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Abstract. In this paper, a modified orthogonal linear spline (OL-spline) is used for the numerical solution
of a coupled nonlinear inverse reaction—diffusion problem to determine the unknown boundary conditions.
The convergence properties of the new linear combination are obtained. A quasi-linearization technique is
utilized to linearize the nonlinear term in the equations. This process produces a linear system of equations
which can be solved easily. Using the new inequalities, error estimation and convergence of the proposed
method are investigated. Two numerical examples are given to demonstrate the computational efficiency
of the method and also the experimental convergence rate of examples are obtained.

1. Introduction

According to Keller [1, 2], two problems are considered inverse to each other if the formulation of them
needs complete or partial knowledge of the other. From the definition, it is subjective which can be called
the direct problem and which one is the inverse. However, one of the problems has been often studied
earlier and, maybe, in more detail. This one has usually named the direct problem, whereas the other
denotes to the inverse one.

Mathematical models of the many natural phenomena are formulated using initial and boundary value
problems given partial differential equations (PDEs). Inverse problems written by these equations arise in
most fields of science and technology [2].

If we find out the behavior of a physical phenomenon, thoroughly; one can represent a conventional math-
ematical model of this phenomenon consisting of uniqueness, stability, and existence of a solution of the
related mathematical problem. Nevertheless, if one of the (functional) parameters explaining this model is
to be found from additional boundary/experimental data, then we achieve an inverse problem [3].

In a mathematical perspective, the inverse problems belong to a class of problems called the ill-posed ones.
It means that small errors in the measured data which can lead to large oscillations in the estimated values
[4, 5]. So, we must search for stable numerical procedures.
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Reaction-diffusion equations (RDEs) have attracted significant attention, partly because of their develop-
ments in many fields of science, in physics, chemistry, and biology, partly due to the interesting characteris-
tics and rich diversity of properties of their solutions. The processes of diffusion and reaction play essential
roles in lots of systems” dynamics, e.g., in plasma, or semiconductor physics; see [6] and references therein.
Reaction-diffusion systems are usually coupled ones of parabolic partial differential equations which con-
sist of pattern formation in morphogenesis, for predator-prey and other ecological systems, for conduction
in nerves, for epidemics, for carbon monoxide poisoning, oscillating chemical reactions, pulse splitting,
shedding, reactions and competitions in excitable systems and stability issues [7]. This problem has at-
tracted much attention and has been studied by many authors. However, deriving its analytical solution
in an explicit form seems to be unlikely except for certain special situations. Therefore, one has to employ
the numerical techniques or approximate approaches for getting its solution.

Shirzadi et. al. developed a local integral equation formulation to solve coupled nonlinear reaction—
diffusion equations by using moving least square approximation [8]. The nonlinear convection-diffusion-
reaction problem in a thin domain with a weak boundary absorption was investigated by Pazanin and
Pereira [9]. Miyamoto and Suzuki [10] studied weakly coupled reaction—diffusion systems with rapidly
growing nonlinearities and singular initial data. Boundary observers for coupled diffusion-reaction systems
were studied by Camacho-Solorio et.al. [11]. Two numerical studies for systems of nonlinear reaction—
diffusion equations have been done by Hoff [12] and Liu et. al. [13].

The physical and mathematical importance of these systems is the prediction of the time evolution of the
different density distributions (such as population density, mass concentration, neutron flux, temperature)
and their relations to the corresponding steady-state distributions [14].

Khater et. al. [15] developed a simple transformation and exact analytical solutions for some nonlinear
reaction-diffusion equations. Also, Soliman and Abdou [16] presented the numerical solutions of nonlinear
reaction—diffusion equations using the variational iteration method.

An inverse potential problem for a fractional reaction—diffusion equation, and the inverse problem of
reconstructing reaction—diffusion systems were studied by Kaltenbacher and Rundell in [17] and [18], re-
spectively. Also, inverse problem for a coupling model of reaction-diffusion and ordinary differential
equations systems was investigated by Verdiére et. al. [19].

The Haar wavelets were applied for the inverse solution of the coupled nonlinear reaction—diffusion equa-
tions by Foadian et. al. [20].

In this paper, the following inverse problem of coupled nonlinear RDEs is considered and will be solved
numerically, using a new high accuracy and easy-to-implement method.

up(x, t) = Kuyr(x, t) + u?(x, Ho(x, t)—pux,t), 0<x<1, 0<t<T, (@)

vi(x, 1) = K0 (x, ) — 1P (x, Do(x, £) + pu(x,t), 0<x <1, 0<t<T, (2)
where

u(x,0) = fi(x), v(x,0) = fo(x), 0 <x <1, 3)

u(l,t) = i), o(1,H) =), 0<t<T, 4)

u(l, t) =pi(t), v(lo, t) =pa(t), 0<t<T, (5)

u(0,t) = q1(f), v(0,t) =q2(t), 0<t<T, (6)

where f; and f, are known as continuous functions, g1, g2, p1, and p, are infinitely differentiable known
functions, and T represents the final existence time of the time evolution of the problem. The functions of
g1 and g, are unknown, which must be identified from additional boundary conditions (5).

The purpose of the research is to present a new method based on orthogonal bases of linear splines in order
to solve inverse nonlinear coupled RDEs, announced by (1-6). Moreover, some new features of orthogonal
bases for linear splines are established.

This paper is organized as follows: The OL-splines are introduced in Sections 2, and some of its properties
are presented in Section 3. Section 4 represent the quasi-linearization method. In Section 5, the numerical
method, the estimation of errors, and the convergence of the numerical method are investigated. Some
numerical results are presented in Section 6. In the last Section, some concluding remarks are gathered.
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2. OL-splines

Univariate splines have been heavily studied in the literature [21, 22]. Here we give just the basics.
Let $; = space of univariate polynomials of degree at most d. Also, let A = {xi}fzo witha=xy<x;1 <--- <
X1 < X = b. we define the space of univariate polynomial splines of smoothness (r < d) and degree d with

knots A as
SHA) ={s € C'([a,0]) : 5|y €Pa, i=0,1,...,k=1}.

From Curry and Schoenberg Theorem [23], we know that n = dimS(A) = k(d —r) + r + 1. A well-known
basis for the space of univariate polynomial splines is the so-called B-splines.

Let A, = {yi}?;1d+1, be the extended partition of A wherea = y1 = -+ = Y441, Yne1 = *** = Ynea+1 = b, and
Yas2 < Yas3 < -+ < Yo, wherein y; < x; < Yjyq41, j=d+2,d+3,...,n Let

Q} () = {y‘.ﬂl_y,.r Yi £t <Y, Q(t) = {(tyi)Q’ml(;z:ig"t)Q’,'Ll(t), Yi <t < Yiem,
0, ow., 3 ow.,
for2<m<d+landi=1,...,n+d—m+1.
Definition 2.1. Let
B"(t) = (Yism —yp)Q/'(t), i=12,...,n+d-m+1 (7)

We call these the normalized B-splines of order m (or degree m — 1) associated with the extended partition A,.

