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Abstract. The objective of this paper is to achieve the inequality for Ricci curvature of a contact CR-
warped product submanifold isometrically immersed in a generalized Sasakian space form admitting a
trans-Sasakian structure in the expressions of the squared norm of mean curvature vector and warping
function. We provide numerous physical applications of the derived inequalities. Finally, we prove that
under a certain condition the base manifold is isometric to a sphere with a constant sectional curvature.

1. Introduction

Let (N1, 11) and (N2, 12) be two Riemannian manifolds with Riemannian metrics 11 and 12 respectively
andψ be a positive differentiable function on N1. Ifπ : N1×N2 → N1 and η : N1×N2 → N2 are the projection
maps given by π(p, q) = p and η(p, q) = q for every (p, q) ∈ N1 × N2, then the warped product manifold is the
product manifold N1 ×N2 equipped with the Riemannian structure such that

1(X,Y) = 11(π∗X, π∗Y) + (ψ ◦ π)212(η∗X, η∗Y),

for all X,Y ∈ TM. The function ψ is called the warping function of the warped product manifold [24]. If the
warping function is constant, then the warped product is trivial i.e., simply Riemannian product. On the
grounds that warped product manifolds admit a number of applications in Physics and theory of relativity
[33], this has been a topic of extensive research. Warped products provide many basic solutions to Einstein
field equations [33]. The concept of modelling of space-time near black holes adopts the idea of warped
product manifolds [34]. Schwartzschild space-time is an example of warped product P ×r S2, where the
base P = R × R+ is a half plane r > 0 and the fibre S2 is the unit sphere. Under certain conditions, the
Schwartzchild space-time becomes the black hole. A cosmological model to model the universe as a space-
time known as Robertson-Walker model is a warped product [35].

Some natural properties of warped product manifolds were studied in [24]. B. Y. Chen ([1], [2]) performed
an extrinsic study of warped product submanifolds in a Kaehler manifold. Since then, many geometers
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have explored warped product manifolds in different settings like almost complex and almost contact
manifolds and various existence results have been investigated (see the survey article [10]).

In 1999, Chen [6] discovered a relationship between Ricci curvature and squared mean curvature vector
for an arbitrary Riemannian manifold. On the line of Chen a series of articles have been appeared to
formulate the relationship between Ricci curvature and squared mean curvature in the setting of some
important structures on Riemannian manifolds (see [12], [13], [16], [17], [18], [38]). Recently Ali et al.
[20] established a relationship between Ricci curvature and squared mean curvature for warped product
submanifolds of a sphere and provide many physical applications.

In this paper our aim is to obtain a relationship between Ricci curvature and squared mean curvature
for contact CR-warped product submanifolds in the setting of generalized Sasakian space form admitting
a trans-Sasakian structure. Further, we provide some applications in terms of Hamiltonians and Euler-
Lagrange equation. In the last we also worked out some applications of Obata’s differential equation.

2. Preliminaries

A (2n + 1)−dimensional C∞−manifold M̄ is said to have an almost contact structure if there exist on M̄ a
tensor field φ of the type (1, 1), a vector field ξ and a 1-form η satisfying

φ2 = −I + η ⊕ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1. (1)

There always exists a Riemannian metric 1 on an almost contact metric manifold M̄ satisfying the following
conditions

η(X) = 1(X, ξ), 1(φX, φY) = 1(X,Y) − η(X)η(Y), (2)

for all X,Y ∈ TM̄.

An almost contact metric structure on a manifold M̄ is called a trans-Sasakian structure if the product
manifold M̄×R belongs to classW4 [41]. J. C. Marrero [43] provided the tensorial equations characterizing
the trans-Sasakian structure. D. Blair and J. A. Oubina [42] showed that an almost contact metric structure
(φ, ξ, η, 1) is trans-Sasakian structure if it satisfies the following formula

(∇̄Xφ)Y = α(1(X,Y)ξ − η(Y)X) + β(1(φX,Y)ξ − η(Y)φX), (3)

for some smooth functions α and β on M̄ and ∇̄ being the Levi-Civita connection of M̄.

From the formula (3) it follows that

∇̄Xξ = −αφX + β(X − η(X)ξ). (4)

If (M̄, φ, ξ, η, ξ) be a trans-Sasakian manifold, then (M̄×R, J, 1) belongs to classW4 of the almost Hermitian
manifolds.

