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Abstract. An operator T on a complex Hilbert spaceH is called complex symmetric if T has a symmetric
matrix representation relative to some orthonormal basis for H . This paper focuses on the perturbation
theory for the spectra of complex symmetric operators. We prove that each complex symmetric operator
on a complex separable Hilbert space has a small compact perturbation being complex symmetric and
having the single-valued extension property. Also it is proved that each complex symmetric operator on a
complex separable Hilbert space has a small compact perturbation being complex symmetric and satisfying
generalized Weyl’s theorem.

1. Introduction

Throughout this paper, H will always denote a complex separable infinite dimensional Hilbert space
endowed with an inner product 〈·, ·〉. We let B(H) denote the algebra of all bounded linear operators on
H . An operator T ∈ B(H) is said to be complex symmetric if there exists a conjugation C on H so that
CTC = T∗. Recall that a conjugate-linear map C onH is called a conjugation if C is invertible with C−1 = C
and 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H . The term “complex symmetric” stems from the fact that an operator
T ∈ B(H) is complex symmetric if and only if there exists an orthonormal basis {en} with respect to which T
admits a complex symmetric matrix representation, that is,

〈Tei, e j〉 = 〈Te j, ei〉 for all i, j.

We denote by S(H) the set of all complex symmetric operators onH .
The general study of complex symmetric operators was initiated by Garcia, Putinar and Wogen in

[13, 14], and has many motivations in function theory, matrix analysis and other areas. Normal operators,
Hankel operators, binormal operators and truncated Toeplitz operators are important examples of complex
symmetric operators. For more results concerning complex symmetric operators, the reader is referred to
[15, 16, 20, 25, 29, 32].

The aim of the present paper is to explore the perturbation theory for the spectra of complex symmetric
operators. This is inspired by a recent paper by S. Zhu [30], in which Weyl’s theorem for complex symmetric
operators was studied.
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1.1. Generalized Weyl’s theorem
For T ∈ B(H), we let σ(T) denote the spectrum of T. The Weyl spectrum of T is the set

σw(T) = ∩{σ(T + K) : K ∈ K (H)},

whereK (H) denotes the ideal of compact operators in B(H). We denote by σp(T) the point spectrum of T.
Denote by ker T and ran T the kernel of T and the range of T respectively. T is called a semi-Fredholm operator,
if ran T is closed and either nul T or nul T∗ is finite, where nul T := dim ker T and nul T∗ := dim ker T∗; in
this case, ind T := nul T − nul T∗ is called the index of T. In particular, if −∞ < ind T < ∞, then T is
called a Fredholm operator. It is well known that if T is semi-Fredholm and K ∈ K (H), then T + K is also
semi-Fredholm and ind(T + K) = ind T.

Given a subset σ of C, denote by iso σ the set of all isolated points of σ. For T ∈ B(H), we denote

π00(T) := {λ ∈ iso σ(T) : 0 < dim ker(λ − T) < ∞}.

If A ∈ B(H) is normal, a theorem of H. Weyl [27] states that σw(A) consists of all spectral points
except isolated eigenvalues of finite multiplicity, that is, σ(A) \ σw(A) = π00(A). Coburn [7] proved that
Weyl’s theorem holds for two classes of nonnormal operators, the hyponormal operators and the Toeplitz
operators. Inspired by the results, many works are devoted to the study of Weyl’s theorem for more classes
of operators, such as [2, 9, 10, 17]. In particular, it is proved in [23] that Weyl’s theorem holds for operators
in a dense subset of B(H). In a recent paper [30], S. Zhu proved that Weyl’s theorem holds for operators in
a dense subset of the set of complex symmetric operators onH . Inspired by these results, we wish to study
a variant of Weyl’s theorem for complex symmetric operators.

For T ∈ B(H) and a nonnegative integer n, define T[n] to be the restriction of T to ran Tn. If for some n
the range space ran Tn is closed and T[n] is a Fredholm operator, then T is called a B-Fredholm operator. In
this case, from [5, Proposition 2.1], T[m] is Fredholm and ind(T[m]) = ind(T[n]) for all m ≥ n. This enables
us to define the index of a B-Fredholm operator T as the index of the Fredholm operator T[n], where n
is any nonnegative integer such that ran Tn is closed and T[n] is Fredholm. T is called a B-Weyl operator
if it is a B-Fredholm operator of index 0. The B-Weyl spectrum of T, denoted by σBW(T), is defined as
{λ ∈ C : T − λ is not B-Weyl}. For more details, the reader is referred to [5].

