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Abstract. Some properties and characterizations for abundant semigroups with generalised quasi-
adequate transversals are explored. In such semigroups, an interesting property [∀a, b ∈ Re1S, VSo (a) ∩
VSo (b) , ∅ ⇒ VSo (a) = VSo (b)] is investigated and thus the concept of refined generalised quasi-adequate
transversals, for short, RGQA transversals is introduced. It is shown that RGQA transversals are the real
common generalisations of both orthodox transversals and adequate transversals in the abundant case. Fi-
nally, by means of two abundant semigroups R and L, a spined product structure theorem for an abundant
semigroup with a quasi-ideal RGQA transversal is established.

1. Introduction and preliminaries

Suppose that S is a regular semigroup with a subsemigroup So. We denote the intersection of V(a) and So

by VSo (a) and that I = {aao : a ∈ S, ao
∈ VSo (a)} and Λ = {aoa : a ∈ S, ao

∈ VSo (a)}. An inverse transversal of
the semigroup S is a subsemigroup So that contains exactly one inverse of every element of S, that is, So is
an inverse semigroup with |VSo (a)| = 1. This important concept was introduced by Blyth and McFadden
[1]. Thereafter, this class of regular semigroups excited many semigroup researchers’ attention and a good
deal of important results were obtained (see [1-4] and their references). Tang [4] shown that for S a regular
semigroup with an inverse transversal So, then I and Λ are both bands with I left regular and Λ right
regular. These two bands play a key role in the study of regular semigroups with inverse transversals.
Other important subsets of S are R = {x ∈ S : xox = xoxoo

} and L = {x ∈ S : xxo = xooxo
}. Both R and L are

subsemigroups with R left inverse (i.e. R an orthodox semigroup with a left regular band of idempotents)
and L right inverse (i.e. L an orthodox semigroup with a right regular band of idempotents). The concept
of orthodox transversals was introduced by Chen [5] as a generalisation of inverse transversals.

Definition 1.1 [5] Let S be a regular semigroup with an orthodox subsemigroup of So. Then So is said to be
an orthodox transversal of S, if the following two conditions are satisfied:

(1) (∀ a ∈ S) VSo (a) , ∅;
(2) For any a, b ∈ S, if {a, b} ∩ So , ∅, then VSo (a)VSo (b) ⊆ VSo (ba).
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Some elementary properties associated with orthodox transversals were obtained by Chen and Guo [6].
In [7,8], Kong and Zhao introduced two interesting sets R and L and established the structure theorems for
regular semigroups with quasi-ideal orthodox transversals. In 2014, Kong [9] introduced the concept of
generalised orthodox transversals and obtained some basic properties associated with them. Kong and Meng
[10] acquired the characterization for generalised orthodox transversals to be orthodox transversals.

Lemma 1.2 [10,Theorem2.1] Let S be a regular semigroup and So a subsemigroup of S with VSo (a) , ∅ for each
a ∈ S. Then So is an orthodox transversal of S if and only if

(∀a, b ∈ S) [VSo (a) ∩ VSo (b) , ∅ ⇒ VSo (a) = VSo (b)].

More recently, Kong [11] investigated the weakly simplistic orthodox transversal and obtained the equiv-
alent conditions for sets I and Λ to be bands.

On a semigroup S the relation L∗ is defined by a L∗ b if and only if the elements a, b of S are related
by Green’s relation L in some oversemigroup of S. The relation R∗ is dually defined. Certainly, L∗ is
a right congruence and R∗ a left congruence with L⊆L∗,R⊆R∗ and if a, b are regular elements of S, then
a L∗ b (a R∗ b) if and only if a L b (a R b). A semigroup is called abundant [12] if each L∗- class and each
R
∗- class contains at least one idempotent. An abundant semigroup S is called quasi-adequate [13] (adequate)

if its idempotents form a subsemigroup (semilattice). We list some basic results as follows which are
frequently used in this paper. The following two Lemmas are due to Fountain [12] and provides alternative
descriptions for L∗ (R∗).

Lemma 1.3 [12] Let S be a semigroup and a, b ∈ S. Then the following conditions are equivalent:
(1) a L∗ b (a R∗ b);
(2) For all x, y ∈ S1, ax = ay (xa = ya) if and only if bx = by (xb = yb).

Lemma 1.4 [12] Let a be an element of a semigroup S and e be an idempotent of S. Then the following conditions
are equivalent:

(1) a L∗ e (a R∗ e);
(2) a = ae (ea = a) and for all x, y ∈ S1, ax = ay (xa = ya) implies ex = ey (xe = ye).
Let S be an abundant semigroup and U an abundant subsemigroup of S. U is called a ∗-subsemigroup of

S if for any a ∈ U, there exist idempotents e ∈ L∗a(S)∩U and f ∈ R∗a(S)∩U. As pointed out in [14], an abundant
subsemigroup U of an abundant semigroup S is a ∗-subsemigroup of S if and only ifL∗(U) = L∗(S)∩ (U×U)
and R∗(U) = R∗(S)∩ (U×U). The concept of adequate transversals, was introduced for abundant semigroups
by El-Qallali [14] as an analogue of the concept of inverse transversals.

Definition 1.5 [14] Let S be an abundant semigroup, So a ∗-adequate subsemigroup of S. So is called
an adequate transversal of S if for each x ∈ S, there are a unique element x ∈ So and idempotents e, f ∈ E such
that x = ex f , where e L x+ and f R x∗. It can easily be shown that e and f are uniquely determined by x and
So (see [14]).

Chen, Guo and Shum [15, 16] obtained some important results about quasi-ideal adequate transversals.
Afterwards, Kong [17] considered some properties associated with adequate transversals. The authors
[18] explored the product of quasi-ideal adequate transversals and proposed the open problem of the
isomorphism of adequate transversals.

Lemma 1.6 [19] Let S be an abundant semigroup with set of idempotents E and x, y ∈ S. If there exist e, f ∈ E such
that x = ey f and e L y+, f R y∗ for some y+, y∗ ∈ E, then e R∗ x and f L∗ x.

Let S be an abundant semigroup with set of idempotents E and So a quasi-adequate ∗−subsemigroup of
S with set of idempotents Eo. The semigroup So is called a generalised quasi-adequate transversal of S, if for
any x ∈ S,

CSo (x) = {x ∈ So
| x = ixxλx, ix, λx ∈ E, ix L x+, λx R x∗ for some x+, x∗ ∈ Eo

} , ∅.
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Let
Ix = {ix ∈ E | (∃x ∈ CSo (x)) x = ixxλx, ix, λx ∈ E, ix L x+, λx R x∗ for some x+, x∗ ∈ Eo

},

Λx = {λx ∈ E | (∃x ∈ CSo (x)) x = ixxλx, ix, λx ∈ E, ix L x+, λx R x∗ for some x+, x∗ ∈ Eo
},

I =
⋃
x∈S

Ix, Λ =
⋃
x∈S

Λx.

The generalised quasi-adequate transversal So is called a quasi-adequate transversal of S if it satisfies a
further condition

(QA2) : (∀e ∈ E) (∀1 ∈ Eo),CSo (e)CSo (1) ⊆ CSo (1e) and CSo (1)CSo (e) ⊆ CSo (e1).

The concept of quasi-adequate transversals was introduced by Ni [19] and followed by Luo, Kong and
Wang [20, 21], their work mainly focused on the properties and the structure of multiplicative quasi-
adequate transversals. Unfortunately, quasi-adequate transversals are neither the generalisations of ortho-
dox transversals nor the generalisations of adequate transversals. Wang gave an example (see [22] Example
5.2) to show that an orthodox transversal So of a regular semigroup S may not be a quasi-adequate transver-
sal of S. An example given by Chen [15] demonstrating that in general, an adequate transversal So of an
abundant semigroup S is not a quasi-adequate transversal of S. Let S = {e, 1, h,w, f }with set of idempotents
E = {e, 1, h, f } and So = {w, e, f , 1} with set of idempotents Eo = {e, f , 1}. Then by the multiplication table (for
detail, see [15] Example 2.7), So is a quasi-ideal adequate transversal of S. But So is not a quasi-adequate
transversal of S, since CSo (h) = {e},CSo ( f ) = { f }, while f e = 1 < CSo ( f h) = CSo (w) = {w}.