The B-splines defined above are not defined at the right-hand endpoint of the domain [4, b]. By convention
we set their values at b to be their limits as x approaches b from the left. Here are some properties of
B-splines [21].

e The B-spline B" vanishes outside of the interval [y;, yi+m]-

e If y; < Y for all i, and t € [a,]] then fab Q(t)ydt = 1/m and Z?:ldfm” B =1.
b BT(“) = Buya-m+1(b) = 1.

. {B,im/ B, ..., Bﬁ”} is a basis for S'(A).

Now, we introduce an orthogonal basis for the space of univariate polynomial splines.

An orthogonal basis for space of linear splines, named “OL-splines” is introduced in 1993 by Mason et.
al. [24]. They have not evaluated the properties of OL-splines. In continuation of their work, the properties
of these types of functions are introduced. Furthermore, for simplicity, the B-splines are defined so that all
supports belong to a fixed interval.

Let Ay = (xk);L_, be a uniform partition of [a,b] where N = n+m+1,x_, =a, Xy = b, Xge1 — X = I,
k=-n-n+1,...,m Also, let S, (Ayn) be the space of linear splines on Ay. The set of {L_,, L_j41,..., L}
include linear B—splines is a basis for S, (Ax) where

1 — - Ay € —nsA— 7
L_n(X)=E{g n+10wx X € [X_p, X_p41)

L) = 1 {x_n+1 =X, X € [x_p, X ps1),

h |0, ow.

1 |x—%pu-1, € Xpn1,Xul,
= ey xeen



J. Alavi, H. Aminikhah / Filomat 35:1 (2021), 79-104 82

In order to convert the linear B-splines {L;};. _, to a basis of orthogonal linear splines which denoted by
{Pi})-_, and called OL-splines, the following recurrence relation is applied

P,=L,,

Pi=L;,—a;j1Pi_,i=-n+1,-n+2,...,-1, (9)
Py =Ly,

Pi=Lj—aj Py, j=m-1,m=2,...,1, (10)
Py =Ly —a_1P—_, — aPy. (11)

Now, we try to find 4’s influenced by the Gram-Schmidt process. Assuming f,g € L?[a,b], and let
{f,g) = fﬂ ’ f(x)g(x)dx be the inner product defined on £?[4,b]. Also, the induced norm is defined as

£l = <f, -

Let k < —1. Because L; and P,, ¥ < i — 2 have disjoint supports,

(L,P,y=0, r<i-2, (12)

wherei = —n + 3,-n +4...,—1. By multiplying P;_; on the both sides of (9) and integrating on [a, b], we
have

vi=aip, i=-n-n+1,...,-2, (13)

where y; = ||P,-||§, andv; = (P;,Liy1),i=-n,—n+1,...,-2.
Note that from (9) and (12), we can conclude that

h .
0 = (Pir Li+1> = <LirLi+l> = gr 1=-n,—n+ 11- . -/_2- (14)

Also, by multiplying (9) to itself and integrating on [g, b], enables one to get
Wi = U —ai-19;-1, i=-n+1,-n+2,...,-1, (15)

where u; = ||Li||§. From (8),

U, =U —E
-n - m—3/
uk:%,k:—n+1,—n+2,...,m—1. (16)

Since, P_, = L_,, one obtains j_, = g Substituting (14) and (16) into (15),

,ui:g(él—ai_l),i:—n+1,—n+2,...,—1. (17)

Now, (13) and (17) imply that

1
4—ai4

1 .
a_nzz, a; = ,i=-n+1,-n+2,...,-2. (18)

The sequence of coefficients (18) is a decreasing one and converges to a' = 2 — V3. Hence,

1
a’<ais§,i:—n,—n+1,...—z. (19)
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Because the coefficients a; in (9) are less than 1, OL-splines provide a natural normalization that is acceptable
for stable numerical computations [24].
Similarly, using (10), we get

1 1 .
=g 8= g EmoLm=2,2 (20)
and
h h .
=75, W= c@=ap), j=m=-1m=-2,..,1 @

As well as using (11), we achieved that

= = 22
a—1 4_(1_2, a1 4_112, (22)
and
2h
Ho =3 —a? uoy —ajp. @3)

In Figure 1, the complete system of OL—splines on [-1,1] for n = 6, m = 5 is demonstrated.

1, ;
051 if
0 S
05t !
-1 -0.8

Figure 1: OL-splines on [-1,1] forn =6, m = 5.

3. Some properties of the OL-splines

First some properties of OL-splines are studied. Then, a linear combination of OL-splines is considered
as well as, the convergence properties of the linear combination are discussed.

Proposition 3.1. [25] Fork = —n,—n+1, ..., m, we have

a) |IPlleo =1,
b b <um<i(2+3),
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m
) 0< Y P(x)<1,xeR,

k=—n

m
d)0< Y [P(x)| <% xeR.
k=—n

Definition 3.2. Let f € L?[a,b], and Sn(f) = f ¢k Py, where ¢, = .Ulk (f, Px). Thus, from (9), (10) and (11), {f, Px)

k=—n
are readily determined from following recurrence relation

Py ={f, Loy, (fPiy=(f,Li) = aia {f, Pia),
(f,Pu) = F Ly, (£,Pj) = (F.L;) = ap1 (f.Pjr),
(f,Po) = (f,Loy a1 {f, P21y —mi (f, P1),

wherei=-n+1,-n+2,...,-1,j=m-1m-2,...,1
Proposition 3.3. In Definition 3.2, %im ¢ =0.

Proof. We know that ||f — Sx(A)[l2 = |fll2 = 2(f, SN () + (Sn(f), Sn(f)). Also,

m m

(f,Sn(P) = f @ Y ani= Y adi Py = Y @ = Sk ().

k=-n k=—n k=-n

Therefore,

7= 5u(Al = A5 = IswAll so Isvenll < 1A thatis 3 e < If[5- Thwus, Jim iy = 0,
and l}im k| [Pkl = 0. But Proposition 3.1b implies that 0.5k < [|Pyll» and 0 < }}im |ce| 0.5k < I}im ek 1Pkl =

0.Thus, I}im lcx] = 0 and I}im =0 0O

Proposition 3.4. [25] Suppose that f € Cla, ], therefore Sn(f) converges to f uniformly.

