABB^D, B^DBC, ABC are all Drazin invertible. Furthermore, the following reverse order law conditions are equivalent:

- 1. $(ABC)^D = C^D B^D A^D$;
- 2. $C^{D}(AB)^{D} = C^{D}B^{D}A^{D} = (BC)^{D}A^{D}$:
- 3. $BB^{D}C^{D}B^{D}A^{D} = C^{D}B^{D}A^{D} = C^{D}B^{D}A^{D}BB^{D}$:
- 4. $(ABB^{D})^{D}B^{D}(B^{D}BC)^{D} = C^{D}B^{D}A^{D}$;
- 5. $A^DB^DBC^DB^DA^DABB^D = C^DB^DA^D$;
- 6. $B^{\pi}C^{D}B^{D}A^{D} = BB^{\pi}C^{D}B^{D}A^{D}$ and $C^{D}B^{D}A^{D}B^{\pi} = C^{D}B^{D}A^{D}B^{\pi}B$.

Proof. AB, BC and ABC have the matrix forms:

$$AB = \begin{pmatrix} A_1B_1 & 0 \\ 0 & A_4N_1 \end{pmatrix}, \quad BC = \begin{pmatrix} B_1C_1 & 0 \\ & N_1C_4 \end{pmatrix} \quad \text{and} \quad ABC = \begin{pmatrix} A_1B_1C_1 & 0 \\ 0 & A_4N_1C_4 \end{pmatrix}.$$

Of course, A_4N_1 , N_1C_4 and $A_4N_1C_4$ are nilpotent. Moreover, A and AB are Drazin invertible (*resp*, C and BC) then A_1 and A_4 (*resp*, C_1 and C_4) are Drazin invertible. Hence, it is easy to verify that ABC is Drazin invertible. In this case, we obtain

$$(AB)^D = \begin{pmatrix} A_1^D B_1^{-1} & 0 \\ 0 & 0 \end{pmatrix}, \qquad (BC)^D = \begin{pmatrix} B_1^{-1} C_1^D & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad (ABC)^D = \begin{pmatrix} A_1^D B_1^{-1} C_1^D & 0 \\ 0 & 0 \end{pmatrix}.$$

On the other hand A^D , C^D can be written as in (8). So we get

$$C^{D}B^{D}A^{D} = \begin{pmatrix} A_{1}^{D}B_{1}^{-1}C_{1}^{D} & C_{1}^{D}B_{1}^{-1}X \\ YB_{1}^{-1}A_{1}^{D} & YB_{1}^{-1}X \end{pmatrix}.$$

Equivalent conditions of
$$(ABC)^D = C^D B^D A^D$$
 are:
$$\begin{cases} C_1^D X &= 0 \\ Y A_1^D &= 0 \text{. Note that} \\ Y B_1^{-1} X &= 0 \end{cases}$$

$$C^D(AB)^D = C^D B^D A^D B B^D = \begin{pmatrix} C_1^D A_1^D B_1^{-1} & 0 \\ Y A_1^D B_1^{-1} & 0 \end{pmatrix},$$

and

$$(BC)^DA^D = BB^DC^DB^DA^D = \begin{pmatrix} B_1^{-1}C_1^DA_1^D & C_1^DB_1^{-1}X \\ 0 & 0 \end{pmatrix}.$$

Therefore, (2)
$$\iff$$
 $\begin{cases} C_1^D X = 0 \\ YA_1^D = 0 \end{cases}$. Also it is easy to show that $YB_1^{-1}X = 0$

$$(ABC)^D = (ABB^D)^D B^D (B^D BC)^D = A^D B^D B C^D B^D A^D A B B^D.$$

So, $(1) \iff (4) \iff (5)$. Finally,

$$\begin{split} B^{\pi}C^{D}B^{D}A^{D} &= \begin{pmatrix} 0 & 0 \\ \gamma B_{1}^{-1}A_{1}^{D} & \gamma B_{1}^{-1}X \end{pmatrix}, \\ C^{D}B^{D}A^{D}B^{\pi} &= \begin{pmatrix} 0 & C_{1}^{D}B_{1}^{-1}X \\ 0 & \gamma B_{1}^{-1}X \end{pmatrix}, \\ BB^{\pi}C^{D}B^{D}A^{D} &= \begin{pmatrix} 0 & 0 \\ N_{1}\gamma B_{1}^{-1}A_{1}^{D} & N_{1}\gamma B_{1}^{-1}X \end{pmatrix}, \\ C^{D}B^{D}A^{D}B^{\pi}B &= \begin{pmatrix} 0 & C_{1}^{D}B_{1}^{-1}XN_{1} \\ 0 & \gamma B_{1}^{-1}XN_{1} \end{pmatrix}. \end{split}$$

Thus, (6)
$$\iff$$

$$\begin{cases} (I - N_1)C_1^D B_1^{-1} X = 0 \\ Y B_1^{-1} A_1^D (I - N_1) = 0 \\ (I - N_1)Y B_1^{-1} X = 0 \end{cases}$$

$$\begin{cases} C_1^D X = 0 \\ Y A_1^D = 0. \quad B_1 \text{ and } I - N_1 \text{ are invertible (because } N_1 \text{ is } Y B_1^{-1} X = 0 \end{cases}$$

Inserting the revers order law of AB in Theorem3.3 yields the following corollary.

