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General Viscosity Implicit Midpoint Rule For Nonexpansive Mapping
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Abstract. In this work, we suggest a general viscosity implicit midpoint rule for nonexpansive mapping
in the framework of Hilbert space. Further, under the certain conditions imposed on the sequence of
parameters, strong convergence theorem is proved by the sequence generated by the proposed iterative
scheme, which, in addition, is the unique solution of the variational inequality problem. Furthermore, we
provide some applications to variational inequalities, Fredholm integral equations, and nonlinear evolution
equations and give a numerical example to justify the main result. The results presented in this work may
be treated as an improvement, extension and refinement of some corresponding ones in the literature.

1. Introduction

Throughout the paper unless otherwise stated, H denotes a real Hilbert space, we denote the norm and
inner product of H by ‖ · ‖, and 〈., .〉 respectively. Let K be a nonempty, closed and convex subset of H.
Let {xn} be any sequence in H, then xn → x (respectively, xn ⇀ x) will denote strong (respectively, weak)
convergence of the sequence {xn}.

A mapping S : H→ H is said to be contraction mapping if there exists a constant α ∈ (0, 1) such that

‖Sx − Sy‖ ≤ α‖x − y‖,

for all x, y ∈ H. If α = 1 then S : H → H is said to be nonexpansive mapping i.e., ‖Sx − Sy‖ ≤ ‖x − y‖,
for all x, y ∈ H. We use Fix(S) to denote the set of fixed points of S. An operator B : H → H is said to be
strongly positive bounded linear operator, if there exists a constant γ̄ > 0 such that

〈Bx, x〉 ≥ γ̄‖x‖2, ∀x ∈ H.

The viscosity approximation method of selecting a particular fixed point of a given nonexpansive
mapping was proposed by Moudafi [1] in the framework of a Hilbert space, which generates the sequence
{xn} by the following iterative scheme:

xn+1 = αnQ(xn) + (1 − αn)Sxn, n ≥ 0, (1)
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where {αn} ⊂ [0, 1] and Q is a contraction mapping on H. Note that the iterative scheme (1) generalize
the results of Browder [2] and Halpern [3] in another direction. The convergence of the explicit iterative
scheme (1) has been the subject of many authors because under suitable conditions these iteration converge
strongly to the unique solution q ∈ Fix(S) of the variational inequality

〈(I −Q)q, x − q〉 ≥ 0, ∀x ∈ Fix(S). (2)

This fact allows us to apply this method to convex optimization, linear programming and monotone
inclusions. In 2004, Xu [4] extended the result of Moudafi [1] to uniformly smooth Banach spaces and
obtained strong convergence theorem. For related work, see [5–8].

In 2006, Marino and Xu [9] introduced the following iterative scheme based on viscosity approximation
method, for fixed point problem for a nonexpansive mapping S on H:

xn+1 = αnγQ(xn) + (I − αnB)Sxn, n ≥ 0, (3)

where Q is a contraction mapping on H with constant α > 0, B is a strongly positive self-adjoint bounded
linear operator on H with constant γ̄ > 0 and γ ∈ (0, γ̄α ). They proved that the sequence {xn} generated by
(3) converge strongly to the unique solution of the variational inequality

〈(B − γQ)z, x − z〉 ≥ 0, ∀x ∈ Fix(S), (4)

which is the optimality condition for the minimization problem

min
x∈Fix(S)

1
2
〈Bx, x〉 − h(x),

where h is the potential function for γQ.

The implicit midpoint rule is one of the powerful numerical methods for solving ordinary differential
equations and differential algebraic equations. For related works, we refer to [10–17] and the references
cited therein. For instance, consider the initial value problem for the differential equation y′(t) = f (y(t))
with the initial condition y(0) = y0, where f is a continuous function from Rd to Rd. The implicit midpoint
rule in which generates a sequence {yn} by the following the recurrence relation

1
h

(yn+1 − yn) = f
( yn+1 − yn

2

)
.