In [37] P. Alegre et al. introduced the notion of generalized Sasakian space form as that an almost
contact metric manifold (M̄, φ, ξ, η, 1) whose curvature tensor R̄ satisfies

R̄(X,Y,Z,W) = f1[1(Y,Z)1(X,W) − 1(X,Z)1(Y,W)]
− f2[1(φX,Z)1(φY,W) − 1(φX,W)1(φY,Z)
+ 21(φX,Y)1(φZ,W)] − f3[η(Z){η(Y)1(X,W)
− η(X)1(Y,W)} + η(W){η(X)1(Y,Z) − η(Y)1(X,Z)}]

(5)

for all vector fields X,Y,Z,W and certain differentiable functions f1, f2, f3 on M̄. A generalized Sasakian
space form with functions f1, f2, f3 is denoted by M̄( f1, f2, f3). If f1 = c+3

4 , f2 = f3 = c−1
4 , then M̄( f1, f2, f3)



M. A. Khan, C. Ozel / Filomat 35:1 (2021), 125–146 127

becomes a Sasakian space form M̄(c) [37]. If f1 = c−3
4 , f2 = f3 = c+1

4 , then M̄( f1, f2, f3) becomes a Kenmotsu
space form M̄(c) [37] and if f1 = f2 = f3 = c

4 , then M̄( f1, f2, f3) becomes a cosymplectic space form M̄(c) [37].

Let M be an n−dimensional Riemannian manifold isometrically immersed in a m−dimensional Rie-
mannian manifold M̄. Then the Gauss and Weingarten formulas are ∇̄XY = ∇XY + h(X,Y) and ∇̄XN =
−ANX + ∇⊥XN respectively, for all X,Y ∈ TM and N ∈ T⊥M. Where ∇ is the induced Levi-civita connection
on M, N is a vector field normal to M, h is the second fundamental form of M, ∇⊥ is the normal connection
in the normal bundle T⊥M and AN is the shape operator of the second fundamental form. The second
fundamental form h and the shape operator are associated by the following formula

1(h(X,Y),N) = 1(ANX,Y). (6)

The equation of Gauss is given by

R(X,Y,Z,W) = R̄(X,Y,Z,W) + 1(h(X,W), h(Y,Z)) − 1(h(X,Z), h(Y,W)), (7)

for all X,Y,Z,W ∈ TM. Where, R̄ and R are the curvature tensors of M̄ and M respectively.

For any X ∈ TM and N ∈ T⊥M, φX and φN can be decomposed as follows

φX = PX + FX (8)

and

φN = tN + f N, (9)

where PX (resp. tN) is the tangential and FX (resp. f N) is the normal component of φX ( resp. φN).

For any orthonormal basis {e1, e2, . . . , en} of the tangent space TxM, the mean curvature vector H(x) and
its squared norm are defined as follows

H(x) =
1
n

n∑
i=1

h(ei, ei), ‖H‖2 =
1
n2

n∑
i, j=1

1(h(ei, ei), h(e j, e j)), (10)

where n is the dimension of M. If h = 0 then the submanifold is said to be totally geodesic and minimal if
H = 0. If h(X,Y) = 1(X,Y)H for all X,Y ∈ TM, then M is called totally umbilical.

The scalar curvature of M̄ is denoted by π̄(M̄) and is defined as

π̄(M̄) =
∑

1≤p<q≤m

κ̄pq, (11)

where κ̄pq = κ̄(ep ∧ eq) and m is the dimension of the Riemannian manifold M̄. Throughout this study, we
shall use the equivalent version of the above equation, which is given by

2π̄(M̄) =
∑

1≤p<q≤m

κ̄pq. (12)

In a similar way, the scalar curvature π̄(Lx) of a L−plane is given by

π̄(Lx) =
∑

1≤p<q≤m

κ̄pq. (13)
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Let {e1, . . . , en} be an orthonormal basis of the tangent space TxM and if er belongs to the orthonormal
basis {en+1, . . . em} of the normal space T⊥M, then we have

hr
pq = 1(h(ep, eq), er)) (14)

and

‖h‖2 =

n∑
p,q=1

1(h(ep, eq), h(ep, eq)). (15)

Let κpq and κ̄pq be the sectional curvatures of the plane sections spanned by ep and eq at x in the
submanifold Mn and in the Riemannian space form M̄m(c), respectively. Thus by Gauss equation, we have

κpq = κ̄pq +

m∑
r=n+1

(hr
pphr

qq − (hr
pq)2). (16)

The global tensor field for orthonormal frame of vector field {e1, . . . , en} on Mn is defined as

S̄(X,Y) =

n∑
i=1

{1(R̄(ei,Y)Y, ei)}, (17)

for all X,Y ∈ TMn. The above tensor is called the Ricci tensor. If we fix a distinct vector eu from {e1, . . . , en}

on Mn, which is governed by χ. Then the Ricci curvature is defined by

Ric(χ) =

n∑
p=1
p,u

κ(ep ∧ eu). (18)

Consider the warped product submanifold N1 ×ψ N2. Let X be a vector field on M1 and Z be a vector
field on M2, then from Lemma 7.3 of [24], we have

∇XZ = ∇ZX = (
Xψ
ψ

)Z, (19)

where ∇ is the Levi-Civita connection on M. For a warped product M = M1 ×ψ M2 it is easy to observe that

∇XZ = ∇ZX = (Xlnψ)Z, (20)

for X ∈ TM1 and Z ∈ TM2.