Following Berkani and Koliha [4], we say that generalized Weyl’s theorem holds for T ∈ B(H), denoted
by T ∈ (gW), if there is the equality

σBW(T) = σ(T) \ E(T),

where E(T) := σp(T) ∩ iso σ(T). Operators satisfying generalized Weyl’s theorem always satisfy Weyl’s
theorem (see [4]).

The first result of this paper is the following theorem, which strengthens S. Zhu’s result in [30].

Theorem 1.1. Given a complex symmetric operator T on H and ε > 0, there exists K ∈ K (H) with ‖K‖ < ε such
that (a) T + K ∈ S(H), and (b) T + K ∈ (gW).

Here we provide an example of complex symmetric operator T for which Weyl’s theorem holds and
T < (gW).

Example 1.2. Let V be the classical Volterra integration operator onH := L2([0, 1]) defined by

(V f )(t) =

∫ t

0
f (s)ds, ∀t ∈ [0, 1].

Define a conjugation J on L2([0, 1]) as (J f )(t) = f (1 − t), ∀t ∈ [0, 1]. Then one can check that JVJ = V∗ and V is
complex symmetric. It is well known that σ(V) = {0} and σp(V) = ∅. Set

T =

[
V 0
0 0

]
H

H
.
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Clearly, V is complex symmetric. Also it is easy to check that σ(T) \ σw(T) = ∅ = π00(T). Thus Weyl’s theorem
holds for T. On the other hand, by [3, Thm. 4.2], we have σBW(T) = {0}. It follows that

σ(T) \ σBW(T) = ∅ , {0} = E(T).

The above example shows that Theorem 1.1 strengthens S. Zhu’s result in [30].

1.2. The single-valued extension property

The other aim of the present paper focuses on the single-valued extension property (SVEP, for short) of
complex symmetric operators.

Recall that an operator T on a complex Banach spaceX is said to have the single-valued extension property,
denoted by T ∈ (svep), if, for every open set U ⊆ C, the only analytic solution f (·) : U → X of the equation
(T − λ) f (λ) = 0 for all λ ∈ U is the zero function on U. Here C denotes the set of complex numbers. The
SVEP was introduced by N. Dunford in the study of spectral operators (see [11]).

The notion of SVEP plays a key role in the local spectra theory. In fact, given an operator T on X
and a vector x ∈ X, people are often interested in the existence and the uniqueness of analytic solution
f (·) : U→ X of the local resolvent equation

(T − λ) f (λ) = x

on suitable open subset U of C. Obviously, if T has SVEP, then the existence of analytic solution to any local
resolvent equation(related to T) implies the uniqueness of its analytic solution.

We notice that Jung, Ko and Lee [22] provided a sufficient condition for a complex symmetric operator
to have SVEP. There are some other works devoted to the stability of SVEP (see [1, 6, 31]). It was proved in
[31] that each operator in B(H) has a compact perturbation having SVEP.

The second result of this paper is the following theorem.

Theorem 1.3. Given T ∈ S(H) and ε > 0, there exists K ∈ K (H) with ‖K‖ < ε such that T + K ∈ S(H) and
T + K ∈ (svep).

Thus Theorem 1.3 is an analogue of the result of [31] in the setting of complex symmetric operators.
Also it is natural for one to ask whether S(H) has a dense subclass of operators having no SVEP. The

following result provides a positive answer.

Theorem 1.4. Given T ∈ S(H) and ε > 0, there exists E ∈ B(H) with ‖E‖ < ε such that T + E ∈ S(H) and
T + E < (svep).

In view of the result stated in Theorem 1.3, one may ask whether it can be required in addition that the
operator E in Theorem 1.4 satisfies E ∈ K (H). The answer is negative. In fact, if T = 0, then T is complex
symmetric and, by [31, Theorem 1.3], T + K ∈ (svep) for all K ∈ K (H). So the result of Theorem 1.4 is sharp.

The proof of Theorem 1.1 will be provided in Section 2. And Section 3 is devoted to the proofs of
Theorems 1.3 and 1.4.