In 2014, implicit midpoint rule has been extended by Alghamdi et al. [18] to nonexpansive mappings,
which generates a sequence {xn} by the following implicit iterative scheme:

xn+1 = αnxn + (1 − αn)S
(xn + xn+1

2

)
, n ≥ 0, (5)

Recently, Xu et al. [19] extended and generalized the results of Alghamdi et al. [18] and presented the
following viscosity implicit midpoint rule for nonexpansive mapping, which generates a sequence {xn} by
the following implicit iterative scheme:

xn+1 = αnQ(xn) + (1 − αn)S
(xn + xn+1

2

)
, n ≥ 0, (6)

where {αn} ⊂ [0, 1] and S is a nonexpansive mapping. They proved that under some mild conditions, the
sequence generated by (6) converge in norm to fixed point of nonexpansive mapping, which, in addition,
solves the variational inequality (2). Further related work, see [20, 21].

Motivated by the work of Moudafi [1], Xu [4], Marino and Xu [9], Alghamdi et al. [18] and Xu et
al. [19], and by the ongoing research in this direction, we suggest and analyze general viscosity implicit
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midpoint iterative scheme for fixed point of nonexpansive mapping in real Hilbert space. Based on the
general viscosity implicit midpoint iterative scheme, we prove the strong convergence theorems for a
nonexpansive mapping. Further, some consequences from these theorems are also derived. Furthermore,
we provide some applications to variational inequalities, Fredholm integral equations, and nonlinear
evolution equations and also give a numerical example to justify the main result. The results and methods
presented here extend and generalize the corresponding results and methods given in [1, 4, 9, 18, 19].

2. Preliminaries

We recall some concepts and results which are needed in sequel.

For every point x ∈ H, there exists a unique nearest point in K denoted by PKx such that

‖x − PKx‖ ≤ ‖x − y‖, ∀y ∈ K. (7)

Remark 2.1. [22] It is well known that PK is nonexpansive mapping and satisfies

〈x − y,PKx − PK y〉 ≥ ‖PKx − PK y‖2, ∀x, y ∈ H. (8)

Moreover, PKx is characterized by the fact PKx ∈ C and

〈x − PKx, y − PKx〉 ≤ 0. (9)

The following Lemma is the well known demiclosedness principles for nonexpansive mappings.

Lemma 2.2. [22, 23] Assume that S be a nonexpansive self mapping of a closed and convex subset K of a Hilbert
space H. If S has a fixed point, then I − S is demiclosed, i.e., whenever {xn} is a sequence in K converging weakly to
some x ∈ K and the sequence {(I − S)xn} converges strongly to some y, it follows that (I − S)x = y.

Lemma 2.3. [22, 23] In real Hilbert space H, the following hold:

(i)
‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H; (10)

(ii)
‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2, (11)

for all x, y ∈ H and λ ∈ (0, 1).

Lemma 2.4. [9] Assume that B is a strongly positive self-adjoint bounded linear operator on a Hilbert space H with
constant γ̄ > 0 and 0 < ρ ≤ ‖B‖−1. Then ‖I − ρB‖ ≤ 1 − ργ̄.

Lemma 2.5. [4]. Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1 − βn)an + δn, n ≥ 0,

where {βn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∞∑

n=1
βn = ∞;

(ii) lim sup
n→∞

δn

βn
≤ 0 or

∞∑
n=1
|δn| < ∞.

Then lim
n→∞

an = 0.



S. H. Rizvi / Filomat 35:1 (2021), 225–237 228

3. General Viscosity Implicit Midpoint Rule

In this section, we prove a strong convergence theorem based on the general viscosity implicit midpoint
rule for fixed point of nonexpansive mapping.

Theorem 3.1. Let H be a real Hilbert space and B : H → H be a strongly positive bounded linear operator with
constant γ̄ > 0 such that 0 < γ < γ̄

α < γ + 1
α and Q : H → H be a contraction mapping with constant α ∈ (0, 1).

Let S : H → H be a nonexpansive mapping such that Fix(S) , ∅. Let the iterative sequence {xn} be generated by the
following general viscosity implicit midpoint iterative schemes:

xn+1 = αnγQ(xn) + (1 − αnB)S
(xn + xn+1

2

)
, n ≥ 0, (12)

where {αn} is the sequence in (0, 1) and satisfying the following conditions

(i) lim
n→∞

αn = 0;

(ii)
∞∑

n=0
αn = ∞;

(iii)
∞∑

n=1
|αn − αn−1| < ∞ or lim

n→∞

αn+1

αn
= 1.