Corollary 3.7. Let $A, B, C \in \mathcal{B}(X)$ be such that A, B, C, AB, BC are Drazin invertible and B, AB, BC are all commute. If $(AB)^D = B^D A^D$ then the following reverse order law conditions are equivalent:

- (i) $(ABC)^D = C^D B^D A^D$;
- (ii) $((AB)^D ABC)^D = C^D B^D A^D AB;$ (iii) $(ABC)^D AB = C^D B^D A^D AB.$

Proof. The reverse order law condition $(AB)^D = B^D A^D$ is equivalent to X = 0. Thus $C^D B^D A^D = \begin{pmatrix} A_1^D B_1^{-1} C_1^D & 0 \\ Y B_1^{-1} A_1^D & 0 \end{pmatrix}$, and the equality $(ABC)^D = C^D B^D A^D$ is equivalent to $YA_1^D = 0$.

$$C^{D}B^{D}A^{D}AB = \begin{pmatrix} C_{1}^{D}A_{1}^{D}A_{1} & 0 \\ YA_{1}^{D}A_{1} & 0 \end{pmatrix}$$
 and $((AB)^{D}ABC)^{D} = \begin{pmatrix} A_{1}^{D}A_{1}C_{1}^{D} & 0 \\ 0 & 0 \end{pmatrix}$.

Hence,
$$((AB)^D ABC)^D = C^D B^D A^D AB \iff YA_1^D = 0$$
.
Also, $(ABC)^D AB = C^D B^D A^D AB \iff YA_1^D = 0$. Which complete the proof. \square

In a similar pattern using the reverse order law of BC in Theorem 3.4, we obtain:

Corollary 3.8. Let $A, B, C \in \mathcal{B}(X)$ be such that A, B, C, AB, BC are Drazin invertible and B, AB, BC are all commute. If $(BC)^D = C^DB^D$ then the following reverse order law conditions are equivalent:

- (i) $(ABC)^D = C^D B^D A^D$;
- (ii) $(ABC(BC)^D)^D = BCC^DB^DA^D$;
- (iii) $BC(ABC)^D = BCC^DB^DA^D$.

Acknowledgments We gratefully acknowledge the judicious comments and suggestions provided by the anonymous referees.

References

- [1] P. Aiena, Fredholm and local spectral theory II with application to Weyl-type theorems, Springer, 2018.
- [2] Dijana Mosić, Reverse order laws for the generalized Drazin inverse in Banach algebras, J. Math. Anal. Appl, 429 (2015) 461–477.
- [3] Dijana Mosić, Reverse order laws on the conditions of the commutativity up to a factor, RACSAM. 111 (2017) 685–695.
- [4] D.S. Djordjević, Unified approach to the reverse order rule for generalized inverses, Acta Sci. Math. (Szeged) 167 (2001) 761–776.
- [5] N.C. Dinčić, D.S. Djordjević, Hartwig's triple reverse order law revisited, Lin. Multi. Algebra 62 (2014) 918–924.
- [6] J.J. Koliha, A generalized Drazin inverse, Glasgow Math.J 38 (1996) 367-381.
- [7] Liao YH, Chen JL, Cui J, Cline's formula for the generalized Drazin inverse, B. Malays. Math. Sci. So 37 (2014) 37–42.
- [8] Meyer CD, Rose NJ, The Index and the Drazin Inverse of Block Triangular Matrices, SIAM. J.Appl. Math 33 (19777) 1-7.
- [9] H. Wang, J. Huang, Reverse Order Law of Drazin Inverse for Bounded Linear Operators, Filomat 32 (2018) 4857–4864.
- [10] H. Wang, J. Huang, Reverse Order Law for the Drazin Inverse in Banach Spaces, Bull. Iran. Math. Soc 45 (2019) 1443–1456.
- [11] X. N. Wang, A. Q. Yu, T. F. Li, C. Y. Deng, Reverse order laws for the Drazin inverses, J. Math. Anal. Appl 444 (2016) 672-689.