To achieve the real common generalisations of both orthodox transversals and adequate transversals
in the abundant case, inspired by the essential characterization of orthodox transversals (see Lemma 1.2),
in this paper, we introduce the concept of refined generalised quasi-adequate transversals. A generalised
quasi-adequate transversal So of an abundant semigroup S is called a refined generalised quasi-adequate
transversal, if it satisfies

(∀a, b ∈ Re1S), [VSo (a) ∩ VSo (b) , ∅ ⇒ VSo (a) = VSo (b)].

Then we obtain the connection of refined generalised quasi-adequate transversals with orthodox transver-
sals and adequate transversals (see the following Theorem 3.2 in this paper).

Theorem 3.2 Let So be a refined generalised quasi-adequate transversal of the abundant semigroup S. Then
(i) So is an orthodox transversal of S if and only if S is a regular semigroup.
(ii) So is an adequate transversal of S if and only if So is an adequate semigroup.

Therefore, in the class of abundant semigroups, refined generalised quasi-adequate transversals are the
generalisation of both orthodox transversals and adequate transversals. Two significant components R
and L are introduced in this paper and described by Green’s ∗-relations. By means of R and L, a spined
product structure theorem is established for abundant semigroups with quasi-ideal refined generalised
quasi-adequate transversals. Followed this paper, the product of quasi-ideal refined generalised quasi-
adequate transversals [23] and quasi-Ehresmann transversals [24] was considered.

A subsemigroup So of S is called a quasi-ideal of S if SoSSo
⊆ So. The so called Miller-Clifford theorem

will be used frequently.

Lemma 1.7 [25] (1) Let e and f beD-equivalent idempotents of a semigroup S. Then each element a of Re ∩ L f has
a unique inverse a′ in R f ∩ Le, such that aa′ = e and a′a = f ;

(2) Let a, b be elements of a semigroup S. Then ab ∈ Ra ∩ Lb if and only if La ∩ Rb contains an idempotent.

2. Generalised quasi-adequate transversals

The objective in this section is to investigate some elementary properties associated with abundant semi-
groups with generalised quasi-adequate transversals. Also in this section we introduce two sets R and L
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and use them to obtain some equivalence conditions for a generalised quasi-adequate transversal to be a
quasi-ideal. For any result concerning R there is a dual result for L which we list but omit its proof.

Proposition 2.1 Let S be an abundant semigroup with a generalised quasi-adequate transversal So. Then
(1) I = {e ∈ E : (∃e∗ ∈ Eo) e L e∗} and Λ = { f ∈ E : (∃ f +

∈ Eo) f R f +
};

(2) I ∩Λ = Eo.

Proof. This is evident since in the proof of Lemma 2.1 in [21] the condition (QA2) was not used.

Proposition 2.2 Let So be a generalised quasi-adequate transversal of an abundant semigroup S. Then D∗So
=D∗S

∩ (So
× So).

Proof. If ao, bo
∈ So are such that ao

D
∗S bo, then R∗ao ∩ L∗bo , ∅. For any d ∈ R∗ao ∩ L∗bo , there exist ao+, bo∗

∈ Eo

such that ao+
R
∗ ao
R
∗ d L∗ bo

L
∗ bo∗ by ao, bo

∈ So and So is quasi-adequate. By means of the definition of a
generalised quasi-adequate transversal, d = iddλd, where id L d

+
, λd R d

∗

for some d
+
, d
∗

∈ Eo. Furthermore
id R∗ d L∗ λd, and so ao+

R
∗ d R∗ id L d

+
. It follows from Proposition 2.1 that id ∈ I ∩ Λ = Eo and similarly

λd ∈ Eo. Thus d = iddλd ∈ Eo
· So
· Eo
⊆ So, and so ao

D
∗So bo. ThereforeD∗S ∩ (So

× So) ⊆D∗S
o

and the reverse
inclusion is obvious.

Proposition 2.3 Let So be a generalised quasi-adequate transversal of an abundant semigroup S. Then for every
regular element a of S, a has an inverse a′ in So. In this case, VSo (a′) ⊆ CSo (a).

Proof. Take any regular element a ∈ S, then a = iaaλa for some ia ∈ Ia, a ∈ CSo (a), λa ∈ Λa, where
ea L a+, λa R a∗ for some a+, a∗ ∈ Eo. It follows from a, ia, λa are all regular and ia R∗ a L∗ λa that ia R a L λa,
so by Lemma 1.7 a has an inverse a′ in Rλa ∩ Lia. Thus a∗ R λa R a′ L ia L a+ and so by Proposition 2.2,
a′ ∈ So.

Proposition 2.4 Let So be a generalised quasi-adequate transversal of an abundant semigroup S. Then the relation
H
∗ on S saturates So, that is, So is the union of someH ∗-classes on S.

Proof. Let H∗ be an H ∗-class of S, H∗ ∩ So , ∅. We shall prove that H∗ ⊆ So. Take xo
∈ H∗ ∩ So, since So

is quasi-adequate, there exist xo+, xo∗
∈ Eo such that xo+

R
∗(So) xo

L
∗(So) xo∗. Since So is a ∗-subsemigroup,

then we can assume that xo+
R
∗(S) xo

L
∗(S) xo∗. Now take h ∈ H∗, then h = ihhλh with ih ∈ Ih, λh ∈ Λh and

ih R∗ h L∗ λh. It follows that ih R∗ h R∗ xo+ and so by Proposition 2.1, ih ∈ Λ. Consequently, ih ∈ I ∩ Λ = Eo.
Similarly, λh ∈ Eo. Therefore, h = ihhλh ∈ EoSoEo

⊆ So.

Proposition 2.5 Let S be an abundant semigroup with a generalised quasi-adequate transversal So. Let

R = {x ∈ S : (∃λx ∈ Λx) λx ∈ Eo
} and L = {p ∈ S : (∃ip ∈ Ip) ip ∈ Eo

}.

Then
R = {x ∈ S : (∃l ∈ Eo) x L∗ l} and L = {p ∈ S : (∃h ∈ Eo) p R∗ h}

with R ∩ L = So,E(R) = I and E(L) = Λ.

Proof. If x ∈ R, there exists λx ∈ Eo such that x L∗ λx.
Conversely, for x ∈ S if x L∗ l for some l ∈ Eo, then λx L

∗ x L∗ l. It follows from Proposition 2.1 that
λx ∈ I and so λx ∈ I ∩Λ = Eo.
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It is clear that if there exists λx ∈ Λx such that λx ∈ Eo (i∈Ia such that ia ∈ Eo), then Λx ⊆ Eo (Ia ⊆ Eo).

Proposition 2.6 Let So be a generalised quasi-adequate transversal of an abundant semigroup S. The following
statements are equivalent:

(1) So is a quasi-ideal of S;
(2) ΛI ⊆ So;
(3) EoI ⊆ So and ΛEo

⊆ So;
(4) LR ⊆ So;
(5) So is a left ideal of L and a right ideal of R;
(6) SoI ⊆ So and ΛSo

⊆ So;
(7) SoISo

⊆ So and SoΛSo
⊆ So.

(8) SSo
⊆ R,SoS ⊆ L;

(9) R is a left ideal and L is a right ideal of S.

Proof. (1) =⇒ (2). For any λ ∈ Λ and i ∈ I, there exist λ+, i∗ ∈ Eo such that λ R λ+ and i L i∗. So we have
λi = λ+

· λi · i∗ ∈ EoSEo
⊆ SoSSo

⊆ So.
(2) =⇒ (3). This is trivial.
(3) =⇒ (4). For any p ∈ L and x ∈ R, there exist h, l ∈ Eo such that pR∗h and xL∗l. Thus

px = h(px)l = hipxpxλpxl ∈ EoIpxΛEo
⊆ SopxSo

⊆ So.

(4) =⇒ (5). This is clear since So
⊆ L,R.