Then the sequence {xn} converge strongly to z ∈ Fix(S), where z = PFix(S)Q(z). In other words, which is also unique
solution of variational inequality (4).

Proof. Note that from condition (i), we may assume without loss of generality that αn ≤ (1− βn)‖B‖−1 for all
n. From Lemma 2.4, we know that if 0 < ρ ≤ ‖B‖−1, then ‖I−ρB‖ ≤ 1−ργ̄. We will assume that ‖I−B‖ ≤ 1− γ̄.

Since B is strongly positive self-adjoint bounded linear operator on H, then

‖B‖ = sup{|〈Bu,u〉| : u ∈ H, ‖u‖ = 1}.

Observe that

〈(I − αnB)u,u〉 = 1 − αn〈Bu,u〉
≥ 1 − αn‖B‖ ≥ 0,

which implies that (1 − αnB) is positive. It follows that

‖(I − αnB‖ = sup{〈((1 − αnB)u,u〉 : u ∈ H, ‖u‖ = 1}
= sup{1 − αn〈Bu,u〉 : u ∈ H, ‖u‖ = 1}
≤ 1 − αnγ̄.

Let q = PFix(S). Since Q is a contraction mapping with constant α ∈ (0, 1). It follows that

‖q(I − B + γQ)(x) − q(I − B + γQ)(y)‖ ≤ ‖(I − B + γQ)(x) − (I − B + γQ)(x)‖
≤ ‖I − B‖‖x − y‖ + γ‖Q(x) −Q(y)‖
≤ (1 − γ̄)‖x − y‖ + γα‖x − y‖
≤ (1 − (γ̄ − γα))‖x − y‖,

for all x, y ∈ H. Therefore, the mapping q(I − B + γQ) is a contraction mapping from H into itself. It
follows from Banach contraction principle that there exists an element z ∈ H such that z = q(I − B + γQ)z =
PFix(S)(I − B + γQ)(z).
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Let p ∈ Fix(S), we compute

‖xn+1 − p‖ =
∥∥∥∥αnγQ(xn) + (1 − αnB)S

(xn + xn+1

2

)
− p

∥∥∥∥
≤ αn‖γQ(xn) − Bp‖ + (1 − αnγ̄)

∥∥∥∥∥S
(xn + xn+1

2

)
− p

∥∥∥∥∥
≤ αn

[
γ‖Q(xn) −Q(p)‖ + ‖γQ(p) − Bp‖

]
+ (1 − αnγ̄)

∥∥∥∥∥(xn + xn+1

2

)
− p

∥∥∥∥∥
≤ αnγα‖xn − p‖ + αn‖γQ(p) − Bp‖ +

(1 − αnγ̄)
2

(
‖xn − p‖ + ‖xn+1 − p‖

)
,

which implies that

(1 + αnγ̄)
2

‖xn+1 − p‖ ≤
[
αnγα +

(1 − αγ̄)
2

]
‖xn − p‖ + αn‖γQ(p) − Bp‖

‖xn+1 − p‖ ≤
[

1 + 2(γα − γ̄)αn

1 + αnγ̄

]
‖xn − p‖ +

2αn

1 + αnγ̄
‖γQ(p) − Bp‖

≤

[
1 −

2(γ̄ − γα)αn

1 + αnγ̄

]
‖xn − p‖ +

2αn

1 + αnγ̄
‖γQ(p) − Bp‖

≤

[
1 −

2(γ̄ − γα)αn

1 + αnγ̄

]
‖xn − p‖ +

2αn(γ̄ − γα)
1 + αnγ̄

‖γQ(p) − Bp‖
(γ̄ − γα)

.

Consequently, we get

‖xn+1 − p‖ ≤ max
{
‖xn − p‖,

‖γQ(p) − Bp‖
γ̄ − γα

}
.