∇ψ is the gradient of ψ and is defined as

1(∇ψ,X) = Xψ, (21)

for all X ∈ TM.
Let M be an n−dimensional Riemannian manifold with the Riemannian metric 1 and let {e1, e2, . . . , en}

be an orthogonal basis of TM. Then as a result of (21), we get

‖∇ψ‖2 =

n∑
i=1

(ei(ψ))2. (22)

The Laplacian of ψ is defined by

∆ψ =

n∑
i=1

{(∇ei ei)ψ − eieiψ}. (23)
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The Hessian tensor for a differentiable function ψ is a symmetric covariant tensor of rank 2 and is
defined as

∆ψ = −traceHψ

For the warped product submanifolds Nn1
1 ×ψ Nn2

2 , we have following well known result [9]

n1∑
p=1

n2∑
q=1

κ(ep ∧ eq) =
n2∆ψ

ψ
= n2(∆lnψ − ‖∇lnψ‖2), (24)

where n1 and n2 are the dimensions of the submanifolds Nn1
1 and Nn2

2 respectively.
Now, we state the Hopf’s Lemma.

Hopf’s Lemma [3]. If M is a m−dimensional connected compact Riemannian manifold. If ψ is a differen-
tiable function on M s. t. ∆ψ ≥ 0 everywhere on M (or ∆ψ ≤ 0 everywhere on M), then ψ is a constant
function.

For a compact orientable Riemannian manifold M with or without boundary and as a consequences
of the integration theory of manifolds, we have∫

M
∆ψdV = 0, (25)

where ψ is a function on M and dV is the volume element of M.

3. Contact CR-warped product submanifolds of a trans-Sasakian manifold

Suppose M be a n−dimensional submanifold isometrically immersed in an almost contact metric man-
ifold M̄(φ, ξ, η, 1) such that the structure vector field ξ is tangent to M. The submanifold M is called contact
CR-submanifold if it admits an invariant distribution D whose orthgonal complementary distribution D⊥

is anti-invariant such that TM = D ⊕ D⊥ ⊕ 〈ξ〉, where φD ⊆ D, φD⊥ ⊆ T⊥M and 〈ξ〉 is the 1-dimensional
distribution spanned by ξ. If µ is the invariant subspace of the normal bundle T⊥M, then in the case of
contact CR- submanifold, the normal bundle T⊥M can be decomposed as T⊥M = µ ⊕ φD⊥. A contact
CR-submanifold is called contact CR-product submanifold if the distributions D and D⊥ are parallel on M.
As a generalization of the product manifold submanifolds one can consider warped product submanifolds.
I. Hesigawa and I. Mihai [12] extended the study of Chen for the contact CR-warped product submanifolds
of the Sasakian manifolds. Moreover, I. Mihai [13] obtained the estimation for the squared norm of second
fundamental form in terms of the warping function for contact CR-warped product submanifolds in the
setting of Sasakian space form. Further, K. Arslan et al. [14] extended the study of I. Mihai and Chen and
they established an inequality for second fundamental form in terms of warping function for the contact
CR-warped product submanifolds of a Kenmotsu space form. Using different techniques and methodology
M. Atceken ([38], [39]) proved the inequalities for existence of contact CR-warped product submanifolds
for Kenmotsu and cosymplectic space forms. Later Sibel Sular and Cihan Özgür [40] generalized these
inequalities for contact CR-warped product submanifolds of generalized Sasakian space form admitting
trans-Sasakian structure.