2. Proof of Theorem 1.1

The aim of this section is to give the proof of Theorem 1.1.
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2.1. Preparation

In this subsection we make some preparation.
Throughout this paper, C and N denote the set of complex numbers and the set of natural numbers

respectively.
Let T ∈ B(H). The Wolf spectrum σlre(T) and the essential spectrum σe(T) of T are defined as

σlre(T) := {λ ∈ C : T − λ is not semi-Fredholm}

and

σe(T) := {λ ∈ C : T − λ is not Fredholm}

respectively. The set ρs−F(T) := C \ σlre(T) is called the semi-Fredholm domain of T.
Let T ∈ B(H). If σ is a clopen subset of σ(T), then there exists an analytic Cauchy domain Ω such that

σ ⊆ Ω and [σ(T) \ σ] ∩Ω = ∅. We let E(σ; T) denote the Riesz idempotent of T corresponding to σ, that is,

E(σ; T) =
1

2πi

∫
Γ

(λ − T)−1dλ,

where Γ = ∂Ω is positively oriented with respect to Ω in the sense of complex variable theory. In this case,
we denote H(σ; T) = ran E(σ; T). If λ ∈ iso σ(T), then {λ} is a clopen subset of σ(T) and we simply write
H(λ; T) instead of H({λ}; T); if, in addition, dimH(λ; T) < ∞, then λ is called a normal eigenvalue of T. A
normal eigenvalue of T is also called a Riesz point of T. The set of all normal eigenvalues of T will be denoted
by σ0(T).

We denote
ρ0

s−F(T) := {λ ∈ ρs−F(T) : ind(T − λ) = 0},

ρ+
s−F(T) := {λ ∈ ρs−F(T) : ind(T − λ) > 0}

and

ρ−s−F(T) := {λ ∈ ρs−F(T) : ind(T − λ) < 0}.

Obviously, ρs−F(T) = ρ−s−F(T) ∪ ρ0
s−F(T) ∪ ρ+

s−F(T).

Lemma 2.1 ([28, Cor. 3.2]). Let T ∈ B(H). If [σ(T) \ σw(T)] ⊂ σ0(T) and E(T) ⊂ σ0(T), then T ∈ (gW).

Lemma 2.2 ([21, Lemma 3.2.6]). Let T ∈ B(H) and suppose that ∅ , Γ ⊆ σlre(T). Then, given ε > 0, there exists
a compact operator K with ‖K‖ < ε such that

T + K =

[
N ∗

0 A

]
H1
H2
,

where N is a diagonal normal operator of uniformly infinite multiplicity, σ(N) = σlre(N) = Γ, σ(T) = σ(A), σlre(T) =
σlre(A) and ind(T − λ) = ind(A − λ) for all λ ∈ ρs−F(T).

Now we prove a key lemma.

Lemma 2.3. Let R ∈ B(H) and assume that σ(R) = σlre(R). Then, given ε > 0, there exists a compact operator K
with ‖K‖ < ε satisfying

(i) iso σ(R + K) ⊂ σ0(R + K), and
(ii) σ(R + K) = σlre(R + K) ∪ σ0(R + K).



Q. Bu, C. Wang / Filomat 35:1 (2021), 191–199 195

Proof. Without loss of generality, we assume that iso σ(R) , ∅ and iso σ(R) = {λ1, λ2, λ3, · · · }. It is clear that
{λ1, λ2, λ3, · · · } ⊂ σlre(R).

By Lemma 2.2, for given ε > 0, there exists a compact operator K1 with ‖K1‖ < ε/2 such that

R + K1 =


λ1I1 ∗

λ2I2 ∗

. . .
...
A


H1
H2
...
H0

,

whereH = ⊕∞i=0Hi, dimHi = ∞, Ii is the identity onHi (i ≥ 0), σ(R) = σ(A), σlre(R) = σlre(A) and ind(R−λ) =
ind(A − λ) for all λ ∈ ρs−F(R).

Since each λi is an isolated point of σ(R), we can find distinct {λi, j : i, j ≥ 1} ⊂ C \ σ(R) such that

|λi, j − λi| <
ε

2i+ j+2
.

For each i ≥ 1, assume that {ei, j}
∞

j=1 is an orthonormal basis ofHi. Define K2,i ∈ B(Hi) as

K2,i =

∞∑
j=1

(λi, j − λi)ei, j ⊗ ei, j

Then there exists a compact operator K2 with ‖K2‖ < ε/2 such that

R + K1 + K2 =


λ1I1 + K2,1 ∗

λ2I2 + K2,2 ∗

. . .
...
A


H1
H2
...
H0

.