Therefore by using induction, we obtain

‖xn+1 − p‖ ≤ max
{
‖x0 − p‖,

‖γQ(p) − Bp‖
γ̄ − γα

}
. (13)

Hence the sequence {xn} is bounded.

Next, we show that the sequence {xn} is asymptotically regular, i.e., lim
n→∞
‖xn+1 − xn‖ = 0. It follows from

(12) that

‖xn+1 − xn‖ =
∥∥∥∥αnγQ(xn) + (1 − αnB)S

(xn + xn+1

2

)
−

[
αn−1γQ(xn−1) + (1 − αn−1B)

(xn−1 + xn

2

) ]∥∥∥∥
=

∥∥∥∥(1 − αnB)
[
S
(xn + xn+1

2

)
− S

(xn−1 + xn

2

)]
+(αn−1B − αnB)

[
S
(xn−1 + xn

2

)
− γQ(xn−1)

]
+ αn(γQ(xn) − γQ(xn−1))

∥∥∥∥
≤ (1 − αnγ̄)

∥∥∥∥S
(xn + xn+1

2

)
− S

(xn−1 + xn

2

) ∥∥∥∥ + M|αn−1 − αn|

+αnγ‖Q(xn) −Q(xn−1)‖

≤
(1 − αnγ̄)

2

[
‖xn+1 − xn‖ + ‖xn − xn−1‖

]
+ M|αn−1 − αn| + αnγα‖xn − xn−1‖,
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where M := sup
{
S
(xn + xn+1

2

)
+ γ‖Q(xn)‖ : n ∈N

}
. It follows that

(1 + αnγ̄)
2

‖xn+1 − xn‖ ≤
(1 − αnγ̄)

2
‖xn − xn−1‖ + M|αn−1 − αn| + αnγα‖xn − xn−1‖

‖xn+1 − xn‖ ≤
1 + 2(γα − γ̄)αn

1 + αnγ̄
‖xn − xn−1‖ +

2M
1 + αnγ̄

|αn−1 − αn|

≤

(
1 −

2(γα − γ̄)αn

1 + αnγ̄

)
‖xn − xn−1‖ +

2M
1 + αnγ̄

|αn−1 − αn|.

By using the conditions (i)-(iii) of Lemma 2.5, we obtain

lim
n→∞
‖xn+1 − xn‖ = 0. (14)

Next, we show that

lim
n→∞
‖xn − Sxn‖ = 0.

We can write

‖xn − Sxn‖ ≤ ‖xn − xn+1‖ +
∥∥∥∥xn+1 − S

(xn + xn+1

2

) ∥∥∥∥
+
∥∥∥∥S

(xn + xn+1

2

)
− Sxn

∥∥∥∥
≤ ‖xn − xn+1‖ + αn

∥∥∥∥γQ(xn) + (1 − γB)S
(xn + xn+1

2

) ∥∥∥∥ +
1
2
‖xn+1 − xn‖

≤
3
2
‖xn+1 − xn‖ + αn

∥∥∥∥γQ(xn) − S
(xn + xn+1

2

) ∥∥∥∥
≤

3
2
‖xn+1 − xn‖ + αnM.

It follows from condition (i) and (14), we obtain

lim
n→∞
‖xn − Sxn‖ = 0.

Since {xn} is bounded, there exists a subsequence {xnk } of {xn} such that xnk ⇀ x̂ say. Next, we claim
that lim sup

n→∞
〈Q(z) − z, xn − z〉 ≤ 0, where z = PFix(S)(I − B + γQ)z. To show this inequality, we consider a

subsequence {xnk } of {xn} such that xnk ⇀ x̂,

lim sup
n→∞
〈(B − γQ)z − z, xn − z〉 = lim sup

n→∞
〈(B − γQ)z − z, xn − z〉

= lim sup
k→∞
〈(B − γQ)z − z, xnk − z〉

= 〈(B − γQ)z − z, x̂ − z〉 ≤ 0. (15)
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Finally, we show that xn → z. It follows from Lemma 2.3 that