It is well known that two classes of almost contact metric manifolds namely Sasakian and Kenmotsu
manifolds are quit different from each other and it has always been interesting to explore that how far
a submanifold of a Sasakian manifold differ or resemble with that of Kenmotsu manifold. The setting
of trans-Sasakian manifolds in a way unifies the two classes of manifolds. By studying the contact CR-
warped product submanifolds of a generalized Sasakian space form admitting trans-Sasakian structure
one clearly find out the deviations in the geometric behavior of a contact CR-warped product submanifold
in the Sasakian and Kenmotsu space forms. Throughout, this study we consider n−dimensional contact



M. A. Khan, C. Ozel / Filomat 35:1 (2021), 125–146 130

CR-warped product submanifold Mn = Nn1
T ×ψ Nn2

⊥
, such that the structure vector field ξ is tangential to NT,

where n1 and n1 are the dimensions of the invariant and anti-invariant submanifold respectively.
Now, we have the following initial result

Lemma 3.1. Let M = Nn1
T ×ψ Nn2

⊥
be a contact CR-warped product submanifold isometrically immersed in a trans-

Sasakian manifold M̄, then

(i) 1(h(X,Y), φZ) = 0,
(ii) 1(h(φX, φX),N) = −1(h(X,X),N),

for any X,Y ∈ TNT, Z ∈ TN⊥ and N ∈ µ.

Proof. By using Gauss and Weingarten formulae in equation (3), we have

−AφZX − ∇⊥XφZ−φ∇XZ − φh(X,Z) + ∇ZφX + h(φX,Z)
− φ∇ZX − φh(X,Z) = −η(X)φZ,

taking inner product with Y and using (6), we get the required result.

To prove (ii), for any X ∈ TNT we have

∇̄XφX = (∇̄Xφ)X + φ∇̄XX,

using Gauss formula and (3), we get

∇XφX + h(φX,X) = −η(X)φX + φ∇XX + φh(X,X),

taking inner product with φN, above equation yields

1(h(φX,X), φN) = 1(h(X,X),N), (26)

interchanging X by φX and using (4), the above equation gives

1(h(φX,X), JN) = −1(h(φX, φX),N). (27)

From (26) and (27), we get the required result.

By the Lemma 3.1 it is evident that the isometric immersion Nn1
T ×ψ Nn2

⊥
into a trans-Sasakian manifold

M̄ is D− minimal. The D- minimality property provides us a useful relationship between the CR-warped
product submanifold NT ×ψ N⊥ and the equation of Gauss.

Definition 3.1 The warped product N1 ×ψ N2 isometrically immersed in a Riemannian manifold M̄ is called
Ni totally geodesic if the partial second fundamental form hi vanishes identically. It is called Ni-minimal if
the partial mean curvature vector Hi becomes zero for i = 1, 2.

Let {e1, . . . , eα, eα+1 = φe1 . . . , . . . en1−1 = φeα, en1 = ξ, en1+1, . . . , en} be a local orthonormal frame of vector
fields on the contact CR-warped product submanifold Mn = Nn1

T ×ψNn2
⊥

such that {ξ, e1, . . . , en1 } are tangent to
NT and {en1+1, . . . en} are tangent to N⊥.Moreover, {e∗1 = φen1+1, . . . , e∗n = φen, e∗n+1, . . . , e

∗
m} is a local orthonormal

frame of the normal space T⊥M.
From Lemma 3.1, it is easy to conclude that

m∑
r=n+1

n1∑
i, j=1

1(h(ei, e j), er) = 0. (28)

Thus it follows that the trace of h due to NT becomes zero. Hence in view of the Definition 3.1, we obtain
the following important result.
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Theorem 3.2. Let Mn = Nn1
T ×ψ Nn2

⊥
be a contact CR-warped product submanifold isometrically immersed in a

trans-Sassakian manifold. Then Mn is D− minimal.

So, it is easy to conclude the following

‖H‖2 =
1
n2

m∑
r=n+1

(hr
n1+1n1+1 + · · · + hr

nn), (29)

where ‖H‖2 is the squared mean curvature.

4. Ricci curvature for contact CR-warped product submanifold

In this section, we investigate Ricci curvature in terms of the squared norm of mean curvature and the
warping function as follows

Theorem 4.1. Let M = Nn1
T ×ψ Nn2

⊥
be a contact CR-warped product submanifold isometrically immersed in a

generalized Sasakian space form M̄( f1, f2, f3) admitting a trans-Sasakian structure . Then for each orthogonal unit
vector field χ ∈ TxM orthogonal to ξ, either tangent to NT or N⊥ we have

(1) The Ricci curvature satisfies the following inequality.
(i) If χ is tangent to Nn1

T , then

Ric(χ) ≤
1
4

n2
‖H‖2 −

n2∆ψ

ψ
+ (n + n1n2 − 1) f1 +

3 f2
2

− (n2 + 1) f3.
(30)

(ii) χ is tangent to Nn2
⊥

, then

Ric(χ) ≤
1
4

n2
‖H‖2 −

n2∆ψ

ψ
+ (n + n1n2 − 1) f1

− (n2 + 1) f3.
(31)

(2) If H(x) = 0 for each x ∈Mn, then there is a unit vector field X which satisfies the equality case of (1) if and only
if Mn is mixed totally geodesic and χ lies in the relative null space Nx at x.