(5) =⇒ (6). This is clear since I = E(R) and Λ = E(L).
(6) =⇒ (7). This is obvious.
(7) =⇒ (8). If (7) holds, then for any a ∈ S, xo

∈ So, we have

axo = ia · aλa · xo
L
∗ a+aλaxo = aλaxo

L
∗ (aλaxo)∗ ∈ Eo,

since aλaxo
∈ SoΛSo

⊆ So. Hence axo
∈ R by Proposition 2.5 and SSo

⊆ R. Dually SoS ⊆ L.
(8) =⇒ (9). For any a ∈ S, x ∈ R, x = ixxoλx with λx ∈ Eo, we have ax = aix · xoλx ∈ SSo

⊆ R and R is a left
ideal of S. Dually, SoS ⊆ L implies that L is a right ideal of S.

(9) =⇒ (1). For any s, t ∈ So and a ∈ S, we have

sat = (sa)t ∈ SSo
⊆ SR ⊆ R and sat = s(at) ∈ SoS ⊆ LS ⊆ L.

Consequently sat ∈ R ∩ L = So and So is a quasi-ideal of S.

Proposition 2.7 Suppose that S is an abundant semigroup with a quasi-ideal generalised quasi-adequate transversal
So. Let R and L be defined as in Proposition 2.5. Then R and L are abundant semigroups sharing a common
generalised quasi-adequate transversal So which is a right ideal of R and a left ideal of L. In particular, since So is a
right ideal of S, then Λx ⊆ Eo for every x ∈ S and E = I, and there is a dual result for So being a left ideal of S.

Proof. Since both a left ideal and a right ideal are subsemigroups, if one of the conditions in Proposition
2.6 is satisfied, then R and L are subsemigroups. From Proposition 2.5 we deduce that R and L are abundant
semigroups with E(R) = I and E(L) = Λ. Let x ∈ R and yo

∈ So, then yox = yoxλx ∈ So for some λx ∈ Eo since
So is a quasi-ideal of S. Thus So is a right ideal of R, and dually So is a left ideal of L.

For any λx ∈ Λx, by Proposition 2.1, λx R l ∈ Eo and so λx = lλx ∈ Eo since So is a right ideal of S.
Consequently, for any h ∈ E, h L λh ∈ Eo and thus h ∈ I.

3. Refined generalised quasi-adequate transversals

In an abundant semigroup S with a generalised quasi-adequate transversal So, the property [∀a, b ∈
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Re1S, VSo (a) ∩ VSo (b) , ∅ ⇒ VSo (a) = VSo (b)] is investigated and thus the concept of refined generalised
quasi-adequate transversals, for short, RGQA transversals is introduced. It is shown that RGQA transversals
are the real common generalisations of both orthodox transversals and adequate transversals in the abun-
dant case. Also, for a ∈ Re1S, a new description of CSo (a) is established, thus providing a sufficient condition
for CSo (a) = VSo (a).

Theorem 3.1 Let S be an abundant semigroup with a generalised quasi-adequate transversal So. Then

(∀a, b ∈ Re1S), [VSo (a) ∩ VSo (b) , ∅ ⇒ VSo (a) = VSo (b)]

if and only if IEo,EoΛ ⊆ E and for all i ∈ I, λ ∈ Λ, eo
∈ Eo, if eoi, λeo are regular, then they are idempotent.

Proof. (Necessity) Suppose eo
∈ Eo, i ∈ I and i L i∗ ∈ Eo. From ieo

L
∗ i∗eo and Eo is a band, we deduce that

ieo
· eoi∗ · ieo = i · eoeo

· i∗i · eo = ieo
· i∗eo = ieo and eoi∗ · ieo

· eoi∗ = eo
· i∗i · eoeo

· i∗ = eoi∗ · eoi∗ = eoi∗. Thus eoi∗ ∈ VSo (ieo)
and eoi∗ ∈ VSo (eoi∗) ∩ VSo (ieo). By the assumption, we have VSo (eoi∗) = VSo (ieo). By So is quasi-adequate, Eo is
a band and thus is the semilattice Y of rectangular bands Eα(α ∈ Y). Certainly, i∗eo and eoi∗ are in the same
rectangular band, and so they are inverses of each other. Thus i∗eo

∈ VSo (eoi∗) = VSo (ieo). Consequently,
ieo = ieo

· i∗eo
· ieo = (ieo)2 and ieo is an idempotent. Therefore IEo

⊆ E.
If eoi is a regular element, by Proposition 2.3 we can take x ∈ VSo (eoi) and xo

∈ VSo (x). It is easy to see
that ixeo is idempotent and ixeo

∈ V(eoi). It follows from L∗ is a right congruence that ixeo
L
∗ i∗xeo

∈ So,
and so there exists (i∗xeo)∗ ∈ Eo such that (i∗xeo)∗ L∗ i∗xeo. Thus ixeo

L (i∗xeo)∗ ∈ Eo and so (i∗xeo)∗ ∈
VSo (ixeo) ∩ VSo ((i∗xeo)∗). By hypothesis we have VSo (ixeo) = VSo ((i∗xeo)∗) and So beging quasi-adequate, gives
VSo (ixeo) = VSo ((i∗xeo)∗) ⊆ Eo. Since So is quasi-adequate, the regular elements of So form an orthodox
subsemigroup, and consequently eoxoi∗ ∈ VSo (i∗xeo) . It follows from i∗ L i and i, i∗ are idempotent that

eoxoi∗ · ixeo
· eoxoe∗ = eoxoi∗ · i∗xeo

· eoxoi∗ = eoxoi∗

and
ixeo
· eoxoi∗ · ixeo = i · i∗xeo

· eoxoi∗ · i∗xeo = i · i∗xeo = ixeo.

Thus eoxoi∗ ∈ VSo (ixeo) and by a similar proof we have i∗xeo
∈ VSo (eoi)∩VSo (eoxoi∗) and VSo (eoi) = VSo (eoxoi∗) ⊆

Eo. Therefore x ∈ Eo and e∗xeo
∈ Eo. Consequently,

eoi = eoi · i∗xeo
· eoi = eoi · ixeo

· i∗xeo
· eoi = eoix · eoi∗ · xeoi.

Premultiplying and postmultiplying by x, we have x = xeoix = xeoix · eoi∗ · xeoix = xeoi∗x, and so eoi∗x L x.
Notice that eoi∗x ∈ Eo and so eoi∗xeo = eoi∗x · xeo

L xeo. It follows from eoi∗xeo, xeo
∈ Eo that eoi∗xeo

∈ VSo (xeo).
Clearly xeo

∈ V(eoi) and xeo
∈ Eo gives VSo (eoi) = VSo (xeo). Therefore eoi∗xeo

∈ VSo (eoi) and by ieo is idempotent,
we have eoi = eoi · eoi∗xeo

· eoi = eo(ieo)(ieo)i∗xeoeoi = eoi(eoieoi∗xeoeoi) = eoieoi. Thus eoi is idempotent and we
have proved that if eoi is regular, then it is idempotent. In a similar way, we may show that EoΛ ⊆ E and if
for all λ ∈ Λ, eo

∈ Eo, if λeo is regular, then it is idempotent.
(Sufficiency) Let e ∈ I with e L ao+

∈ Eo. For any x ∈ VSo (e), xo
∈ VSo (x), we have xoxe · x · xoxe = xox(exe) =

xoxe, that is, xoxe is regular and so by the condition xoxe ∈ E. Thus e L xoxe R xox and e R exxo
L xxo with

exxo
∈ IEo

⊆ E.
Similarly, ao+

L e R exxo implies ao+
R ao+xxo

L xxo with ao+xxo
∈ EoEo

⊆ Eo, and so ao+
L xxoao+

R xxo,
thus xxoao+ = xe. Therefore,

xoao+xo = xo
· xe(xxoao+xo) = xo(xe)(xe)xo = (xoxe)xo = xo

ao+xoao+ = ao+(xoxe) · (exxo)ao+ = ao+
· exe = ao+e = ao+.