‖xn+1 − z‖2 =
∥∥∥∥αnγQ(xn) + (I − αnB)S

(xn + xn+1

2

)
− z

∥∥∥∥2

=
∥∥∥∥αn(γQ(xn) − Bz) + (I − αnB)S

(xn + xn+1

2

)
− z

∥∥∥∥2

≤

∥∥∥∥(I − αnB)S
(xn + xn+1

2

)
− z

∥∥∥∥2
+ 2αn〈γQ(xn) − Bz, xn+1 − z〉

≤ (1 − αnγ̄)2
∥∥∥∥S

(xn + xn+1

2

)
− z

∥∥∥∥2
+ 2αnγ‖Q(xn) −Q(z)‖‖xn+1 − z‖

+2αn〈γQ(z) − Bz, xn+1 − z〉

≤ (1 − αnγ̄)2
∥∥∥∥xn + xn+1

2
− z

∥∥∥∥2
+ 2αnγα‖xn − z‖‖xn+1 − z‖

+2αn〈γQ(z) − Bz, xn+1 − z〉
≤ (1 − αnγ̄)2

‖xn − z‖2 + 2αnγα‖xn − z‖‖xn+1 − z‖
+2αn〈γQ(z) − Bz, xn+1 − z〉

≤ (1 − αnγ̄)2
[1
2
‖xn − z‖2 +

1
2
‖xn+1 − z‖2 −

1
4
‖xn+1 − xn‖

2
]

+2αnγα
[
‖xn − z‖2 + ‖xn+1 − z‖2

]
+ 2αn〈γQ(z) − Bz, xn+1 − z〉

≤

[ (1 − αnγ̄)2

2
+ αnγα

]
(‖xn − z‖2 + ‖xn+1 − z‖2)

+2αn〈γQ(z) − Bz, xn+1 − z〉

≤
1 − 2αnγ̄ + 2αnγα

2
(‖xn − z‖2 + ‖xn+1 − z‖2) + α2

nγ̄
2M1

+2αn〈γQ(z) − Bz, xn+1 − z〉.

This implies that

‖xn+1 − z‖2 ≤
1 − 2(γ̄ − γα)αn

1 + 2(γ̄ − γα)αn
‖xn − z‖2 +

2αnγ̄2

1 + 2(γ̄ − γα)αn
M1

+
4αn

1 + 2(γ̄ − γα)αn
〈γQ(z) − Bz, xn+1 − z〉

=
[
1 −

4(γ̄ − γα)αn

1 + 2(γ̄ − γα)αn

]
‖xn − z‖2 +

2αnγ̄2

1 + 2(γ̄ − γα)αn
M1

+
4αn

1 + 2(γ̄ − γα)αn
〈γQ(z) − Bz, xn+1 − z〉

= (1 − δn)‖xn − z‖2 + δnσn, (16)

where M1 := sup{‖xn − z‖2 : n ≥ 1},

δn =
4(γ̄ − γα)αn

1 + 2(γ̄ − γα)αn
and σn =

(αnγ̄2)M1

1 + 2(γ̄ − γα)αn)
+

4αn

1 + 2(γ̄ − γα)αn
〈γQ(z) − Bz, xn+1 − z〉. Since lim

n→∞
αn = 0

and
∞∑

n=0
αn = ∞, it is easy to see that lim

n→∞
δn = 0,

∞∑
n=0
δn = ∞ and lim sup

n→∞
σn ≤ 0. Hence from (15), (16) and

Lemma 2.5, we deduce that xn → z.
This completes the proof.

As a direct consequences of Theorem 3.1, we obtain the following result due to Xu et al. [19] for fixed
point of nonexpansive mapping. Take γ := 1 and B := I in Theorem 3.1 then the following Corollary is
obtained.
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Corollary 3.2. [19] Let H be a real Hilbert space and Q : H→ H be a contraction mapping with constant α ∈ (0, 1).
Let S : H → H be a nonexpansive mapping such that Fix(S) , ∅. Let the iterative sequence {xn} be generated by the
following general viscosity implicit midpoint iterative schemes:

xn+1 = αnQ(xn) + (1 − αn)S
(xn + xn+1

2

)
, n ≥ 0, (17)

where {αn} is the sequence in (0, 1) and satisfying the conditions (i)-(iii) of Theorem 3.1. Then the sequence {xn}

converge strongly to z ∈ Fix(S), which, in addition also solves variational inequality (2).