(3) For the equality case we have
(a) The equality case of (30) holds identically for all unit vector fields tangent to NT at each x ∈ Mn if and

only if Mn is mixed totally geodesic and D−totally geodesic contact CR-warped product submanifold in
M̄m( f1, f2, f3).

(b) The equality case of (31) holds identically for all unit vector fields tangent to N⊥ at each x ∈ Mn if and
only if M is mixed totally geodesic and either Mn is D⊥- totally geodesic contact CR-warped product or
Mn is a D⊥ totally umbilical in M̄m( f1, f2, f3) with dim D⊥ = 2.

(c) The equality case of (1) holds identically for all unit tangent vectors to Mn at each x ∈ Mn if and only
if either Mn is totally geodesic submanifold or Mn is a mixed totally geodesic totally umbilical and D−
totally geodesic submanifold with dim N⊥ = 2.

Where n1 and n2 are the dimensions of Nn1
T and Nn2

⊥
respectively.

Proof. Suppose that M = Nn1
T ×ψNn2

⊥
be a contact CR-warped product submanifold of a generalized Sasakian

space form. From Gauss equation, we have

n2
‖H‖2 = 2π(Mn) + ‖h‖2 − 2π̄(Mn). (32)



M. A. Khan, C. Ozel / Filomat 35:1 (2021), 125–146 132

Let {e1, . . . , en1 , en1+1, . . . , en} be a local orthonormal frame of vector fields on Mn such that {e1, . . . , en1 }

are tangent to NT and {en1+1, . . . , en} are tangent to N⊥. So, the unit tangent vector χ = eA ∈ {e1, . . . , en} can be
expanded (32) as follows

n2
‖H‖2 = 2π(Mn) +

1
2

m∑
r=n+1

{(hr
11 + · · · + hr

nn − hr
AA)2 + (hr

AA)2
}

−

m∑
r=n+1

∑
1≤p,q≤n

hr
pphr

qq − 2π̄(Mn). (33)

The above expression can be written as follows

n2
‖H‖2 = 2π(Mn) +

1
2

m∑
r=n+1

{(hr
11 + · · · + hr

nn)2

+ (2hr
AA − (hr

11 + · · · + hr
nn))2
} + 2

m∑
r=n+1

∑
1≤p<q≤n

(hr
pq)2

− 2
m∑

r=n+1

∑
1≤p<q≤n

hr
pphr

qq − 2π̄(Mn).

In view of the Lemma 3.1, the preceding expression takes the form

n2
‖H‖2 =

m∑
r=n+1

{(hr
n1+1n1+1 + · · · + hr

nn)2 + +(2hr
AA − (hr

n1+1n1+1 + · · · + hr
nn))2
}

+ 2π(Mn) +

m∑
r=n+1

∑
1≤p<q≤n

(hr
pq)2
−

m∑
r=n+1

∑
1≤p<q≤n

hr
pphr

qq +

m∑
r=n+1

∑
a=1
a,A

(hr
aA)2

+

m∑
r=n+1

∑
1≤p<q≤n

p,q,A

(hr
pq)2
−

m∑
r=n+1

∑
1≤p<q≤n

p,q,A

hr
pphr

qq − 2π̄(Mn).

(34)

By equation (16), we have
m∑

r=n+1

∑
1≤p<q≤n

p,q,A

(hr
pq)2
−

m∑
r=n+1

∑
1≤p<q≤n

p,q,A

hr
pphr

qq

=
∑

1≤p<q≤n
p,q,A

κ̄p,q −
∑

1≤p<q≤n
p,q,A

κp,q

(35)

Substituting the values of equation (35) in (34), we discover

n2
‖H‖2 =2π(Mn) +

1
2

m∑
r=n+1

(2hr
AA − (hr

n1+1n1+1 + · · · + hr
nn))2

+

m∑
r=n+1

∑
1≤p<q≤n

(hr
pq)2
−

m∑
r=n+1

∑
1≤p<q≤n

hr
pphr

qq − 2π̄(Mn)

+

m∑
r=n+1

∑
a=1
a,A

(hr
aA)2 +

∑
1≤p<q≤n

p,q,A

κ̄p,q −
∑

1≤p<q≤n
p,q,A

κp,q.