Thus VSo (VSo (e)) ⊆ V(ao+) = E(ao+).
From the above proof, xo

∈ VSo (ao+) ⊆ Eo and consequently, x ∈ VSo (xo) ⊆ Eo since So is quasi-adequate. It
is easy to check that E(ao+) ⊆ VSo (VSo (e)) and so VSo (VSo (e)) = E(ao+). Since So is quasi-adequate, this implies
that VSo (e) = E(ao+). Hence, if e, f ∈ I with e L f , then VSo (e) = VSo ( f ).
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Dually, if i, j ∈ Λ with i R j, then VSo (i) = VSo ( j).
Similar to the proof of Theorem 2.1 of [10], we have that if a is regular, for any ao

∈ VSo (a), then
VSo (a) = VSo (aoa)aoVSo (aao).

For a, b ∈ Re1S, if VSo (a)∩VSo (b) , ∅, then we can take xo
∈ VSo (a)∩VSo (b) and so VSo (a) = VSo (xoa)xoVSo (axo)

and VSo (b) = VSo (xob)xoVSo (bxo). Obviously, axo, bxo
∈ I and axo

L bxo, thus VSo (axo) = VSo (bxo). Similarly,
VSo (xoa) = VSo (xob). Therefore VSo (a) = VSo (b).

A generalised quasi-adequate transversal So of an abundant semigroup S is called a refined generalised
quasi-adequate transversal, for short, an RGQA transversal of S, if it satisfies

(∀a, b ∈ Re1S), [VSo (a) ∩ VSo (b) , ∅ ⇒ VSo (a) = VSo (b)].

Obviously, a regular semigroup with an orthodox transversal is an abundant semigroup with a gen-
eralised quasi-adequate transversal. By means of Lemma 1.2, the transversal is refined. Thus, RGQA
transversals are the generalisation of orthodox transversals in the abundant case.

By means of the properties of adequate transversal [17,Theorem 3.3], one can easily observe that an
abundant semigroup with an adequate transversal is an abundant semigroup with an RGQA transversal.

In the following, we will investigate when an RGQA transversal is an orthodox transversal and when
an RGQA transversal is an adequate transversal, respectively. We have the following result.

Theorem 3.2 Let So be a refined generalised quasi-adequate transversal of the abundant semigroup S. Then
(i) So is a regular subsemigroup of S, if and only if S is a regular semigroup. In this case, So is an orthodox transversal
of S.
(ii) So is an adequate transversal of S if and only if So is an adequate semigroup.

Proof. (i) (Sufficiency) Suppose that S is a regular semigroup, then every element in S is regular. It follows
from Proposition 2.3 that every element in S has an inverse in So, that is VSo (a) , ∅ for each a ∈ S. From
Theorem 3.1 we deduce that for any a, b ∈ S, VSo (a) ∩ VSo (b) , ∅ implies that VSo (a) = VSo (b). Notice that
in this case So is an orthodox subsemigroup of S, and it follows from Lemma 1.2 that So is an orthodox
transversal of S.

(Necessity) Let a ∈ S, a = iaλ, where i, λ ∈ E, i L a+
∈ Eo, λ R a∗ ∈ Eo. If So is a regular subsemigroup of

S, then a is a regular. From a∗ L a R a+, we have a has a unique inverse x ∈ Ra∗ ∩ La+ , with the property that
ax = a+, xa = a∗. Notice that λ R a∗ = xa L i L a+

= a∗ and so axa = iaλ · xax · iaλ = ia · xax · aλ = i(axaxa)λ =
eaλ = a. Thus a is regular and the semigroup S is regular.

(ii) It is clear that the necessary condition is true.
(Sufficiency) Suppose that x ∈ S, x = ixλ with i, λ ∈ E, i L x+

∈ Eo, λ R x∗ ∈ Eo, in the following we will
show if So is an adequate semigroup, then x is unique. If x = i′x′λ′ with i′, λ′ ∈ E, i′ L (x′)+

∈ Eo, λ′ R
(x′)∗ ∈ Eo, then i R∗ x R∗ i′ L (x′)+. Thus (x′)+i · i′ · (x′)+i = (x′)+i′(x′)+i = (x′)+i and so (x′)+i is regular. It
follows from the Theorem 3.1 that (x′)+i ∈ E and (x′)+

R (x′)+i L iLx+. From Lemma 1.7 we have (x′)+
R

(x′)+x+
L x+

R x+(x′)+
L (x′)+. If So is adequate, the Eo is a semilattice and x+(x′)+ = (x′)+x+. Thus x+, (x′)+

are in the sameH-class and so x+
= (x′)+ and similarly x∗ = (x′)∗. Consequently x = x+xx∗ = (x′)+x(x′)∗ = x′.

Therefore So is the adequate transversal of S.

Corollary 3.3 In the class of abundant semigroups, refined generalised quasi-adequate transversals are a generalisation
of both orthodox transversals and adequate transversals.

Theorem 3.4 Let So be an RGQA transversal of S, S� be an RGQA transversal of So. Then S� is an RGQA
transversal of S.

Proof. For any a ∈ S, since So is an RGQA transversal of S, there exists a ∈ CSo (a) such that a = ea f , where
e, f ∈ E, e L a+

∈ Eo, f R a∗ ∈ Eo. By means of S� is an RGQA transversal of So, there exists a� ∈ CS� (a)
such that a = ia� j, where i, j ∈ E, i L (a�)+

∈ E�, j R (a�)∗ ∈ E�. Thus a = ea f = e · ia� j · f = (ei)a�( j f ). Since
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i R∗ a R∗ a+ and i, a+
∈ E, we have i R a+

∈ Eo. Combining this with i L (a�)+
∈ E� ⊆ Eo, we obtain that

i ∈ So
∩ E = Eo. Thus ei ∈ IEo

⊆ E and similarly j f ∈ EoΛ ⊆ E. Also, from e L a+
R
∗ a R∗ i, by Lemma 1.7, we

deduce that e R ei L i, and so ei L i L (a�)+
∈ E�. Similarly, j f R j R (a�)∗ ∈ E�. Therefore a� ∈ CS� (a) and S�

is a generalised quasi-adequate transversal of S.
For any regular element a ∈ S,VS� (a) , ∅ by Proposition 2.3. If a, b ∈ Re1S,VS� (a) ∩ VS� (b) , ∅, since

S� ⊆ So,VS� (a) ⊆ VSo (a) then VSo (a) ∩ VSo (b) , ∅ and so VSo (a) = VSo (b) by Theorem 3.1. Meanwhile S� is an
RGQA transversal of So, it is easy to see that VS� (a) = VS� (b). Therefore S� is an RGQA transversal of S.

Theorem 3.5 Let S be an abundant semigroup with an RGQA transversal So. Then CSo (a) = VSo (a+)aVSo (a+),
where a = ea f with e, f ∈ E, e L a+, f R a∗ and consequently,

CSo (a) ∩ CSo (b) , ∅ ⇒ CSo (a) = CSo (b).

Proof. Notice that CSo (a) = {a ∈ So
|a = ea f , e L a+, f R a∗ for some e, f ∈ E, a+, a∗ ∈ Eo

}, we first show
CSo (a) ⊆ VSo (a+)aVSo (a∗). Let b ∈ CSo (a), that is, let a = ib j, i L b

+
, j R b

∗

for some b
+
, b
∗

∈ Eo. Then a = a+aa∗

and b = b
+

ab
∗

with a+
L e R∗ a L∗ f R a∗ and b

+
L i R∗ a L∗ j R b

∗

. It is easy to see b
+

e · i · b
+

e = b
+

e and so
b

+
e ∈ E. Similarly f b

∗

∈ E. From a+
L e R i L b

+
and a∗ R f L j R b

∗

, we deduce that b
+

e = b
+

a+
∈ Eo and

f b
∗

= a∗b
∗

∈ Eo. Hence we have b = b
+

(ea f )b
∗

= (b
+

e)a( f b
∗

) =(b
+

a+)a(a∗b
∗

) with b
+

a+
∈ VSo (a+), a∗b

∗

∈ VSo (a∗).
This shows that CSo (a) ⊆ VSo (a+)aVSo (a∗).