Set K = K1 + K2. Then K is compact with ‖K‖ < ε/2.
Now it remains to check that R + K satisfies statements (i) and (ii).
Note that {λi : i ≥ 1} = iso σ(R) = iso σ(A), {λi, j : i, j ≥ 1} ∩ σ(A) = ∅ and

{λi : i, j ≥ 1} ⊂ {λi, j : i, j ≥ 1}− ⊂ {λi, j : i, j ≥ 1} ∪ σ(A).

It follows that
σ(R + K) = σ(R) ∪ {λi, j : i, j ≥ 1} = σ(A) ∪ {λi, j : i, j ≥ 1}.

Note that {λi, j : i, j ≥ 1} are pairwise distinct. It follows that {λi, j : i, j ≥ 1} ⊂ σ0(R + K). Since
σ(A) = σ(R) = σlre(R) = σlre(A) = σlre(R + K), it follows that σ0(R + K) = {λi, j : i, j ≥ 1}. Thus statement (ii)
holds.

On the other hand, if z ∈ iso σ(R + K), then either z ∈ iso σ0(R + K) or z ∈ iso σlre(R + K). In the former
case, we are done. In the latter case, we have z ∈ iso σlre(R) = iso σ(R). Hence z = λi for some i. Note that
λi, j ∈ σ(R + K) and λi, j → λi as j→∞. So λi is not an isolated point of σ(R + K), a contradiction. This proves
statement (i).

2.2. Proof of Theorem 1.1
We first introduce some useful lemmas.

Lemma 2.4 ([30, Prop. 2.7]). If T ∈ B(H) is complex symmetric, then, given ε > 0, there exists K ∈ K (H) with
‖K‖ < ε such that T + K is complex symmetric and σ(T + K) = σlre(T + K) ∪ σ0(T + K).

Recall that two operators Ai ∈ B(Hi)(i = 1, 2) are approximately unitarily equivalent, denoted as A1 �a A2,
if there exist unitary operators Un : H1 →H2 (n ≥ 1) such that UnA1U∗n → A2 as n→∞. By a consequence
of Voiculescu’s Theorem (see [26] or [8, Theorem 41.12]), if A1 �a A2, then, given ε > 0, there exists compact
K with ‖K‖ < ε such that A1 + K and A2 are unitarily equivalent.



Q. Bu, C. Wang / Filomat 35:1 (2021), 191–199 196

Lemma 2.5 ([24, Cor. 3.4]). If T ∈ B(H) is complex symmetric, then there exists a complex symmetric operator R
satisfying

(i) T �a T ⊕ R ⊕ R, and
(ii) σ(R) = σlre(R) = σlre(T).

Now we are going to prove Theorem 1.1.

Proof. [Proof of Theorem 1.1] In view of Lemma 2.4, we may directly assume that σ(T) = σlre(T) ∪ σ0(T).
By Lemma 2.5, there exists a complex symmetric operator R ∈ B(H) satisfying

(i) T �a R ⊕ T ⊕ R, and
(ii) σ(R) = σlre(R) = σlre(T).

We denote W = T ⊕ R ⊕ R. Then it suffices to prove the result for W.
Assume that C,C0 are two conjugations onH such that C0TC0 = T∗ and CRC = R∗. Write W = R⊕ T ⊕R

and set

D =

0 0 C
0 C0 0
C 0 0

 .
Then D is a conjugation onH (3) := H ⊕H ⊕H and DWD = W∗.

Now fix an ε > 0. In view of Lemma 2.3, we can find a compact operator K0 on H with ‖K0‖ < ε
satisfying

(iii) iso σ(R + K0) ⊂ σ0(R + K0), and
(iv) σ(R + K0) = σlre(R) ∪ σ0(R + K0).

Define a compact operator K onH (3) as

K =

K0 0 0
0 0 0
0 0 CK∗0C

 .
Then it is easy to see ‖K‖ < ε and DKD = K∗. So W + K is complex symmetric with respect to D and

W + K =

R + K0 0 0
0 T 0
0 0 R + CK∗0C

 .
It remains to check that W + K ∈ (gW).

The rest of the proof relies heavily on two claims.
Claim 1. [ρ−s−F(W + K) ∪ ρ0

s−F(W + K)] ∩ σp(W + K) = σ0(W + K).
The inclusion “⊃” is obvious.
“⊂”. Note that D(W + K − z)D = (W + K − z)∗ for z ∈ ρs−F(W + K). Thus ind(W + K − z) = 0 for all

z ∈ ρs−F(W+K), that is, ρs−F(W+K) = ρ0
s−F(W+K). Thus it suffices to proveρ0

s−F(W+K)∩σp(W+K) ⊂ σ0(W+K).
Assume that z ∈ ρ0

s−F(W + K) ∩ σp(W + K). In view of statements (ii), we have σlre(W + K) = σlre(T) =
σlre(R) = σlre(R + K0). Thus, by (ii), (iv) and the hypothesis, we have z ∈ σ0(R + K0) ∪ σ0(T). It follows
immediately that z ∈ σ0(W + K).