The following Corollary is due to Alghamdi et al. [18] for fixed point problem of nonexpansive mapping.
Take γ := 1 and Q,B := I in Theorem 3.1 then the following Corollary is obtained.

Corollary 3.3. [18] Let H be a real Hilbert space and Q : H→ H be a contraction mapping with constant α ∈ (0, 1).
Let S : H → H be a nonexpansive mapping such that Fix(S) , ∅. Let the iterative sequence {xn} be generated by the
following general viscosity implicit midpoint iterative schemes:

xn+1 = αnxn + (1 − αn)S
(xn + xn+1

2

)
, n ≥ 0, (18)

where {αn} is the sequence in (0, 1) and satisfying the conditions (i)-(iii) of Theorem 3.1. Then the sequence {xn}

converge strongly to z ∈ Fix(S).

Remark 3.4. Theorem 3.1 extends and generalize the viscosity implicit midpoint rule of Xu et al. [19] and the implicit
midpoint rule of Alghamdi et al. [18] to a general viscosity implicit midpoint rule for a nonexpansive mappings,
which also includes the results of [1, 9] as special cases.

4. Applications

4.1. Application to Variational Inequalities
Consider the following classical variational inequality problem (In short, VIP): Find x∗ ∈ K such

that
〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ K, (19)

where A is a single-valued monotone mapping on H and K is a nonempty, closed and convex subset of H.
We assume K ⊂ dom(A). An example of VIP (19) is the constrained minimization problem : Find x∗ ∈ K
such that

min
x∈K

φ(x∗) (20)

where φ : H → R is a lower-semicontinuous convex function. If φ is Fréchet differentiable, then the
minimization problem (20) is equivalently reformulated as VIP (19) with A = ∇φ. Notice that the VIP (19)
is equivalent to the following fixed point problem, for any λ > 0,

Sx∗ = x∗, Sx := PK(I − λA)x. (21)

If A is Lipschitz continuous and strongly monotone, then, for λ > 0 small enough, S is a contraction
mapping has a unique fixed point is also the unique solution of the VIP (19). However, if A is not strongly
monotone, S is no longer a contraction, in general. In this case we must deal with nonexpansive mappings
for solving the VIP (19). More precisely, we assume

(i) A is θ-Lipschitz continuous for some θ > 0, i.e.,

‖Ax − Ay‖ ≤ θ‖x − y‖, ∀x, y ∈ H.

(ii) A is µ-inverse strongly monotone (µ-ism) for some µ > 0, namely,

〈Ax − Ay, x − y ≥ µ‖Ax − Ay‖2, ∀x, y ∈ H.
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It is well known that by using the conditions (i) and (ii), the operator S = PK(I − λA) is nonexpansive
provided that 0 < λ < 2µ. It turns out that for this range of values of λ, fixed point algorithms can be
applied to solve the VIP (19). Applying Theorem 3.1, we get the following result.

Theorem 4.1. Assume that VIP (19) is solvable in which A satisfies the conditions (i) and (ii) with 0 < λ < 2µ. Let
B : H → H be a strongly positive bounded linear operator with constant γ̄ > 0 such that 0 < γ < γ̄

α < γ + 1
α and

Q : H → H be a contraction mapping with constant α ∈ (0, 1). Let the iterative sequence {xn} be generated by the
following general viscosity implicit midpoint iterative schemes:

xn+1 = αnγQ(xn) + (1 − αnB)PK(I − λA)
(xn + xn+1

2

)
, n ≥ 0, (22)

where {αn} is the sequence in (0, 1) and satisfying the conditions (i)-(iii) of Theorem 3.1. Then the sequence {xn}

converge strongly to a solution z of VIP (19), which is also unique solution of variational inequality (4).