We now show that VSo (a+)aVSo (a∗) ⊆ CSo (a). Certainly, the regular elements of So form an orthodox
subsemigroup of So since So is a quasi-adequate semigroup. Then for any α ∈ VSo (a+), β ∈ VSo (a∗), we have
that α and β are both idempotents of So.

So, a = ea f = e(αa+a(a∗β) f = e(αaβ) f with e L a+
L αa+

R
∗ αaβ, f R a∗ R a∗β L∗ αaβ, that is, αa+ is the

typical element of (αaβ)+, a∗β is the typical element of (αaβ)∗. Therefore αaβ ∈ CSo (a) and we have in fact
shown that CSo (a) = VSo (a+)aVSo (a∗). Consequently, CSo (a) ∩ CSo (b) , ∅ ⇒ CSo (a) = CSo (b).

Theorem 3.6 Let S be an abundant semigroup with an RGQA transversal So. If CSo (a)∩ Eo , ∅ or VSo (a)∩ Eo , ∅,
then CSo (a) = VSo (a) ⊆ Eo.

Proof. If CSo (a) ∩ Eo , ∅, take x ∈ CSo (a) ∩ Eo, for any x̄ ∈ CSo (x), we have x̄ = x̄+xx̄∗, and so x̄ ∈ Eo. It
is clear that x ∈ CSo (a) ∩ CSo (x), by Theorem 3.5, CSo (a) = CSo (x) ⊆ Eo. Similarly, if VSo (a) ∩ Eo , ∅, for
any a′ ∈ VSo (a) ∩ Eo, it follows from a′ ∈ VSo (a) ∩ VSo (a′) and the definition of RGQA transversals that
VSo (a) = VSo (a′) ⊆ Eo.

If VSo (a) ∩ Eo , ∅, for any a′ ∈ VSo (a) ∩ Eo, a = aa′ · a′ · a′a, aa′ ∈ E with aa′ L a′ ∈ Eo and a′a ∈ E with
a′a R a′ ∈ Eo. Thus a′ ∈ CSo (a) and so VSo (a) ⊆ CSo (a). Conversely, let ao

∈ CSo (a), from the above proof
a′ ∈ CSo (a) ∩ Eo and so ao

⊆ Eo. From eao
∈ IEo

⊆ E, ao f ∈ EoΛ ⊆ E, we deduce that

aaoa = e(ao f ) · ao
· (eao) f = eao(eao) f = eao f

and
aoaao = (aoe)ao( f ao) = ao(eao) f ao = (ao f )ao = ao,

since eao
L ao and ao f R ao. Thus ao

∈ VSo (a), that is CSo (a) ⊆ VSo (a). Therefore CSo (a) = VSo (a) and so
CSo (a) = VSo (a) ⊆ Eo.

Similarly, if CSo (a) ∩ Eo , ∅, then VSo (a) = CSo (a) and so VSo (a) = CSo (a) ⊆ Eo.

Theorem 3.7 Let S be an abundant semigroup with an RGQA transversal So. Then IΛ = {x ∈ S : (∃xo
∈ VSo (x))xo

∈

Eo
} = {x ∈ S : VSo (x) ⊆ Eo

} and consequently, So
∩ IΛ = Eo.
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Proof. By Theorem 3.6, the second equality certainly holds. If x ∈ S with some(any) xo
∈ VSo (x) ∩ Eo, then

x = xxox = xxo
· xox ∈ IΛ. Conversely, for any i ∈ I, j ∈ Λ, there exist io, jo ∈ Eo such that io L i, jo R j. Let

(io jo)o
∈ VSo (io jo). Then (io jo)o

∈ Eo and so

jo(io jo)oioi j jo(io jo)oio = ( jo(io jo)oio)2 = jo(io jo)oio,

i j · jo(io jo)oio · i j = i · jo(io jo)oio · j = i · io jo(io jo)oio jo · j = i · io jo · j = i j.

Therefore jo(io jo)oio ∈ VSo (i j) ∩ Eo and the equlities hold.

In the following, we will consider the case when IΛ is closed.

Theorem 3.8 Let S be an abundant semigroup with an RGQA transversal So. Then the following statements are
equivalent: (1) IΛ is a subsemigroup of S; (2) ΛI ⊆ IΛ; in this case, we have VSo (E) ⊆ Eo; (3) IΛ = 〈E〉.

Proof. (1) =⇒ (2). For any i ∈ I, j ∈ Λ, there exist io, jo ∈ Eo such that io L i, jo R j. If (1) holds, then
ji = jo jiio ∈ EoΛIEo

⊆ IΛIΛ ⊆ IΛ. Therefore ΛI ⊆ IΛ. Now if x ∈ E, then for any xo
∈ VSo (x), xo = xoxxo =

xox · xxo
∈ ΛI ⊆ IΛ. By Theorem 3.7, xo

∈ Eo. Hence (2) holds.
(2) =⇒ (3). Let x, y ∈ IΛ. Then by Theorem 3.7, there exist xo

∈ VSo (x), yo
∈ VSo (y) with xo, yo

∈ Eo. If (2)
holds, then there exists (xoxyyo)o

∈ VSo (xoxyyo) with (xoxyyo)o
∈ Eo and so yo(xoxyyo)oxo

∈ Eo. It is easy to
check that yo(xoxyyo)oxo

∈ VSo (xy). Hence xy ∈ IΛ by Theorem 3.7 and IΛ is a subsemigroup. By the proof
of (1) =⇒ (2), we have VSo (E) ⊆ Eo and so E ⊆ IΛ by Theorem 3.7. It is obvious that IΛ ⊆ 〈E〉. Therefore
IΛ = 〈E〉.

(3) =⇒ (1). This is trivial.

Theorem 3.9 Let S be an abundant semigroup with an RGQA transversal So. If CSo (a)∩CSo (b) , ∅ and a L∗ b, a R∗ b,
then a = b.

Proof. Let x ∈ CSo (a) ∩ CSo (b). Then a = eax fa, ea L x+, fa R x∗, b = ebx fb, eb L x
′

, fb R x∗
′

, for some
x+, x∗, x+′ , x∗

′

∈ Eo with x+
R
∗ x R∗ x+′ , x∗ L∗ x L∗ x∗

′

. From a L∗ b, a R∗ b and Lemma 1.7, we deduce that
eax+′

= eb and x∗
′

fa = fb. Thus

a = eax fa = ea(x+′bx∗
′

) fa = (eax+′ )b(x∗
′

fa) = ebb fb = b.

4. The main theorem

The main purpose in this section is to establish a structure theorem for abundant semigroups with quasi-
ideal RGQA transversals. In the following R denotes an abundant semigroup with a right ideal RGQA
transversal So. Then by Proposition 2.7, Λx ⊆ Eo for each x ∈ R and E(R) = I. For x ∈ R, the R∗-class of R
containing x will be denoted by R∗x and we define K(x) = K(y) if R∗x = R∗y and CSo (x) = CSo (y) for x, y ∈ R.
The relation K , defined on R by (x, y) ∈ K if and only if K(x) = K(y), is an equivalence relation on R. If L
denotes an abundant semigroup with a left ideal RGQA transversal So, then by Proposition 2.7, Ia ⊆ Eo for
each a ∈ L and E(L) = Λ.

Theorem 4.1 Let L and R be a pair of abundant semigroups with a common RGQA transversal So. Let So be a left
ideal of L and a right ideal of R. Let L×R −→ So described by (p, x) 7−→ p ∗ x be a mapping such that for any p, q ∈ L
and for any x, y ∈ R:

(1) (p ∗ x)y = p ∗ (xy) and p(q ∗ x) = (pq) ∗ x;
(2) if {x, p} ∩ So , ∅, then p ∗ x = px;
(3) For any q1, q2 ∈ L1, x1, x2 ∈ R1, if y1 R

∗ y2 in R, then x1(q1∗y1) = x2(q2∗y1) if and only if x1(q1∗y2) = x2(q2∗y2);
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if p1 L
∗ p2 in L, then (p1 ∗ x1)q1 = (p1 ∗ x2)q2 if and only if (p2 ∗ x1)q1 = (p2 ∗ x2)q2.