(36)
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Since, Mn = Nn1
T ×ψ Nn2

⊥
, then from (13), the scalar curvature of Mn can be defined as follows

π(Mn) =
∑

1≤p<q≤n

κ(ep ∧ eq)

=

n1∑
i=1

n∑
j=n1+1

κ(ei ∧ e j) +
∑

1≤i<k≤n1

κ(ei ∧ ek) +
∑

n1+1≤l<o≤n

κ(el ∧ eo)
(37)

The usage of (13) and (24), we derive

π(Mn) =
n2∆ψ

ψ
+ π(Nn1

T ) + π(Nn2
⊥

) (38)

Utilizing (38) together with (5) in (36), we have

1
2

n2
‖H‖2 =

n2∆ψ

ψ
+
∑

1≤p<q≤n
p,q,A

κ̄p,q + π̄(Nn1
T ) + π̄(Nn2

⊥
)

+

m∑
r=n+1

{ ∑
1≤p<q≤n

(hr
pq)2
−

∑
1≤p<q≤n

p,q,A

hr
pphr

qq

}

+

m∑
r=n+1

∑
a=1
a,A

(hr
aA)2 +

m∑
r=n+1

∑
1≤i, j≤n1

(hr
iih

r
j j − (hr

i j)
2)

+

m∑
r=n+1

∑
n1+1≤s,t≤n

(hr
ssh

r
tt − (hr

st)
2)

+
1
2

m∑
r=n+1

(2hr
AA − (hr

n1+1n1+1 + · · · + hr
nn))2

− { f1(n(n − 1)) + f2(3(n1 − 1)) − f3(2(n − 1))}.

(39)

Considering unit tangent vector χ = ea, we have two choices: χ is either tangent to the base manifold
Nn1

T or to the fibre Nn2
⊥

.

Case i: If ea is tangent to Nn1
T , then fix a unit tangent vector from {e1, . . . , en1 } suppose χ = ea = e1, then from

(39) and (18), we find

Ric(χ) ≤
1
2

n2
‖H‖2 −

n2∆ψ

ψ
−

1
2

m∑
r=n+1

(2hr
11 − (hr

n1+1n1+1 + . . . hr
nn))2

−

m∑
r=n+1

∑
1≤p<q≤n1

(hr
pq)2 +

m∑
r=n+1

[
∑

1≤i< j≤n1

(hr
i j)

2
−

∑
1≤i< j≤n1

hr
iih

r
j j]

+

m∑
r=n+1

∑
n1+1≤s<t≤n

(hr
st)

2 +

m∑
r=n+1

[
∑

n1+1≤s<t≤n

(hr
i j)

2
−

∑
n1+1≤s<t≤n

hr
ssh

r
tt]

+

m∑
r=n+1

∑
2≤p<q≤n

hr
pphr

qq + f1(n(n − 1)) + f2(3(n1 − 1)) − f3(2(n − 1))

−

∑
2≤p<q≤n

κ̄p,q − π̄(Nn1
T ) − π̄(Nn2

⊥
).

(40)
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From (5), (13) and (14), we have∑
2≤p<q≤n

κ̄p,q =
f1
2

((n − 1)(n − 2)) +
f2
2

(3(n1 − 2)) −
f3
2

(2(n − 2)), (41)

π̄(Nn1
T ) =

f1
2

((n1(n1 − 1)) +
f2
2

(3(n1 − 1)) −
f3
2

(2(n1 − 1)), (42)

π̄(Nn1
T ) =

f1
2

((n2(n2 − 1)) (43)

Using in (40), we have

Ric(χ) ≤
1
2

n2
‖H‖2 −

n2∆ψ

ψ
+ (n + n1n2 − 1) f1 +

3 f2
2
− (n2 + 1) f3

−
1
2

m∑
r=n+1

(2hr
11 − (hr

n1+1n1+1 + · · · + hr
nn))2

−

m∑
r=n+1

∑
1≤p<q≤n

(hr
pq)2 +

m∑
r=n+1

[
∑

1≤i< j≤n1

(hr
i j)

2 +

m∑
r=n+1

∑
n1+1≤s<t≤n

(hr
st)

2]

−

m∑
r=n+1

[
∑

1≤i< j≤n1

hr
iih

r
j j +

∑
n1+1≤s<t≤n

hr
ssh

r
tt]

+

m∑
r=n+1

∑
2≤p<q≤n

hr
pphr

qq.

(44)

Further, the seventh and eighth terms on right hand side of the above inequality can be written as

m∑
r=n+1

[
∑

1≤i< j≤n1

(hr
i j)

2 +
∑

n1+1≤s<t≤n

(hr
st)

2] −
m∑

r=n+1

∑
1≤p<q≤n

(hr
pq)2

= −

m∑
r=n+1

n1∑
p=1

n∑
q=n1+1

(hr
pq)2.