In numerical computations we use vector form of Sy(f) as follows

SN(AE) = ) ePylx) = CRTIN(), (24)
k=-n
where
CN = (C—n/ C—i’H—ll sy Cm)Tl (25)
TIn(x) = (P—y(%), Py (%), - .., Pu(x))". (26)

Definition 3.5. Assuming I;L, 1L, P and I,P are N-square matrices defined by

X] X] £ x| X; t
(IlL)k,lzf Ly (t)dt, (IZL)k,l=f f Ly(s)dsdt, (Ilp)k,lzf Py(t)dt, (IQP)k,l:f f Py(s)dsdt,
X_pn X-n X Xon X—n X—n

-n
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wherek,l = —n,—n +1,...,m. According to the definitions of L;'s in (8),

0 3 3 3 2
03 1 1 11
0 1 1 11

LL=h) @ i Do ,

00 - 0 3 11

00 - 0 0 31

00 - 0 0 0 % ).n

0 & 144 1424 T+(N-3)1 1+(N-2)3

0 : 1 2 N-3 N-2

o0 ¢ 1 : N-4 N-3
bL=h| : : : : (27)

00 0 : 1 2

00 O 0 i 1

00 0 0 0 : N

Furthermore, (9), (10) and (11) entail

(IVP)—n,l = (IVL)—n,lr (va)i,l = (IVL)i,l - ai—l(lvp)i—l,lr
(IVP)m,l = (IVL)m,lr (va)j,l = (IVL)j,l - ﬂj+1(1vp)j+1,1, (28)
(IVP)O,Z = (IVL)O,Z - a—l(IvP)—l,l - al(IVP)l,lr

wherev=1,2,i=-n+1,-n+2,...,-1,j=m—-1,m-2,...,1. Thus, we can write

f l Sn(f)(tydt = CLI, (29)

—n

X| t
f f Sn(f)(s)dsdt = CLLL, (30)
where If, is the Ith column of matrix I, P, that is Ilv =L,P:D, v=1,2.
Lemma 3.6. Let IP), = fab Py(x)dx, then ’% (3 - \/5) <IP; < % (3 + \/5), wherek =-n,-n+1,...,m.

Proof. Integrating (9), (10) and (11), in addition using (8), yield

b h
IP_, =1P,, = f L_,(x)dx = 5

IP; = h —a; 1IP;iq,i=-n+1,...,-1,
IP]' Zh—a]‘+1IPj+1, j:m—l,...,l,
IP() =h- a_11P_1 - [11[P1.

Thus,
1
<IP < 6(3+ \/§)h, k%0,

h
1
3(3‘ \/§)h<IPO<(\/§—1)h.
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Lemma 3.7. Let [Py = fxxf Py(x)dx, then —%h <IPj < %h, wherek =-n,-n+1,...,m.
Proof. The proof is similar to Lemma 3.6. []

Remark 3.8. A linear B—splines extension of OL—splines can be obtained from equations (9), (10) and (11), as follows

n-—i

Pi(x) = Li(x) + Z (-1)"ai-1ai— - - - ai—pLi—p(x),
v=1
=

Pi() = Li) + Y (1) a1 ajsuLisa(x), (31)

v=1

Po(x) = Lo(x) + ) | (~1fa1as-+-a 4L () + Y, (-1 maz - auLi(),
k=1 k=1

wherei=-n,—n+1,...,-1, j=mm-1,...,1
Lemma 3.9. Let I*Pjy = jzl f: Pi(y)dydz, then O < I°Pyy < h, wherek = —n,-n+1,...,m.

Proof. According to (27) and (28), also using (31), we can see that 0 < I’P;; < h?(xN +y — i), where
0O<x,y<landi=1,2,...,N—m—1. Therefore, 0 < I*Pjy <h. [

4. The quasi-linearization method

In this section, a quasi-linearization method is presented to linearize the u?v term in (1) and (2). The
quasi-linearization technique is an application of the Newton—Raphson—Kantrovich approximation method
in function space [26-29].

Letu, v € C[0,1]XC[0, T]and h(u, v) = u?v. Using two variable Taylor series for & in some open neighborhood
around (u, v) = (us, vs), there is ¢ = (¢1, ¢2) where c1,¢c; € C[0, 1] x C[0, T], so that

h(x) = h(a) + (x — a) - Vh(a) + (x — a).H(c).(x — a),
where x=(u, v),a = (us, vs), and H is the Hessian matrix

hclcl (C) hclcz (C)

H(c) = .
(C) hC1C2 (C) hCzCz (C)
Therefore,
1?0 = 2ugvsu — ZMZ'US + ufv + (1t — us)? + 1 (1 — us)(v — vy). (32)

Based on (32), a linear approximation of #%v is as follows

u?v = 2usogu — 2ulvs + uto. (33)

5. Analysis of the Method

First, OL-splines are used to propose a numerical method for solving the problem (1-6). Second, an
upper bound of error estimation is obtained. Finally, the convergence analysis of the method is investigated.
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5.1. Solution Method

In this subsection, the inverse problem (1-6) is solved using Sy as an approximation tool. Let in Section
2 and Section 3,2 =0,b =1and x,, = I3, x,, = l,. Also, we assume that m = n, that is Ay = (x;)__, be a
uniform partition of [0, 1], where N = 2n+1,x_, = Oand x, = 1such thatx,1—x; = h,l = —n,—n+1,...,n-1.
Also, t; =sAt,s =0,1,...,S are the equal parts of [0, T] where At = %
To discretize the problem (1-6), the method of [30] is used. We assume that u,,(x, ) can be expanded in
terms of OL—splines (24) as

n

() = ) 6GPu(x) = CLTIN(), (34)
k=—n

where Cy, Ily(x) are given by (25) and (26). The row vector C, is assumed constant in the subinterval

[ts/t5+1]'
By integrating (34) with respect to f from f, to t, we obtain

Uy (2, 1) = Upx(x, ) + (t — ts)CIEHN(x)' (35)

Also, by integrating (34) twice with respect to x from /; to x and using (5), gives

W) = pr()+ (= Wil D+ Y 6 I [ pucaes (36)

k=-n

where . denote the differentiation with respect to t.
By putting x = 1 in equation (36) and using (4),

gy, £) = —— [gl(t) pr(t) - Z c f f Pk(y)dydz] (37)
k=-n h
Substituting equation (37) into equation (36), held

(gl(t) pl(t))+ch( f f Pk(y)dydz—— f f Pk(y)dydz) (38)

k=-n

u(x, t) = p1(t) +

Since,

X %4 X ¥4 q I Z
f f Pi(y)dydz = f f Pr(y)dydz — (x — ) f Pi(y)dydz — f f Pi(y)dydz,
I8 I 0 0 0 0 0

relation (38) can be written as

010 - p1<t>>+Z(ck [ [ paviz- [ h [ Pupaaz)

k=—n

—11 ( f f Py(y)dydz - f ' f Pk(y)dde)) (39)

By integrating (39) with respect to t from ¢, to t, we obtain

u(x, t) = pa(t) +

u(x, t) = u(x, ts) + pr(t) - Pl(ts)+ (gl(t) g1(ts) = p1(t) + pa(ts))

+<t—ts>k_chz( fo fo Py(y)dydz - fo ' fo Py(y)dydz (40)
_31‘:2 ( fo 1 fo " Pu(y)dydz - fo ) fo ZPk(y)dydz)).
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Further, by discretizing (35), (39) and (40), assuming x — x;, and using (29) and (30), we get
Uy (X7, 1) = U (X, t5) + (£ — ts)CLHN(xl), (41)