4.2. Fredholm Integral Equation
Consider a Fredholm integral equation of the following form

x(t) = 1(t) +

∫ t

0
F(t, s, x(s))ds, t ∈ [0, 1], (23)

where 1 is a continuous function on [0, 1] and F : [0, 1]× [0, 1]×R→ R is continuous. Note that if F satisfies
the Lipschitz continuity condition, i.e.,

|F(t, s, x) − F(t, s, y)| ≤ |x − y|, ∀t, s ∈ [0, 1], x, y ∈ R,

then equation (23) has at least one solution in L2[0, 1] (see [24]). Define a mapping S : L2[0, 1]→ L2[0, 1] by

(Sx)(t) = 1(t) +

∫ t

0
F(t, s, x(s))ds, t ∈ [0, 1]. (24)

It is easy to observe that S is nonexpansive. In fact, for x, y ∈ L2[0, 1], we have

‖Sx − Sy‖2 =

∫ 1

0

∣∣∣(Sx)(t) − (Sy)(t)
∣∣∣2 dt

=

∫ 1

0

∣∣∣∣∣∣
∫ 1

0
(F(t, s, x(s)) − F(t, s, y(s)))ds

∣∣∣∣∣∣
2

dt

≤

∫ 1

0

∣∣∣∣∣∣
∫ 1

0
|x(s) − y(s)|ds

∣∣∣∣∣∣
2

dt

=

∫ 1

0

∣∣∣x(s) − y(s)
∣∣∣2 ds

= ‖x − y‖2.

This means that to find the solution of integral equation (23) is reduced to finding a fixed point of the
nonexpansive mapping S in the Hilbert space L2[0, 1]. Initiating with any function x0 ∈ L2[0, 1]. The
sequence of functions {xn} in L2[0, 1] generated by the general viscosity implicit midpoint iterative scheme:

xn+1 = αnγQ(xn) + (1 − αnB)S
(xn + xn+1

2

)
, n ≥ 0, (25)

where {αn} is the sequence in (0, 1) and satisfying the conditions (i)-(iii) of Theorem 3.1. Then the sequence
{xn} converge strongly in L2[0, 1] to the solution of integral equation (23).
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4.3. Periodic solution of a nonlinear evolution equation

Consider the following time-dependent nonlinear evolution equation in a Hilbert space H,

du
dt

+ A(t)u = f (t,u), t > 0, (26)

where A(t) is a family of closed linear operators in H and f : R × H → H. The following result is the
existence of periodic solutions of nonlinear evolution equation (26) due to Browder [25].

Theorem 4.2. [25] Suppose that A(t) and f (t,u) are periodic in t of period ω > 0 and satisfy the following
assumptions:

(i) For each t and each pair u, v ∈ H,
Re〈 f (t,u) − f (t, v),u − v〉 ≤ 0.

(ii) For each t and each u ∈ D(A(t)), Re〈A(t)u,u〉 ≥ 0.
(iii) There exists a mild solution u of equation (26) on R+ for each initial value v ∈ H. Recall that u is a mild

solution of (26) with the initial value u(0) = v if, for each t > 0,

u(t) =U(t, 0)v +

∫ 1

0
U(t, s) f s,u(s)ds,

where {U(t, s)}t≥s≥0 is the evolution system for the homogeneous linear system

du
dt

+ A(t)u = 0, (t > s). (27)

(iv) There exists some R > 0 such that
Re〈 f (t,u),u〉 < 0,

for ‖u‖ = R and all t ∈ [0, ω].

Then there exists an element v of H with ‖v‖ < R such that the mild solution of equation (26) with the initial condition
u(0) = v is periodic of period ω.

Next, we apply the general viscosity implicit midpoint rule for nonexpansive mappings to obtain an
implicit iterative scheme for finding a periodic solution of (26). As a matter of fact, define a mapping
S : H → H by assigning to each v ∈ H the value u(ω), where u is the solution of (26) satisfying the initial
condition u(0) = v. Namely, we define S by Sv = u(ω), where u solves (26) with u(0) = v.