Similarly, we have

m∑
r=n+1

[
∑

1≤i< j≤n1

hr
iih

r
j j +

∑
n1+1≤s,t≤n

hr
ssh

r
tt −

∑
2≤p<q≤n

hr
pphr

qq]

=

m∑
r=n+1

[
n1∑

p=2

n∑
q=n1+1

hr
pphr

qq −

n1∑
j=2

hr
11hr

j j].

Utilizing above two values in (44), we get

Ric(χ) ≤
1
2

n2
‖H‖2 −

n2∆ψ

ψ
+ (n + n1n2 − 1) f1 +

3 f2
2
− (n2 + 1) f3

−
1
2

m∑
r=n+1

(2hr
11 − (hr

n1+1n1+1 + . . . hr
nn))2

−

m∑
r=n+1

[
n1∑

p=1

n∑
q=n1+1

(hr
pq)2 +

n1∑
b=2

hr
11hr

bb −

n1∑
p=2

n∑
q=n1+1

hr
pphr

qq].

(45)
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Since Mn = Nn1
T ×ψ Nn2

⊥
is Nn1

T -minimal then we can observe the following

m∑
r=n+1

n1∑
p=2

n∑
q=n1+1

hr
pphr

qq = −

m∑
r=n+1

n∑
q=n1+1

hr
11hr

qq (46)

and

m∑
r=n+1

n1∑
b=2

hr
11hr

bb = −

m∑
r=n+1

(hr
11)2. (47)

Simultaneously, we can conclude

1
2

m∑
r=n+1

(2hr
11 − (hr

n1+1n1+1 + · · · + hr
nn))2 +

m∑
r=n+1

n∑
q=n1+1

hr
11hr

qq

= 2
m∑

r=n+1

(hr
11)2 +

1
2

n2
‖H‖2.

(48)

Using (46) and (47) in (45), after the assessment of (48), we finally get

Ric(χ) ≤
1
2

n2
‖H‖2 −

n2∆ψ

ψ
+ (n + n1n2 − 1) f1 +

3 f2
2
− (n2 + 1) f3

−
1
4

m∑
r=n+1

n∑
q=n1+1

(hr
qq)2
−

m∑
r=n+1

{(hr
11)2
−

n∑
q=n1+1

hr
11hr

qq

+
1
4

(hr
n1+1n1+1 + · · · + hr

nn)2
}.

(49)

Further, using the fact that
∑m

r=n+1(hr
n1+1n1+1 + · · · + hr

nn) = n2
‖H‖2, we get

Ric(χ) ≤
1
4

n2
‖H‖2 −

n2∆ψ

ψ
+ (n + n1n2 − 1) f1 +

3 f2
2
− (n2 + 1) f3

−
1
4

m∑
r=n+1

(2hr
11 −

n∑
q=n1+1

hr
qq)2.

(50)

From the above inequality, we can conclude the inequality (30).

Case ii: If ea is tangent to Nn2
⊥

, then we choose the unit vector from {en1+1, . . . , en}, suppose that the unit
vector is en i.e., χ = en. Then from (5), (13) and (14), we have∑

1≤p<q≤n−1

κ̄p,q =
f1
2

((n − 1)(n − 2)) +
f2
2

(3(n1 − 1)) −
f3
2

(2(n − 2)). (51)

π̄(Nn1
T ) =

f1
2

(n1(n1 − 1)) +
f2
2

(3(n1 − 1)) −
f3
2

(2(n − 1)). (52)

π̄(Nn2
⊥

) =
f1
2

(n2(n2 − 1)). (53)
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Now, in a similar way as in case i using (51), we have

Ric(χ) ≤
1
2

n2
‖H‖2 −

n2∆ψ

ψ
−

1
2

m∑
r=n+1

((hr
n1+1n1+1 + . . . hr

nn) − 2hr
nn)2

−

m∑
r=n+1

∑
1≤p<q≤n1

(hr
pq)2 +

m∑
r=n+1

[
∑

1≤i< j≤n1

(hr
i j)

2
−

∑
1≤i< j≤n1

hr
iih

r
j j]

+

m∑
r=n+1

∑
n1+1≤s<t≤n

(hr
st)

2 +

m∑
r=n+1

[
∑

n1+1≤s<t≤n

(hr
i j)

2
−

∑
n1+1≤s<t≤n

hr
ssh

r
tt]

+

m∑
r=n+1

∑
1≤p<q≤n−1

hr
pphr

qq + (n + n1n2 − 1) f1 − (n2 + 1) f3.