I I
111 (61() = pa(t)) + CF, (1’2—1;1 -3 11 (- 1;1)), (42)

x p—
u(xg, t) = p1(t) + 11_

—h L (@10 - 31 = 1) + 1 (8)

u(xy, t) = u(xg, ts) + pi(t) — pa(ts) + xl

V1 11 n V1
+(t—t)CL (1’2 ~I - 1 T (-1 )) (43)
Similarly, if we assume that
O, ) = ) diPe(x) = DLTIN(R), (44)
k=—n

then we have

Vi (X1, 1) = Vax(x, £5) + (£ — ts)ngnN(xl)r (45)

b, . o Xi=bho
— (gz(t)—Pz(t))+Dva(1é—12 A Lt )), (46)

i, ) = palt) + ’i’

- 2 0200 - 7260 = pa(D) + p2(t)

o(xi, 1) = 0(xi, ) + pa(t) = pa(t) +

v l2 n v
+(t - t;)D], (112 - - 1 . (-1 )) (47)
Also, assuming t — t;,1 in (41), (42), (43), (45), (46) and (47), lead to
Uy (X1, Es41) = Urr(21, 25) + AtCT HN(xl) (48)
v hifm_
ut(xlr s+1) - Pl(ts+1) + (gl(ts+1) pl(ts+1 ) + CT (Il 121 ll (I 121)) s (49)

u(xy, tsr1) = u(xg, ts) + pi(tser) — pa(ts) + 1 —_lll (91(ts1) = g1(ts) = p1(tse1) + pa(ts))

vy -1 n V1
+ AtCY, (112 -1 - 1 - (-1 )) (50)
vxx(xl/ ts+l) = Uxx(xl/t ) + AtDT 1_IN(XI)/ (51)
1% X; — l n V1
vr(x1, tsr1) = Pa(tser) + (g2(ts+l) p2(t5+1)) +DJ (Il 121 - 11_ 122 (Iz - 12 ))/ (52)

s+1) = J2(ts) = pa(tsin) + pa(ts))

0(xy, ts41) = 0(x1, £) + pa(tsen) — pa(ts) +
+ AtDY, (1’ O ll (1” I )) (53)
Also according to (33), we can write
U (x1, b1 )o(x, tsn) = 2u(xy, E)o(x, b )u(xy, tser) — 2uP(x, E)o(xy, £) + 1 (X0, £)0 (X, Eor). (54)
Assuming x — xj, t — sy in (1) and (2), results in
(X1, tsat) = Kikee (X1, tsi1) + 12 (X1, b1 )01, Es1) — Buxy, Ees), (55)

0(X1, ts+1) = KOxe (X1, tsrn) — U2 (X1, tsin)O(X, Bsr1) + By, tsrn)- (56)
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By substituting (48), (49), (50), (53) and (54) into (55) and substituting (50), (51), (52), (53) and (54) into (56),
we obtain

C;\}Zl,l,s - D;\"]ZZ,I,S =T11s, (57)
C;\}ZS,I,S + D£Z4,l,s =T121s,
where
Z11s = (1 + .BAt - ZAtu(xl/ tS)v(xl/ ts)) ]Ill - KAtHN(X[), 215 = Atuz(-xl/ tS)I[lzr
231 = (—BAE + 2Atu(xy, t)v(x, ts)) ]Ill, Zyps = (1 + Atu(xg, ts)) ]Il2 — kAT IN(x)),
s = _Pl(tsﬂ) - Cl,l(gl(tsﬂ) - (ts+1)) + K”xx(xl/ ts) - 2u2(xlz tS)U(JCl, ts) - ﬁ(u(xll ts) + pi + Cl,lgi)
+ 2u(x, t)o(x, b) (a1, ) + 95 + 01,0%) + w2, 1) (000, £) + 95 + c2,03),
7215 = —Pa(tss1) — Cz,z(g'z(fsu) - ﬁz(ts+1)) + K0 (X, £s) + 202 (x), £s)0(x), ) + .B(M(xzr to) +p] + Cl,tffi)
= 2u(x, t)o(x, b) (1, ) + 95 + €1,0%) = w2, £5)(000, £) + 95 + c2103),
and
X] — l X — 1
L=L-I—c,b -5, L=L-L-cyly-1%), ci= Tlll' €21 =7 122,
0] = gi(ts+1) — g1(ts) — prtsin) + pa(ts), 05 = ga(tser) — ga(ts) — paltsir) + pa(ts),
P} = piltsi1) —pa(ts), Py = paltsin) — pa(ts).
By organizing (57) respect to/ = —n,—n + 1,...,n, we obtain
ATCNy —-B™Dy =Ry,
: N g N 1 (58)
E'Cny+F' Dy =Ry,
where
A= (Zl,—n,S/ Z1,-n+1,57 -+ rzl,n,s) ’ B= (ZZ,—n,sz 22 —n+l57 s ZZ,n,s) ’
E= (ZS,—n,s, Z3,—n+1,57 s ZS,n,s) ’ F= (24,—71,5/ Z4,—n+157+ s Z4,n,s) ’
Rl = (rl,*n,SI 1,—n+l,57++s rl,n,s)T/ RZ = (7’2,771,5/ 12, —n+lsr+++s r2,n,s)T-
Equation (58) can be written in the form of square system of linear equations, as follows
ET —FT Cn Rq
(GT HT )(DN R ) (59)
Note that for s = 0 we use equation (3) as uw(x;,t0) = f/"(x1), u(xi, to) = fi(x), vxxlxs, to) = f;'(x1) and

v(xy, to) = fo(x;), otherwise uy.(x1, t5), u(xy, ts), vxx(x1, ts) and v(xy, ts) are updated using (48), (50), (51) and (53),
respectively.

5.2. Estimation of errors

In this subsection, the upper bounds for error estimations of u(0,t) = g1(t) and v(0,t) = g,(t) will be
achieved. Let (0, t) and #(0, t) be approximation values for the exact values of u(0, t) and v(0, t), respectively.
Then we have the following proposition
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Proposition 5.1. Suppose that g1, g2, p1,p2, g1 and g, are continuous functions, then

(0, £) = (0, £)] <

0, = 30, < 7=

pill

Ml < (1 +1) ﬂ s

(2y2 +T20),

oo}. In addition,

|| } 2<max{

where y1 < max{qu

Mol < (1o + 1) 22 ||q2||w

Proof. Correspondmg (43) and (47), we get

1(0,8) = ga(ts) + P15 = pr(t) = 721 (@) = 1) = pr() + pr(k)) + cT (h1 - 1), (60)

5(0/f)=Q2(fs)+P2(t)—P2(ts)——(92 ) = g2(ts) = pa(t) + pa ts))+ DT % (R0 -12). (61)

Now, assuming I't = C}; (lllg - I;l), I, = DZ{] (lzlg - I;Z), equations (60) and (61) lead to