Define a multiplication on the set

Γ ≡ R/ K | × | L/ L∗= {(K(x), L∗p) ∈ R/ K × L/ L∗ : ∃z ∈ CSo (x) ∩ CSo (p) }

by
(K(x),L∗p) (K(y),L∗q) = (K(ix(p ∗ y)),L∗(p∗y)λq

).

Then Γ is an abundant semigroup with a quasi-ideal RGQA transversal that is isomorphic to So.
Conversely, every abundant semigroup with a quasi-ideal RGQA transversal can be obtained in this manner.

To prove this theorem, we give a sequence of Lemmas as follows.

Lemma 4.2 The multiplication on Γ is well-defined.

Proof. We first prove that (K(ix(p ∗ y)),Ł∗(p∗y)λq
) ∈ Γ, by means of Lemma 4.3 in [23], we have

ix(p ∗ y) = ixx+(p ∗ y) = ixx(λp ∗ iy)yλy = ix[x(λp ∗ iy)]+
· x(λp ∗ iy)y · [(λp ∗ iy)y]∗λy,

and
(p ∗ y)λq = (p ∗ y)q∗λq = ip · x(λp ∗ iy)yλq = ip[x(λp ∗ iy)]+

· x(λp ∗ iy)y · [(λp ∗ iy)y]∗λq.

If ix, i′x ∈ Ix, with ix L x+, i′x L x+′ for some x ∈ CSo (x) ∩ CSo (a), then R∗ix(p∗y) = R∗i′x(p∗y) and CSo (ix(p ∗ y)) ∩
CSo (i′x(p ∗ y)) , ∅, and therefore the multiplication on Γ is not dependent on the choice of ix. There is a dual
result for λq.

We prove that for (K(x),L∗p) ∈ Γ, we have ix · p = x · λp. In fact, if (K(x),L∗p) ∈ Γ, then there exists

x ∈ CSo (x) ∩ CSo (p) with x = ixxλx, ix L x+, λx R x∗ for some x+, x∗ ∈ Eo and a = ipxλp, ip L x+′ , λp R x∗
′

for
some x+′ , x∗

′

∈ Eo. Hence
ixp = ixipxλp = ixip · x · x

∗λp

and
xλp = ixxλxλp = ixx+′

· x · λxλp.

It is easy to see that ixip = ixx+′ and x∗λp = λxλp since ip, λx ∈ Eo and so ixp = xλp.
Next we show that if (K(x),L∗p) and (K(x′),L∗p′ ) in Γ are such that (K(x),L∗p) = (K(x′),L∗p′ ), then ixp = ix′p′.

From K(x) = K(x′), that is, from x R∗ x′ and CSo (x)∩ CSo (x′) , ∅with x, x′ ∈ R, we deduce that x = ixxλx, x′ =

ix′xλx′ with x+
L ix R∗ x R∗ x′ R∗ ix′ L x+′ , x+

R
∗ x R∗ x+′ and λx, λx′ ∈ Eo. Thus

x′ = ix′xλx′ = ix′ (x
+xx∗)λx′ = ix′ (x

+xx∗)λx′ = ixxx∗λx′ = xx∗λx′ .

Meanwhile, h = x∗λx′ ∈ EoEo
⊆ Eo with x∗ R h L∗ x′. Since this result will be frequently mentioned in this

section, it is worth to denote it by a remark.
Remark 1 If K(x) = K(x′) in R, then x′ = xh with h ∈ Eo and x∗ R h L∗ x′.
Thus xλp = ixxλxλp and x′λp′ = xhλp′ = ixxλxhλp′ . Since x ∈ R we have λx ∈ Eo and consequently

λxhλp′ ∈ EoEoΛ ⊆ EoΛ ⊆ E and λxλp ∈ EoΛ ⊆ E. It is easy to check that λxhλp′ and λxλp are in the sameH ∗-
class and hence λxhλp′ = λxλp. Therefore xλp = x′λp′ and consequently ixp = ix′p′.

Finally we shall show that the multiplication on Γ is not dependent on the choice of x, p, y and q. Let

(K(x), L∗p) = (K(x′), L∗p′ ) and (K(y), L∗q) = (K(y′), L∗q′ ).

Then
(K(x), L∗p) (K(y), L∗q) = (K(ix(p ∗ y)),Ł∗(p∗y)λq

)

and
(K(x′), L∗p′ ) (K(y′), L∗q′ ) = (K(ix′ (p′ ∗ y′)), L∗(p′∗y′)λq′

).



X. Kong, P. Wang / Filomat 35:1 (2021), 299–313 309

In the following part, we will prove that CSo (ix(p∗y))∩CSo (ix′ (p′ ∗y′)) , ∅. Since K(x) = K(x′), K(y) = K(y′),
by Remark 1, x = x′l and y = y′h with l, h ∈ Eo and l L∗ x, h L∗ y. Similarly, we may show that

ix(p ∗ y) = ix′ (p′ ∗ y) = ix′ (p′ ∗ y′)h = ix′ (p′ ∗ y′)[ix′(p′∗y′)]∗h

and [ix′ (p′ ∗ y′)]∗h, ix′ (p′ ∗ y′))∗ are in the sameD-class. It follows that CSo (ix(p ∗ y)) ∩ CSo (ix′ (p′ ∗ y′)) , ∅.
We then show that ix(p ∗ y) R∗ ix′ (p′ ∗ y′). By the above proof of CSo (ix(p ∗ y))∩CSo (ix′ (p′ ∗ y′)) , ∅, we have

ix(p ∗ y) = ix′ (p′ ∗ y′)h. Similarly, we have ix′ (p′ ∗ y′) = ix(p ∗ y)h′ for some h′ ∈ Eo. Thus ix(p ∗ y) R∗ ix′ (p′ ∗ y′)
and dually, (p ∗ y)λq L

∗ (p′ ∗ y′)λq′ .

Lemma 4.3 The set Γ is an abundant semigroup.

Proof. For any e, f , 1 ∈ Γ, where e = (K(x),L∗p), f = (K(x1),L∗p1
), 1 = (K(x2),L∗p2

), we have

(e f )1 = (K(ix(p ∗ x1)),L∗(p∗x1)λp1
) (K(x2),L∗p2

)

= (K(iix(p∗x1) (((p ∗ x1)λp1 ) ∗ x2)),L∗(((p∗x1)λp1 )∗x2)λp2
)

= (K(ix(p ∗ x1)+ (p ∗ x1)(λp1 ∗ x2)),L∗(p∗x1)(λp1 ∗x2)λp2
)

= (K(ix(p ∗ x1) (λp1 ∗ x2)),L∗(p∗x1)(λp1 ∗x2)λp2
)

and

e( f1) = (K(x),L∗p) (K(ix1 (p1 ∗ x2)),L∗(p1∗x2)λp2
)

= (K(ix(p ∗ (ix1 (p1 ∗ x2))),L∗(p∗(ix1 (p1∗x2)))λp2
)

= (K(ix(p ∗ (x1(λp1 ∗ x2))),L∗(p∗(x1(λp1 ∗x2)))λp2
) (ix1 p1 = x1λp1 )

= (K(ix(p ∗ x1)(λp1 ∗ x2)),L∗(p∗x1)(λp1 ∗x2)λp2
).

Hence (e f )1 = e( f1) and so Γ is a semigroup.
Let (K(x),L∗p) ∈ Γ. We will prove that (K(x),L∗p) ∈ E(Γ) if and only if p ∗ x = ipx(= pλx). Since

(K(x),L∗p)(K(x),L∗p) = (K(ix(p ∗ x)),L∗(p∗x)λp
), if p ∗ x = ip · x = p · λx, then we have

(K(ix(p ∗ x)),L∗(p∗x)λp
) = (K(ix · ip · x),L∗pλxλp

) = (K(x),L∗p).

Thus (K(x),L∗p) ∈ E(Γ). Conversely, if (K(x),L∗p) ∈ E(Γ), then K(ix(p∗x)) = K(x) and so by Remark 1, ix(p∗x)l = x
for some l ∈ Eo. So,

x = ix(p ∗ x)l = ix(p ∗ xl) = ix(p ∗ x).