We then find that S is nonexpansive. Moreover, condition (iv) of Theorem 4.2 forces S to map the closed
ball B := {v ∈ H : ‖v‖ ≤ R} into itself. Consequently, S has a fixed point which we denote by v, and the
corresponding solution u of (26) with the initial condition u(0) = v is a desired periodic solution of (26) with
period ω. In other words, to find a periodic solution u of (26) is equivalent to finding a fixed point of S.
Therefore the general viscosity implicit midpoint rule is applicable to solve (26), in which {xn} is generated
by the general viscosity implicit midpoint iterative scheme:

xn+1 = αnγQ(xn) + (1 − αnB)S
(xn + xn+1

2

)
, (28)

where {αn} is the sequence in (0, 1) and satisfying the conditions (i)-(iii) of Theorem 3.1. Then the sequence
{xn} converges weakly to a fixed point v of S, and the solution of (26) with the initial value u(0) = ω is a
periodic solution of (26).
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5. Numerical Experiments

In this section, we provide a numerical example to illustrate the operational reliability and strong
convergence of the presented iterative scheme in Theorem 3.1.

Example 5.1. Let H = R, the set of all real numbers, with the inner product defined by 〈x, y〉 = xy, ∀x, y ∈ R, and

induced usual norm |.|. Let the mappings B,Q,S : R → R be defined by B(x) = 2x Q(x) =
1
2

x, S(x) =
1
3

x. Then
there exist unique sequences {xn}, be generated by the iterative schemes;

x0 = x ∈ R,

xn+1 =
1

n2 + 1
(2)

xn

2
+

(
1 −

1
n2 + 1

B
)

S
(xn + xn+1

2

)
,

(29)

where αn = 1
n2+1 , and γ = 2. Then {xn} converge strongly to {0}.

Proof. It is easy to observe that Q is contraction mapping with constant α = 1
2 and and B is a strongly

positive self-adjoint bounded linear operator with constant γ̄ = 1 on R. Therefore, we can choose γ = 2
which satisfies 0 < γ < γ̄

α < γ + 1
α .

Furthermore it is easy to observe that S is a nonexpansive mapping with Fix(S) = {0}. After simplification,
iterative scheme (29) reduce to

xn+1 =
n2 + 5
5n2 + 7

xn. (30)

Setting ‖xn − p‖ < 10−4 as stop criterion, then we obtain the numerical results of the iterative scheme (29)
with different initial points x0. in Table 1. The computations are performed by Matlab R2007a running on
a PC Desktop Intel(R) Core(TM)i3-2330M, CPU @2.20 GHz, 790 MHz, 2 GB RAM.

Table 1: Numerical results with different initial values x(0) = −20, 20, 5,−5
Iter. (n) x(0) = −20 Iter. (n) x(0) = 20 Iter. (n) x(0) = 5 Iter. (n) x(0) = −5

1. -10.0000 1. 10.0000 1. 2.5000 1. -2.5000

2. -3.3333 2. 3.3333 2. 0.8333 2. -0.8333

3. -0.8974 3. 0.8974 3. 0.2244 3. -0.2244

4. -0.2166 4. 0.2166 4. 0.0542 4. -0.0542

5. -0.0492 5. 0.0492 5. 0.0123 5. -0.0123

6. -0.0108 6. 0.0108 6. 0.0027 6. -0.0027

7. -0.0023 7. 0.0023 7. 0.0006 7. -0.0006

8. -0.0005 8. 0.0005 8. 0.0001 8. -0.0001

9. -0.0001 9. 0.0001 9. 0.0000 9. -0.0000

10. -0.0000 10. 0.0000 10. 0.0000 10. -0.0000

Next, by using the software Matlab 7.0, we study the convergence behavior of {xn}, for different initial
values and obtained the following figures, which shows that {xn} converge strongly to {0}.
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Figure 1: Convergence behavior of the sequence {xn}
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Figure 2: Convergence behavior of the sequence {xn}

This completes the proof.

Conclusion: The present work has been aimed to study the general viscosity implicit midpoint rule
for nonexpansive mapping and proved the strong convergence theorem for solving fixed point for a
nonexpansive mapping. Theorem 3.1 extends and generalize the viscosity implicit midpoint rule of Xu et
al. [19] and the implicit midpoint rule of Alghamdi et al. [18] to a general viscosity implicit midpoint rule
for a nonexpansive mappings, which also includes the results of [1, 9] as special cases.
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