(0, £) = (0, B)] < |qa(t) — 1 (8s)] + )pl(ﬂ pr(ts)] + (62)
[00,8) = 50, B < |q2(5) = q2(t9)]| + 7= 12 [pa(t) = pa(ts)] + (63)
Using the mean value theorem of derivatives, there are t; < (; <t,i=1,2,...,6, so that
qi1(t) = q1(ts) = (t = ts)q1(Ca), pa(t) — pats) = (E = t)p1(C2), 1) — ga(ts) = (t — £5)91(C3),
Q2(t) - q2(ts) =(t- ts)q2(C4)r PZ(t) - PZ(ts) =(t- ts)PZ(CS)/ gZ(t) - gZ(ts) =(t- ts)92(C6)~
Accordingly, (62) and (63) yield
0,6 = 70,91 < (¢ = £){ | ()] + 1 |gl<<:3>| |r1|) (64)
000,) = 50, < (¢t = ) |12(Co)] + 5 T2 el + 5 ) (65)
Lety; = max{ } and y; = max{ }, then (64) and (65) imply that
[u(0, ) — (0, )| < (271 + ) < 11 (2y1 + T4, (66)
00,0 = 90,01 € 1= (272 +I) < T2 Q@2 412, 67

Moreover,

m 1 ¥4 Xy 4
rlzcg(lll’;_[;): ch(l1 f f Pi(y)dydz — f f Pk(y)dydz)
k=—n
_11 ckf f Pr(y)dydz — ckf ka (y)dydz.

k=—n
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Using Lemma 3.9, one can write

Ml <kl +1) Y led (68)

k=—n

Also, because

fo pyoy],

Pr(t)q(t)dt| < .
’ Hk

c—l(P )—lftp(t) (t)dt<l
k m ks q1 e Jo kL)1 =
Proposition 3.1b and Lemma 3.7 leading to

”‘71”00 3 \/_ 3‘/_” 1”

< A28
Also, we know that
Z lerl < N max lay] < N— llaa]]... (69)
k=—n

By substituting (69) into (68),

IT1| <h(l + 1>N— ]|, = (1 + NEAL: quum
O

5.3. Convergence analysis

In order to prove convergence of the solution of presented method, we need to show that the maximum
errors tend to zeroas h — 0, At — 0.

n
Theorem 5.2. Assume that up(x,t) and v, (x, t) are the exact solutions, and tiy(x, ) = Y. C;Pk(x), (X, 1) =

k=-n

Z dst(x) are the numerical solutions of problem (1-6), which t € [t;, ts1]. In addition, let

k=—n

€N(X, t) = utxx(x/ t) - ﬁtxx(x/ t)/ (70)
EN(x/ t) = Utxx(x/ t) - Z~)txx(-x/ t)/ (71)

represent errors in (x, t) point. Then
lim [lu(x, £) = (x, llee =0, lim|lo(x, ) - 3(x, )]l =
h—0 h—0

lim (0, = 7(0, )l =0, lim [[o(0, ) = 50, Dl =

Proof. The numerical method presented in Section 5, could be rewritten along with the error terms.
By integrating (70) with respect to f from f, to t, we obtain

ﬁxx(x/ t) = axx(xr ts) + uxx(x/ t) - uxx(x/ ts) - (t - ts)eN(xr t)- (72)

Integrating (70) twice with respect to x from /; to x , leads to

(1) = up(x, £) + (x — ) (lpe(l1, t) — (I, 1)) — fl fl en(y, t)dydz. (73)
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Putting x = 1 in equation (73), we get

1 1 4
f f en(y, t)dydz.
1 - l] I I

Substituting equation (74) into equation (73), yields

1 4 X 4
at =t + 1 [ [ ewndviz= [ [ ety vz
-4 11 11 ll ll

By integrating (75) with respect to t from ¢, to t, we get

ﬁtx(llr t) - utsx(lll t) =

1 Z X 4
ii(x, t) = d(x, ts) + u(x, £) —u(x, ts) + (t — ts) (31(—51 f f en(y, )dydz — f f en(y, t)dydz).
- ll ll ll ll
In the same way,

Z7J(x(xr t) = ﬁxx(x/ ts) + Uxx(x/ t) - Z)xx(x/ ts) - (t - tS)SN(x/ t)/

1 ¥4 X ¥4
ot =uwn+ ¢ [ [ evtndviz- [ [ extnaves
1-LJ, J, L Jh

_ 1 %4 X Z
(x, t) = 0(x, ts) + v(x, t) — v(x, ts) + (t — ts) (%ij‘ jl‘ en(y, Hdydz — jz‘ jz‘ en(y, t)dydz).

According to the initial and boundary conditions (3), (4) and (5), we set

ﬁ(x/ 0) = M(X, 0)/ ﬁ(l, t) = u(ll t)/ ﬁ(lll t) = u(lll t)/
9(x,0) = v(x, 0), 9(1,t) = v(1,t), (Lo, t) = v(ly, 1).

Applying equation (72) successively, we have

U (X, 1) = T (X, £) = U (X, t5) — Tax (X, £5) + (t — ts)en(x, 1)
= uxx(x/ ts—l) - ﬁxx(x/ ts—l) + AteN(x/ ts) + (t - ts)eN(x/ t)

S
= 1, t0) — T, o) + A Y en(, ) + (t = t)en(x, ).
j=1

Now the equation (80) concludes
S
(0, 8) = T (5, £) = ALY en(x ) + (£ = E)en(x, ).
j=1
In a similar way, from equation (77), we obtain
S
Uxx(X, 1) = Oxx(x, 1) = At Z en(x, t]') +(t—ts)en(x, b).
j=1

As well as, equations (76) and (80), leads to

92

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)
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u(x, t) —ii(x, t) = u(x, ts) — d(x, ts)

( —h f f en(y, Hiydz - f f eN(y,t>dydz)
= u(x, ts_q) — ti(x, ts_q) — ( ffeN(y,t)dydz—ffeN y,t)dydz)
fs)(x_llffel\l(%t)d]/dz_ffeN(]//t)dde)
1-h J, Jy L Jn

_—At[ —11 ) jI.ZeN y,t)dydz—f f ZeN(y,t)dydz]

'1]1 1]1

(- [Eh f f exty, Dydz - | X f enty, Diydz| (53)
1_l1 I I I I

In the same way, from equations (79) and (80), we get

_Z L f ZEN(y,t)dydz— f f ZeN(y, ])dydz}

2]1 2]1

x—1 i * .
ts)(rlz fl fl en(y, Ddydz — fl fl eN(y,t)dde)- (84)

Corresponding Proposition 3.4, for a fixed t € [t;, fs+1], we can conclude that up,(x, t) = Y, ¢;Pi(x) and

=—00

o(x, £) — (x, ) = —At [’1(

Omx(x, 1) = Y. diPr(x). As well as, Proposition 3.4 entails that

Lim flen (¥, Bk, = Lim llen(x, Dl =0, (85)
Lim flen(x, Dl = lim flen(x, Dl = 0. (86)
From (83) and (84),
!
llu(x, £) = i(x, Dl < (% P AT P A Gl )[Atz llen e, £)]] o+t = t)llen(x, Dlles ] (87)

llo(x, B) = (x, Bl < (% e —hLl(1-b)+ @)[At; ellen (e, )|, +(t = t)llen(x, Dl (88)