Claim 2. iso σ(W + K) ⊂ σ0(W + K).
Assume that λ ∈ iso σ(W + K). Note that σ(W + K) = σ(R + K0) ∪ σ(T). Thus the proof is divided into

two cses.
Case 1. λ ∈ σ(R + K0).
This means that λ ∈ iso σ(R + K0). In view of statement (iii), we have λ ∈ σ0(R + K0). Note that

σlre(T) = σlre(R) = σlre(R + K0). This means that λ < σlre(T). Recall that σ(T) = σlre(T) ∪ σ0(T). Then either
λ < σ(T) or λ ∈ σ0(T). Each of them implies λ ∈ σ0(W + K).
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Case 2. λ < σ(R + K0).
This implies that λ ∈ iso σ(T) and λ < σlre(R + K0) = σlre(T). Note that σ(T) = σlre(T) ∪ σ0(T). We obtain

λ ∈ σ0(T), which implies λ ∈ σ0(W + K). This proves Claim 2.
Now we shall show that W + K ∈ (gW).
One can easily check that σ(W + K) \ σw(W + K) = ρ0

s−F(W + K) ∩ σp(W + K). Thus Claim 1 implies that
[σ(W + K) \ σw(W + K)] ⊂ σ0(W + K). On the other hand, it follows from Claim 2 that E(W + K) ⊂ σ0(W + K).
In view of Lemma 2.1, we conclude that W + K ∈ (gW). Therefore the proof is complete.

3. Proofs of Theorems 1.3 and 1.4

Before we give the proofs of main results, we make some preparation.

Lemma 3.1 ([18, Theorem 6.1]). Let T ∈ B(H) with σ(T) = σlre(T). Then, given ε > 0, there exists K ∈ K (H)
with ‖K‖ < ε such that σp(T + K) = σp(T∗ + K∗) = ∅.

Lemma 3.2 ([24, Theorem 3.3]). If T ∈ B(H) is complex symmetric, then there exists a complex symmetric operator
R satisfying

(i) T �a T ⊕ R(∞), and
(ii) σ(R) = σlre(R) = σlre(T).

Proof. [Proof of Theorem 1.3] By Lemma 2.4, we may directly assume that σ(T) = σlre(T) ∪ σ0(T). So

σp(T) = σ0(T) ∪ [σp(T) ∩ σlre(T)].

If σp(T)∩ σlre(T) is finite or empty, then σp(T) is at most denumerable, from which it follows readily that
T satisfies SVEP. So, in the sequel, we assume that σp(T) ∩ σlre(T) is an infinite set.

Choose a countably infinite, dense subset {zn : n ≥ 1} of σp(T) ∩ σlre(T). Noting that σ0(T) ⊂ iso σ(T), it
follows that σp(T) \ {zn : n ≥ 1} has no interior point.

By Lemma 3.2, we can find a complex symmetric operator R satisfying

(i) T �a T ⊕ R(∞), and
(ii) σ(R) = σlre(R) = σlre(T).

It follows that T �a R(∞)
⊕ T ⊕ R(∞). So it suffices to prove that W := R(∞)

⊕ T ⊕ R(∞) has a small compact
perturbation being complex symmetric and satisfying SVEP.

We fix an ε > 0. Note that σ(R) = σlre(R). By Lemma 3.1, we can find for each n ≥ 1 an operator
Kn ∈ K (H) with ‖Kn‖ < ε

4n such that

σp(R + Kn) = σp(R∗ + K∗n) = ∅.

For each n ≥ 1, denote Rn = R + Kn. Thus σ(Rn) = σlre(Rn), n ≥ 1. Also we note that ran(Rn− zn) is not closed,
since zn ∈ σlre(T) = σlre(Rn) and Rn − zn is injective. Then, by [19, Lemma 2.1], there exists a subspace Mn of
H with dim Mn = ∞ such that Mn ∩ ran(Rn − zn) = {0}.