Hence p ∗ x = ipx.
Suppose that (K(x),L∗p) ∈ Γ, let u = (K(ix),L∗

x+ ) and v = (K(x∗),L∗λp
), where x = ixxλx, p = ipxλp and

ix L x+, λp R x∗ for some x+, x∗ ∈ Eo. Then we have u, v ∈ E(Γ) and u R∗ (K(x),L∗p) L∗ v.
In fact, by the above result, u, v ∈ E(Γ) is clear. It follows from x+

∈ Eo and xλp L
∗ ipxλp = p that

(K(ix),L∗
x+ )(K(x),L∗p) = (K(ix(x+

∗ x)),L∗
(x+
∗x)λp

) = (K(ixx+x),L∗
x+xλp

)

= (K(x),L∗xλp
) = (K(x),L∗p).

If (K(y),L∗q), (K(z),L∗c) ∈ Γ1 are such that (K(y),L∗q)(K(x),L∗p) = (K(z),L∗c)(K(x),L∗p), then (K(iy(q ∗ x)),L∗(q∗x)λp
) =

(K(iz(c ∗ x)),L∗(c∗x)λp
). Thus

iy(q ∗ x) R∗ iz(c ∗ x), CSo (iy(q ∗ x)) ∩ CSo (iz(c ∗ x)) , ∅ and (q ∗ x)λp L
∗ (c ∗ x)λp.
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By (q ∗x)λp L
∗ (c ∗x)λp, we have (q ∗x)λpλx L

∗ (c ∗x)λpλx and so (q ∗x) L∗ (c ∗x). Therefore, iy(q ∗x) L∗ iz(c ∗x)
since iqiyiq = iq and icizic = ic. Hence by Theorem 3.9, iy(q ∗ x) = iz(c ∗ x). From x R∗ ix and (3) we deduce that
iy(q ∗ ix) = iz(c ∗ ix), and so

q ∗ ix = iq(q ∗ ix) L∗ iyiq(q ∗ ix) = izic(c ∗ ix) L∗ ic(c ∗ ix) = c ∗ ix.

Therefore,

(K(y),L∗q)(K(ix),L∗
x+ ) = (K(iy(q ∗ ix)),L∗

(q∗ix)x+ )

= (K(iz(c ∗ ix)),L∗
(c∗ix)x+ )

= (K(z),L∗c)(K(ix),L∗
x+ ).

By Lemma 1.4, u R∗ (K(x),L∗p).
Dually, we have v L∗ (K(x),L∗p). Therefore Γ is an abundant semigroup.

Lemma 4.4 Let W = {(K(xo),L∗xo ) : xo
∈ So
}. Then W is a quasi-adequate ∗-subsemigroup of Γ, which is isomorphic

to So.

Proof. Obviously W ⊆ Γ. For (K(xo),L∗xo ), (K(yo),L∗yo ) ∈W, we have

(K(xo),L∗xo ) (K(yo),L∗yo ) = (K(ixo xoyo),L∗xo yoλyo
) = (K(xoyo),L∗xo yo ) ∈W,

and so W is a subsemigroup. For any xo
∈ So, define xoϕ = (K(xo),L∗xo ), it is clear that ϕ is an isomorphism.

Thus So � W and so E(W) = {(K(xo),L∗xo ) : xo
∈ Eo
}.

To prove that W is a ∗−subsemigroup, let (K(xo),L∗xo ) ∈W. By the proof of Lemma 4.3, u = (K(xo+),L∗xo+ ) ∈
E(W) and u R∗ (K(xo),L∗xo ). Similarly, v = (K(xo∗),L∗xo∗ ) ∈ E(W) and v L∗ (K(xo),L∗xo ).

Lemma 4.5 Let (K(x1),L∗p1
), (K(x2),L∗p2

) ∈ Γ. Then
(1) (K(x1),L∗p1

) R∗ (K(x2),L∗p2
) if and only if x1 R

∗ x2.
(2) (K(x1),L∗p1

) L∗ (K(x2),L∗p2
) if and only if p1 L

∗ p2.

Proof. (1). By Lemma 4.3, we need only show that

(K(ix1 ),L∗
x1

+ ) R∗ (K(ix2 ),L∗
x2

+ ) if and only if x1 R
∗ x2.

Then u1 = (K(ix1 ),L∗
x1

+ ) R∗ (K(ix2 ),L∗
x2

+ ) = u2

⇐⇒ u1u2 = u2 and u2u1 = u1, that is (K(ix1 x1
+ix2 ),L∗

x1
+ix2 x2

+ ) = (K(ix2 ),L∗
x2

+ ) and (K(ix2 x2
+ix1 ),L∗

x2
+ix1 x1

+ ) =

(K(ix1 ),L∗
x1

+ )
⇐⇒ (K(ix1 ix2 ),L∗

x1
+ix2

) = (K(ix2 ),L∗
x2

+ ) and (K(ix2 ix1 ),L∗
x2

+ix1

) = (K(ix1 ),L∗
x1

+ )

since ix1 L x1
+, ix2 L x2

+ and x1
+ix2 , x2

+ix1 ∈ Eo.
⇐⇒ ix1 ix2 R

∗ ix2 , ix2 ix1 R
∗ ix1

⇐⇒ x1 R
∗ x2 since x1 R

∗ ix1 , x2 R
∗ ix2 .

(2) This is dual to (1).

Lemma 4.6 W is a generalised quasi-adequate transversal of Γ.

Proof. Let 1 = (K(x),L∗p) ∈ Γ. Then we have the following result:

CW(1) = {(K(z),L∗z) ∈W : z ∈ CSo (x) ∩ CSo (p)}.
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Let V = {(K(z),L∗z) ∈W : z ∈ CSo (x)∩CSo (p)} and (K(z),L∗z) ∈ V. For z ∈ CSo (x)∩CSo (p), there exist idempotents
i, λ, ip, λp such that x = izλ, p = ipzλp with i L z+, λ R z∗ for some z+, z∗ ∈ Eo. Thus

(K(x),L∗p) = (K(i),L∗z+ )(K(z),L∗z)(K(z∗),L∗λp
).

Moreover, (K(i),L∗z+ ) L (K(z+),L∗z+ ) R∗ (K(z),L∗z) and (K(z∗),L∗λp
) R (K(z∗),L∗z∗ ) L

∗ (K(z),L∗z).Therefore (K(z),L∗z) ∈
CW(1), and V ⊆ CW(1).

Conversely, if (K(z),L∗z) ∈ CW(1), then there exist (K(y1),L∗q1
), (K(y2),L∗q2

) ∈ E(Γ) such that

(K(x),L∗p) = (K(y1),L∗q1
)(K(z),L∗z)(K(y2),L∗q2

),

and (K(y1),L∗q1
) L (K(z),L∗z)+, (K(y2),L∗q2

) R (K(z),L∗z)∗ for some (K(z),L∗z)+, (K(z),L∗z)∗ ∈ E(W). It follows from
Lemma 1.6 that (K(y1),L∗q1

) R∗ 1 L∗ (K(y2),L∗q2
). Hence y1 R

∗ x and p L∗ q2.
Again by Lemma 4.4, there exist x′, x′′ ∈ Eo such that (K(z),L∗z)+ = (K(x′),L∗x′ ) with x′ R∗ z, and (K(z),L∗z)∗ =

(K(x′′),L∗x′′ ) with x′′ L∗ z. It follows that

(K(x′),L∗x′ )(K(x),L∗p)(K(x′′),L∗x′′ ) = (K(z),L∗z).

Thus, x′xλpx′′ K z and x′xλpx′′ L∗ z, and so z = x′ · x · λpx′′ by Remark 1.
Since (K(y2),L∗q2

) R (K(z),L∗z)∗ = (K(x′′),L∗x′′ ) we have y2 R
∗ x′′ and

(K(x′′),L∗x′′ )(K(y2),L∗q2
) = (K(y2),L∗q2

).