N————

By limiting (87) and (88), using induction and applying (85) and (86), one can conclude that

lim lux, ) = 7 Ol =0, limllo(x, ) = 3(x, Dl =

That is, maximum errors tend to zero as i — 0.
Also, from Proposition 5.1 we know that

lim (0, )= 40, Dl =0, lim [[o(0,5) = 3(0, Bl =
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In remaining of this section we try to show that

Theorem 5.3. Let en(x,t) and en(x,t) be the errors in numerical scheme defined by (70) and (71), then for any
positive integer N, it holds that |lex(x, )l = llen(x, E)lloo-

Proof. From Section 4, we know that
12 (x, Do(x, t) = 2u(x, t)o(x, t)u(x, t) — 2u(x, t)o(x, ts) + u?(x, t)o(x, t) + ca(x, ts)(u(x, t) — u(x, t;))>
+ c1(x, ts)(u(x, t) — u(x, t;))(v(x, t) — v(x, t5))- (89)
From equation (1) and (89), we have
us(x, ) — Kt (x, £) + Bu(x, £) = 2u(x, t)o(x, t)u(x, t) — 2u(x, ts)o(x, ts) + u*(x, ts)o(x, t)
+ oo, b))y, 1) — ulx, t))* + cr(x, ts)(u(x, £) — u(x, t))(0(x, t) — v(x, t5)).  (90)
In numerical solution, we put
i1 (x, £) = kil (x, ) — BHi(x, 1) + 240(x, ts)D(x, ts)il(x, ) — 2812(x, ts)B(x, ts) + #2(x, ts)D(x, ). (91)
Substituting (72), (75), (76) and (79) into (91), we obtain
(¥, £) = Kt (5, ) = puu(x, £) + 16T (x, £) = e (x, 1) = (¢ = E)en(x, 1)) = B(aCx, £) — u(x, 1))
+ 20(x, £)B(x, £)((x, £) + u(x, £) — u(x, £)
— 20 (x, £)B(x, bs) + T2 (x, 1) (B(x, £s) + 0(x, £) — D(x, £5))

1 ¥4
+ﬁ2(x,ts>(t—ts>("—lz f f ey, Ddydz - f f eN<y,t)dydz)
1-h L Jh L Jh
_l X Z
! f f en(y, Hidydz - f f eN<y,t)dydz)- ©2)
1_11 I I L L

+ (=1 = Bt ~ t) +201(x, £)5(x, B)( ~ 1)) (x

By substituting (90) in left side of (92), we have

2u(x, ts)o(x, t)u(x, t) — 2u>(x, ts)o(x, ts) + u?(x, t)o(x, t) + ca(x, ts)(u(x, f) —u(x, ts))2
+c1(x, k) (u(x, 1) — u(x, ts)(©(x, t) — v(x, k) + B ({(x, ts) — u(x, ts)) + 26> (x, t)(x, ts)
— 2ii(x, t)3(x, ts) (f(x, ts) + u(x, t) — u(x, t5)) — i(x, ts) (3(x, ts) + v(x, t) — v(x, L))
= K (e (X, 1) — Ux(x, £5) = (8 = £5)en(x, 1))

1 Z X Z
+ﬁ2(x,ts)<t—ts)(x L f f ey, Didydz - f f eN<y,t>dydz)
1_12 I I I I

1 Z X Z
+(—1—ﬁ(t—m+2a<x,ts>ﬁ<x,ts>(t—a))(’l‘ [ eswvez— [ [ eN<y,t)dydz). 93)
-4 11 11 11 11
Similarly, using equations (2), (89), (76), (77) and (79), one can show that

2u(x, ts)o(x, ts)u(x, t) — 2u2(x, t)o(x, ts) + uz(x, t)o(x, t) + ca(x, ts)(u(x, t) — u(x, t‘s))2
+ c1(x, ts)(ulx, £) — u(x, t))(v(x, t) — 0(x, £)) + B ((x, ts) — u(x, t5)) + 2> (x, ts)0(x, ;)
— 21i(x, t)0(x, ts) (iH(x, ts) + u(x, t) — u(x, ts)) — ii2(x, ts) (B(x, ts) + v(x, ) — v(x, t5))

=K (5xx(x/ ts) — vxx(x, t5) — (t — ts)en(x, t)
f f en(y, t)dydz—f f en(y,t) dydz)

— (Bt —t) - Zu(xt)v(xt)(t—t)(

(- - ) (1 f I vt [ ["ento i), ©o4)
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Left side of equations (93) and (94) are equal, so we obtain

K(ﬂxx(xr ts) - uxx(x/ ts) - (t - ts)eN(xr t)) + K(ijxx(x/ ts) - z)xx(x/ ts) - (t - tS)EN(x/ t))

_ 1 ¥4 X 4
_X b f f en(y, t)dydz — f f en(y, t)dydz
1-hJy, Jy Lo Jn
_ 1 Z X z
22 [ [ evtndviz- [ [ entw iz (95)
]‘_ZZ lz lz lz lz

Applying (81) and (82) in left side of (95), we obtain

KAtZs: (eN(x, t) +en(x, t]-)) + x(t - ts)(eN(x, )+ en(x, t))

j=1
X Z 1 V4
X—ll
=( [ [ extwotvaz-3=1 [ [ et t)dydz)
L L 1_11 I I
Xz _ 1z
+( f f ex(y, Hiydz — =B f f sN(y,t)dydz), (%)
I I 1 _lz I I

Second derivative of (96), implies that ex(x, t) + en(x, t) = 0. That is,

llen (x, Dlleo = llen(x, )lleo- 97)

O

6. Numerical examples

In this section, we present the numerical results of introduced method on two problems. It is notable that
we perform all of the computations by MATLAB R2017a software on a 64-bit PC with 2.40 GHz processor
and 4 GB memory.

In numerical examples, we suppose that u(x,t) denote the exact solution and ii(x, t) denote the estimated
solution. Also, we assume that T = 20, [; =, = 0.1 and At = h = 0.01, so; according to equations (83), (84)
and (97), we have |[u(x, t) — i(x, f)llo = llv(x,t) = 3(x, f)ll,- Therefore; the results will be revealed only for
[u(x, t) = di(x, t)ll.. The exact solutions to problems are available in [15].

In order to calculate the order of convergence rate of the proposed method p, numerically; suppose that i
is a fixed number like 1 = 0.01. We use the following Log ratio formula [31-33]

. log ||i(0, £)a,, — u(0, t)|| , - log]|(0, )5, — u(0, 1)|| .

log (Aty) — log(Aty) (98)
Then, suppose that At is a fix number like At = 0.01, and we use the following Log ratio formula
log ||ii(0, t),,, — u(0,)||, — log [|ii(0, £}, — u(0, )|,

log (1) —log(hy)

Example 6.1. We consider the following coupled nonlinear reaction—diffusion equations

T/l_31/l +1/l2’0—21/l
t_4 XX 3/

O = D0 — 120+ 2
(= g U0 3u.