For each n ≥ 1, denoteKn = ker(T − zn). Since dim Mn = ∞, we can find En ∈ K (H) with ‖En‖ < ε
4n such

that En(Kn) ⊂Mn and ker En ∩Kn = {0}. Set

V =


R1 E1

R2 E2
R3 E3

. . .
...
T


H1
H2
H3
...
H0

,
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whereH0 = H1 = H2 = · · · = H . Clearly, V is a compact perturbation of R(∞)
⊕ T, since

V =


R

R
R

. . .
T


+


K1 E1

K2 E2
K3 E3

. . .
...
0


.

Claim. {zn : n ≥ 1} ∩ σp(V) = ∅.
Fix an n. Assume that x ∈ (⊕∞i=1Hi) ⊕ H0 such that (V − zn)x = 0. Thus there exists xi ∈ Hi such that

x = (x1, x2, x3, · · · , x0)t. Thus we have (T − zn)x0 = 0 and (Ri − zn)xi + Eix0 = 0 for i ≥ 1. So x0 ∈ Kn. For each
i ≥ 1, since Ei(Kn) ∩ ran(Ri − zn) = {0}, we obtain (Ri − zn)xi = Eix0 = 0. Recall that ker En ∩ Kn = {0} and
σp(Ri) = ∅. We deduce that x0 = 0 and xi = 0. Thus x = 0, which implies zn < σp(V). This proves Claim.

Denote

R̃ =


R1

R2
R3

. . .


H1
H2
H3
...

, Ẽ =


E1
E2
E3
...


H1
H2
H3
...

, C̃ =


C

C
C

. . .


H1
H2
H3
...

.

Then Ẽ : H0 → ⊕
∞

i=1Hi is a bounded linear operator, C̃ is a conjugation on ⊕∞i=1Hi and

V =

[
R̃ Ẽ
0 T

]
⊕
∞

i=1Hi
H0

.

Set

W0 =


R̃ Ẽ 0
0 T C0Ẽ∗C̃
0 0 C̃R̃∗C̃


⊕
∞

i=1Hi
H0
⊕
∞

i=1Hi

, D =

0 0 C̃
0 C0 0
C̃ 0 0

⊕
∞

i=1Hi
H0
⊕
∞

i=1Hi

(1)

Note that D is a conjugation and a straightforward calculation shows that DW0D = W∗. That is, W0 is
complex symmetric.

One can see that Ẽ is compact with ‖Ẽ‖ < ε/3. Also we compute to see

R̃ − R(∞) = ⊕∞i=1Ki, C̃R̃∗C̃ − R(∞) = ⊕∞i=1CK∗i C.

Then

W0 −W = W0 − R(∞)
⊕ T ⊕ R(∞) =


⊕
∞

i=1Ki Ẽ 0
0 0 C0Ẽ∗C̃
0 0 ⊕

∞

i=1CK∗i C

⊕
∞

i=1Hi
H0
⊕
∞

i=1Hi

is compact with norm less than ε, since⊕∞i=1Ki is compact with norm less than ε/4. Now, since W0 is complex
symmetric, it remains to check that W0 ∈ (svep).

Note that
σp(R̃) = ∪n≥1σp(Rn) = ∅ = ∪n≥1σp(R∗n) = σp(R̃∗).

Thus σp(C̃R̃∗C̃) = ∅. In view of (1), it follows that σp(W0) = σp(V) ⊂ σp(T). By the hypothesis σ(T) =
σ0(T) ∪ σlre(T), we have

σp(T) = σ0(T) ∪ [σp(T) ∩ σlre(T)].

By Claim, each zn does not lie in σp(V). Thus

σp(W0) ⊂ [σp(T) \ {zn : n ≥ 1}].

Noting that σp(T) \ {zn : n ≥ 1} has no interior point, so does σp(W0). Hence we conclude that W0 has
SVEP.
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The proof of Theorem 1.4 follows a similar line as that of [30, Theorem 1.5].

Proof. [Proof of Theorem 1.4] By the proof of [30, Theorem 1.5], for given ε > 0, we can find z0 ∈ C, δ > 0,
E ∈ B(H) with ‖E‖ < ε and an infinite-dimensional invariant subspace M of T + E such that T + E is complex
symmetric and

T + E =

[
z0 + δS∗ ∗

0 ∗

]
M

M⊥,

where S is the backward unilateral shift of multiplicity one on M. Since ρ+
s−F(S∗) = {z ∈ C : |z| < 1}, it follows

from [31, Theorem 1.1] or [12, Theorems 9/10] that S∗ < (svep). This implies T + E < (svep).
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