Hence
(K(x′′y2),L∗x′′y2λq2

) = (K(y2),L∗q2
).

From y2 R
∗ x′′ we have y2 = x′′y2 ∈ So since So is a right ideal of R. It follows that q2 L

∗ x′′y2λq2 = y2λq2 and
so

y2λq2 y2 = (y2λq2 ) ∗ y2 = y2λq2λy2 = y2.

Thus y2 is regular and y2 = y2λq2 λy2 ∈ ΛEo
⊆ Eo. Therefore λp R λpx′′ L x′′ since λp and x′′ are in the same

rectangular band and λpx′′ ∈ ΛEo
⊆ Eo.

Since (K(x),L∗p) ∈ Γ, there exists x ∈ CSo (x)∩CSo (p) such that x = ixxλx and p = ipxλp with λx R x∗
′

, λp R x∗

for some x∗, x∗
′

∈ Eo. Thus x L∗ λx L x∗λx R x∗ R λp R λpx′′. Denote x∗λx = x∗, then x L∗ x∗ ∈ Eo and
λpx′′ R x′′. Similarly, iy1 x′ ∈ IEo

⊆ E and x R∗ y1 R
∗ iy1 x′ L x′. From y = x′xλpx′′ we deduce that y ∈ CSo (x).

Similarly, we may show that y ∈ CSo (p), and hence CW(1) ⊆ V. We have in fact proved W is a generalised
quasi-adequate transversal of Γ.

Lemma 4.7 The generalised quasi-adequate transversal W is refined and is a quasi-ideal of Γ.

Proof. For any (K(s), L∗s) ∈ E(W), (K(e), L∗y+ ) ∈ I(Γ), with s, y+
∈ Eo and e ∈ I, e L y+, we have

(K(e),L∗y+ ) (K(s),L∗s) = (K(ie(y+
∗ s)), L∗(y+∗s)λs

) = (K(e(y+s)), L∗y+sλs
) = (K(es), L∗y+s)

with p ∗ x = (y+s) ∗ (es) = y+ses = y+s and ip · x = iy+ses = y+s. Thus p ∗ x = ip · x and (K(e),L∗y+ ) (K(s),L∗s) is
idempotent by the proof of Lemma 4.3.

Computing

(K(s), L∗s) (K(e), L∗y+ ) = (K(is(s ∗ e)), L∗(s∗e)λy+
) = (K(isse),L∗(s∗e)λy+

) = (K(se),L∗se)

since is R s, e L y+
L λy+ . From se = sey+

∈ EoIEo
⊆ SoRSo

⊆ So we deduce that (K(se),L∗se) ∈ W. By Lemma
4.4, W � So, thus (K(se),Ł∗se) is regular if and only if se is regular. Since se ∈ EoI, if se is regular, So being an
RGQA transversal of R together with Theorem 3.1 give that se is idempotent, and so se ∈ Eo. By Lemma 4.4



X. Kong, P. Wang / Filomat 35:1 (2021), 299–313 312

again (K(se),L∗se) ∈ E(W). We have in fact obtained a stronger conclusion: if (K(s), L∗s) (K(e), L∗y+ ) is regular,
then it is an idempotent of W. By meas of Theorem 3.1, W is an RGQA transversal of Γ.

To show that W is a quasi-ideal, let m = (K(mo),L∗mo ), n = (K(no),L∗no ) ∈W and 1 = (K(x),L∗p) ∈ Γ. Since So

is a right ideal of R and a left ideal of L, we have moxλpno
∈ So
· So
⊆ So. Thus

mrn = (K(mo),L∗mo ) (K(x),L∗p) (K(no),L∗no )
= (K(imo (mox)(λpno)), L∗(mox)(λpno)λno

)

= (K(mox · λpno),L∗mox·λpno ) ∈W.

Together with the above result, this implies that W is a quasi-ideal RGQA transversal of Γ.

Now we prove the converse half of Theorem 4.1. Let S be an abundant semigroup with a quasi-ideal
RGQA transversal So. Let

R = {x ∈ S : (∃λx ∈ Λx) λx ∈ Eo
} and L = {p ∈ S : (∃ip ∈ Ip) ip ∈ Eo

}.

Then R and L are abundant semigroups with a common quasi-adequate transversal So and So is a right ideal
of R and a left ideal of L.

For each (p, x) ∈ L × R, define p ∗ x = px. Then p ∗ x = px = ippxλx ∈ So for some ip, λx ∈ Eo since So is a
quasi-ideal of S. Clearly the map satisfies (1), (2) and (3). Therefore we acquire an abundant semigroup Γ
in the way of the direct part of Theorem 4.1. Finally we prove that Γ is isomorphic to S.

For any (K(x),L∗p) ∈ Γ, we define δ : Γ −→ S by (K(x),L∗p)δ = ixp, where ix ∈ Ix and ix L x+ for some
x ∈ CSo (x) ∩ CSo (p) and some x+

∈ Eo. Obviously the definition of δ is not dependent on the choice of ix.
To show that δ is well-defined, if (K(x),L∗p) = (K(y),L∗q), then R∗x = R∗y,CSo (x) = CSo (y),L∗p = L∗q. We notice

that p L∗ ixp R∗ ix. In fact, for any 1, h ∈ S1, if 1ixp = hixp, then 1ixip = hixip and consequently, 1ixipx+
= hixipx+,

that is 1ix = hip and so ixp L∗ ix. Since L∗ is a right congruence, we have p L∗ λp = x∗λp L
∗ xλp = x+p L∗ ixp.

Thus
ixp R∗ ix R∗ x R∗ y R∗ iy R

∗ iyq and ixp L∗ p L∗ q L∗ iyq.

Consequently, ixp H ∗ iyq.
From x R∗ y and CSo (x) = CSo (y), by Remark 1, there exists h ∈ Eo such that x = yh, moreover h L∗ x.

Thus xλp = yhλp = iyyλyhλp and yλq = iyyλyλq. Since y ∈ R we have λy ∈ Eo and consequently λy · h · λp ∈

EoEo
· Λ ⊆ EoΛ ⊆ E and λyλq ∈ EoΛ ⊆ E. It is easy to see that λyhλp and λyλq are in the sameH ∗-class and

hence λyhλp = λyλq. Therefore xλp = yλq and so ixp = iyq, that is θ is well-defined.
Let (K(x),L∗p), (K(y),L∗q) ∈ Γ. Then from yλq = iyq, we obtain

[(K(x),L∗p)(K(y),L∗q)]δ = (K(ixpy),L∗pyλq
)δ = iixpy · pyλq = ixipy · pyλq

= ixpyλq = ixpiyq = (K(x),L∗p)δ · (K(y),L∗q)δ,

and so δ is a homomorphism.
For each x ∈ S, it is easy to see that xx∗ ∈ R and x+x ∈ L, where x = ixxλx, ix L x+, λx R x∗ for some

x+, x∗ ∈ Eo. It follows from xx∗ = ixxλxx∗ = ixx+x∗ and x+x = x+ixxλx = x+xλx that x ∈ CSo (xx∗)∩CSo (x+x), and
consequently (K(xx∗),L∗

x+x
) ∈ Γ. It follows that

(K(xx∗),L∗
x+x

)δ = ixx∗ · x
+x = ixx+x = ixx = x,

and hence δ is surjective.
Suppose that (K(x),L∗p), (K(y),L∗q) ∈ Γ are such that (K(x),L∗p)δ = (K(y),L∗q)δ, then ixp = iyq. So

x R∗ ix R∗ ixp = iyq R∗ iy R
∗ y and p L∗ ixp = iyq L∗ q.

That is R∗x = R∗y and L∗p = L∗q. From xλp = yλq we deduce that

y = yλqλy = xλpλy = ix · x · λxλpλy.
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Since λx, λy ∈ Eo, we have λxλpλy is idempotent in R and λxλpλy R λxλp R λx R x∗. Thus x ∈ CSo (y) and
consequently CSo (x) ∩ CSo (y) , ∅. Hence K(x) = K(y) and L∗p = L∗q, that is, δ is injective. Therefore δ is an
isomorphism.
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