The exact solution is given by
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2 2

u(x,t) =1 +tanh(\/;x+ §t]’
4 2 2

o(x, t) = 3 —tanh(\/;x+ §t]

Figure 2 indicates the relative errors of u(0, t) and v(0, t). The exact and numerical solutions of u(x, t) and v(x,t) are
depicted in Figure 3. In Figure 4, the log-log plot is shown for absolute errors of u(0, t) as a function of At and h = 0.01
is a fixed number. Also, the absolute errors of u(0,t) are shown in Figure 5, as a function of h and At = 0.01 is a
fixed number. Tables 1 and 2 present a comparison between the exact and numerical solutions of u(0, t) and v(0, t) for
0<t<land1 <t <20, respectively. The order of convergence rate, relative error and condition number of system
(59), for fixed h = 0.01, which calculated by (98); are tabulated in Table 3. The order of convergence rate, relative

96

ervor and condition number of system (59), for fixed At = 0.01, which calculated by (99); are presented in Table 4.

Table 1: Comparison of the exact and numerical solutions of 1(0, t) and v(0, t) for 0 < t < 1, in Example 6.1.

25 x107%
2+ e e e e e -
4
/
150 1
o
I [l (u(0,2) — (0, £))/u(0,1) |
1 ." === [I(v(0, £) — 5(0,2))/v(0, ) |
|
i
Sl
0.5 alli
J: -------------------------------------------------------------------------
Ni; | | |
0 5 10 15

Figure 2: Relative errors of (0, t) and (0, t) of Example 6.1.

t u(0,t) (0, t) 0(0, 1) 9(0, 1) |[1(0, t) — 71(0, )|
0.1 1.066568 1.066579 1.266765 1.266754 1.110119¢ - 05
02 1.132549 1.132566 1.200785 1.200767 1.740528e — 05
03 1.197375 1.197395 1.135958 1.135938 2.009849¢ - 05
04 1.260520 1.260541 1.072813 1.072793 2.029087e - 05
0.5 1.321513 1.321531 1.011821 1.011802 1.871454e — 05
0.6 1.379949 1.379965 0.953384 0.953368 1.591577e — 05
0.7 1.435502 1.435514 0.897831 0.897819 1.232883e — 05
0.8 1.487925 1.487933 0.845408 0.845400 8.300881e — 06
0.9 1.537050 1.537054 0.796284 0.796280  4.101888¢ — 06
1.0 1.582783 1.582783 0.750550 0.750550 6.763994¢ — 08




Figure 3: Comparison of the exact (left) and numerical (right) solutions of u(x, t) and v(x, t), in Example 6.1.

Table 2: Comparison of the exact and numerical solutions of #(0, t) and v(0, t) for 1 < t < 20, in Example 6.1.
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t u(0,t) (0, t) v(0, 1) 9(0, 1) [(0, t) — (0, )|l
1.5 1.761594 1.761577 0.571739 0.571756 1.709990e - 05
20 1.870062 1.870035 0.463272 0.463298  2.662342¢ — 05
25 1931110 1.931078 0.402224 0.402255  3.131310e — 05
3.0 1964028 1.963994 0.369306 0.369339  3.358395e — 05
3.5 1981368 1.981333 0.351965 0.352000  3.469965e — 05
4.0 1.990390 1.990355 0.342943 0.342978  3.525710e — 05
4.5 1.995055 1.995019 0.338279 0.338314  3.553896e — 05
50 1.997458 1.997422 0.335875 0.335911 3.568248¢ — 05
6.0 1.999329 1.999294 0.334004 0.334040  3.579343¢ — 05
70 1999823 1.999787 0.333510 0.333546  3.582259¢ — 05
10.0 1.999997 1.999961 0.333337 0.333372  3.583283e — 05
15.0 2.000000 1.999964 0.333333 0.333369  3.583302¢ — 05

20.0 2.000000 1.999964 0.333333 0.333369  3.583302¢ — 05

Table 3: Comparison of the “u(O, t) — (0, f) Atnm and (Af)? for different values of Af for fixed h = 0.01, in Example 6.1.

At “u(O, t) — (0, t) At”oo Condition Number p

1/4 0.001532 1.9

1/8 0.000301 241 2.34758
1/16 5.09425¢ — 05 3.45 2.56282
1/32 2.72504¢ — 05 5.72 0.902592
1/64 2.51498¢ — 05 11.12 0.115729
1/128 1.80901e — 05 25.97 0.475351
1/256 1.31622¢ — 05 77.65 0.458792
1/512 1.04111e — 05 321.78 0.33828
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Figure 4: Comparison of the ||u(x, 0) —idi(x, 0) At”[x, and (At)? for different values of At for fixed h = 0.01, in Example 6.1.

~ ‘ —_—=h?
N — [[u(0,t) — @(0,t)all

1072L

10731

10741

107! 1072
h

Figure 5: Comparison of the ”u(x, 0) — i(x, 0);1”oo and K2 for different values of I for fixed At = 0.01, in Example 6.1.

Table 4: Comparison of the ||u(0, 1) — (0, t)h”m and 12 for different values of At for fixed At = 0.01, in Example 6.1.

h ”u(O, t) — (0, t)h”m Condition Number p

1/4 0.081468 8.87

1/8 0.001372 12.89 5.89188
1/16 0.001407 12.06 —-0.036341
1/32 0.000315 23.76 2.12286
1/64 0.000318 22.72 —0.013674
1/128 9.06976¢ — 05 17.88 1.80989
1/256 8.91848¢ — 05 17.57 0.024265

1/512 1.94041e — 05 18.26 2.20044
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Example 6.2. Consider the following coupled nonlinear reaction—diffusion equations [20]

Up = Uy + 120 — 1,

Up = Uy — U2V + 1,

with the exact solution

u(x, t) = \6(1 + tanh (x + gt)),

5 3
o(x, t) = \6(4 tanh(x+ 2t)).

The relative errors for u(0, t) and v(0,t) are presented in Figure 6. Figure 7 indicates the exact and numerical
solutions of u(x,t) and v(x, t). The log-log plot for absolute errors of u(0, t) is shown in Figure 8, as a function of At
and h = 0.01 is a fixed number. Also, the absolute errors of u(0, t) as a function of h and At = 0.01 is a fixed number,
is shown in Figure 9. Comparison between the exact and numerical solutions of u(0,t) and v(0,t) for 0 <t <1
and 1 < t < 20, are presented in Table 5 and 6, respectively. Table 7 indicates the order of convergence rate, relative

ervor and condition number of system (59), for fixed h = 0.01, which calculated by (98). Table 8 presents the order
of convergence rate, relative error and condition number of system (59), for fixed At = 0.01 , which calculated by
(99). A comparison between presented method and methods mentioned in [20], for calculating u(0,t) and v(0, t) are
indicated, in Table 9 and 10,respectively. In the last Tables the total errors were used [34], where have been calculated

using the following formulae

[T

1
2

1 9 i
Eu = [Sj ; (M(O, ts) - M(O, ts))z] s

19 i
E, = [m ;‘ (U(O/ ts) - U(O/ ts))z]

—4
19 x10
1t o ]
,/
'I
0.8} !
!
sl ¢ = [ (u(0,2) = a(0, ) /u(0, )]
’ ! —==(v(0,2) — 8(0,¢))/v(0, )l
I
04b |
!
]
025, | e e e e e e e e e e 2 4
"\‘ .'/’ -
! [}
ol Y
0 5 10 15 20
t

Figure 6: Relative errors of u(0, t) and (0, ) of Example 6.2.
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Table 5: Comparison of the exact and numerical solutions of u(0, t) and v(0, t) for 0 < t < 1, in Example 6.2.
t u(ol t) ﬁ(O/ t) U(O/ t) 5(0’ t) ||u(ol t) - a(ol t)”oo

0.1 1.624769 1.624838 1.557212 1.557143 6.883956¢ — 05
0.2 1.826192 1.826257 1.355789 1.355724  6.511758¢ — 05
0.3 2.010869 2.010902 1.171112 1.171078 3.317332¢ - 05
04 2173716 2173714 1.008264 1.008266 1.930183¢ — 06
0.5 2312450 2312420 0.869531 0.869561 3.031716e — 05
0.6 2427212 2427162 0.754769 0.754819  4.994164e — 05
0.7 2.519855 2519793 0.662126 0.662188 6.208328¢ — 05
0.8 2.593179 2593110 0.588801 0.588870  6.888778¢ — 05
09 2.650312 2.650239 0.531669 0.531741 7.229039¢ — 05
1.0 2.694286 2.694213 0.487694 0.487768 7.370615¢ — 05

Table 6: Comparison of the exact and numerical solutions of #(0, t) and v(0, t) for 1 < t < 20, in Example 6.2.
£ u(Ol t) ﬁ(o/ t) U(Ol t) 6(0/ t) ||u(01 t) - ﬂ(Ol t)”oo

1.5 2797351 2797279 0.384629 0.384702 7.269528¢ — 05
20 2.821433 2.821362 0.360547 0.360619 7.155251e — 05
25 2826864 2.826792 0.355117 0.355188 7.124628¢ — 05
3.0 2828078 2.828007 0.353902 0.353974 7.117533¢ — 05
5.0 2.828426 2.828355 0.353554 0.353625 7.115483e — 05
7.0 2.828427 2.828356 0.353553 0.353625 7.115478e — 05
10.0 2.828427 2.828356 0.353553 0.353625 7.115478¢ — 05
15.0 2.828427 2.828356 0.353553 0.353625 7.115478¢ — 05
20.0 2.828427 2.828356 0.353553 0.353625 7.115478e — 05

Figure 7: Comparison of the exact (left) and numerical (right) solutions of u(x, t) and v(x, ) in Example 6.2.
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Table 7: Comparison of the ||u(0, t) — (0, t) Ath and (At)? for different values of At for fixed h = 0.01, in Example 6.2.

At “u(O, t) — (0, t) At”w Condition Number 4

1/4 0.015392 2.19

1/8 0.003599 2.58 2.09651
1/16 0.000683 3.36 2.39764
1/32 0.000151 5.02 2.17734
1/64 8.47217¢ — 05 8.83 0.833745
1/128 7.00614e — 05 18.57 0.274111
1/256 6.38795¢ — 05 48.9 0.133267
1/512 6.09421¢ — 05 173.87 0.067914

Table 8: Comparison of the ||u(0, ) —i(0, 1), ||m and h? for different values of At for fixed At = 0.01, in Example 6.2.

h ”u(O, t) — (0, t)h”m Condition Number p

1/4 0.140951 7.3

1/8 0.002708 10.47 5.70182
1/16 0.002863 9.97 0.080299
1/32 0.000702 16.59 2.02798
1/64 0.000693 16.01 0.018615
1/128 0.000207 13.45 1.74322
1/256 0.000206 13.25 0.006986
1/512 6.18851e — 05 13.6 1.73498

Table 9: Approximation of u(0, t) for the present method and numerical methods (Haar, FDM and RBF) proposed in [20] for Example
6.2.

t u(0, t) (0, t) Haar FDM RBF
0.1 1.624769 1.624838 1.624616 0.935783 1.793949
0.2 1.826192 1.826257 1.826197 1.255080 2.199219
0.3 2.010869 2.010902 2.010769 1.539690 2.097656
0.4 2.173716 2.173714 2.173473 1.798333 2.330078
0.5 2.312450 2.312420 2.312082 2.030951 2.437500
0.6 2.427212 2.427162 2.426757 2.230080 1.986328
0.7 2.519855 2.519793 2.519349 2.427156 2.656250
0.8 2.593179 2.593110 2.592650 2.539897 2.730469
0.9 2.650312 2.650239 2.649777 2.638873 2.715820
1.0 2.694286 2.694213 2.693755 2.713157 2.725586

Total errors - 5.50758¢ — 05 3.778482¢ — 04 3.831014e —01 1.948005e — 01

7. Conclusion

In this paper, an orthogonal basis for space of linear splines is introduced, and also; some of its new
properties were studied. Besides, a numerical method based on OL-splines is proposed in order to
estimate the inverse problems of identifying the unknown boundary condition of a coupled nonlinear
RDE. In order to linearize the nonlinear term in the equations, the quasi-linearization method was used.
The related system of the linear equations was well-posed and so; there is no need to use methods such
as the regularization method. The error estimation and convergence of the method was investigated.
Furthermore, the experimental numerical convergence rate is computed, which demonstrates the first-
order convergence of the presented method. The results of the research demonstrate the accuracy and



Figure 8: Comparison of the ||u(x, 0) —idi(x, 0) At”[x, and (At)? for different values of At for fixed h = 0.01, in Example 6.2.

Figure 9: Comparison of the ”u(x, 0) —i(x, O)h”w and 12 for different values of & for fixed At = 0.01, in Example 6.2.

Table 10: Approximation of v(0, t) for the present method and numerical methods proposed in [20] for Example 6.2.
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t v(0, 1) (0, t) Haar FDM RBF
0.1 1.557212 1.557143 1.557074 1.786407 1.387463
0.2 1.355789 1.355724 1.355859 1.393373 1.239258
0.3 1.171112 1.171078 1.171382 1.014156 0.996094
0.4 1.008264 1.008266 1.008717 0.690760 0.893555
0.5 0.869531 0.869561 0.870112 0.404529 0.769531
0.6 0.754769 0.754819 0.755419 0.161741 —0.250000
0.7 0.662126 0.662188 0.662800 —-0.051236 0.593384
0.8 0.588801 0.588870 0.589469 —0.200171 0.541016
0.9 0.531669 0.531741 0.532316 —0.320760 0.468750
1.0 0.487694 0.487768 0.488313 —-0.427614 0.459290

Total errors - 5.50758¢ — 05 5.115574e — 04 5.525659¢ — 01  1.838014¢ — 01

102
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applicability of the method.
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