(54)

Using similar steps of case i, the above inequality takes the form

Ric(χ) ≤
1
2

n2
‖H‖2 −

n2∆ψ

ψ
+ (n + n1n2 − 1) f1 − (n2 + 1) f3

−
1
2

m∑
r=n+1

((hr
n1+1n1+1 + . . . hr

nn) − 2hr
nn)2

−

m∑
r=n+1

[
n1∑

p=1

n∑
q=n1+1

(hr
pq)2 +

n−1∑
b=n1+1

hr
nnhr

bb −

n1∑
p=1

n−1∑
q=n1+1

hr
pphr

qq].

(55)

By the Lemma 3.1, one can observe that
m∑

r=n+1

n1∑
p=1

n−1∑
q=n1+1

hr
pphr

qq = 0. (56)

Utilizing this in (55), we get

Ric(χ) ≤
1
2

n2
‖H‖2 −

n2∆ψ

ψ
+ (n + n1n2 − 1) f1 − (n2 + 1) f3

−
1
2

m∑
r=n+1

((hr
n1+1n1+1 + . . . hr

nn) − 2hr
nn)2

−

m∑
r=n+1

n1∑
p=1

n∑
q=n1+1

(hr
pq)2
−

m∑
r=n+1

n−1∑
b=n1+1

hr
nnhr

bb.

(57)

The last term of the above inequality can be written as

−

m∑
r=n+1

n−1∑
b=n1+1

hr
nnhr

bb = −

m∑
r=n+1

n∑
b=n1+1

hr
nnhr

bb +

m∑
r=n+1

(hr
nn)2

Moreover, the fifth term of (57) can be expanded as

−
1
2

m∑
r=n+1

((hr
n1+1n1+1 + · · · + hr

nn) − 2hr
nn)2 =

−
1
2

m∑
r=n+1

(hr
n1+1n1+1 + · · · + hr

nn)2

− 2
m∑

r=n+1

(hr
nn)2 +

m∑
r=n+1

n∑
j=n1+1

hr
nnhr

j j.

(58)
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Using last two values in (57), we have

Ric(χ) ≤
1
2

n2
‖H‖2 −

n2∆ψ

ψ
+ (n + n1n2 − 1) f1 − (n2 + 1) f3

−
1
2

m∑
r=n+1

(hr
n1+1n1+1 + . . . hr

nn)2
− 2

m∑
r=n+1

(hr
nn)2

+ 2
m∑

r=n+1

n∑
j=n1+1

hr
nnhr

j j −

m∑
r=n+1

n1∑
p=1

n∑
q=n1+1

(hr
pq)2

−

m∑
r=n+1

n∑
b=n1+1

hr
nnhr

bb +

m∑
r=n+1

(hr
nn)2,

(59)

or equivalently

Ric(χ) ≤
1
2

n2
‖H‖2 −

n2∆ψ

ψ
+ (n + n1n2 − 1) f1 − (n2 + 1) f3

−
1
2

m∑
r=n+1

(hr
n1+1n1+1 + . . . hr

nn)2
−

m∑
r=n+1

(hr
nn)2

+

m∑
r=n+1

n∑
j=n1+1

hr
nnhr

j j −

m∑
r=n+1

n1∑
p=1

n∑
q=n1+1

(hr
pq)2

(60)

On applying similar techniques as in the proof of case i, we arrive

Ric(χ) ≤
1
4

n2
‖H‖2 −

n2∆ψ

ψ
+ (n + n1n2 − 1) f1 − (n2 + 1) f3

−
1
4

m∑
r=n+1

(hr
nn − (hr

n1+1n1+1 + · · · + hr
nn))2,

(61)

which gives the inequality (31).

Next, we explore the equality cases of the inequality (30). First, we redefine the notion of the relative
null space Nx of the submanifold Mn in the generalized Sasakian space form M̄m( f1, f2, f3) at any point
x ∈Mn, the relative null space was defined by B. Y. Chen [6], as follows

Nx = {X ∈ TxMn : h(X,Y) = 0,∀Y ∈ TxMn
}.

For A ∈ {1, . . . ,n} a unit vector field eA tangent to Mn at x satisfies the equality sign of (30) identically
if and only if

(i)
n1∑

p=1

n∑
q=n1+1

hr
pq = 0 (ii)

n∑
b=1

n∑
A=1
b,A

hr
bA = 0 (iii) 2hr

AA =

n∑
q=n1+1

hr
qq, (62)

such that r ∈ {n + 1, . . .m} the condition (i) implies that Mn is mixed totally geodesic contact CR-warped
product submanifold. Combining statements (ii) and (iii) with the fact that Mn is contact CR-warped prod-
uct submanifold, we get that the unit vector field χ = eA belongs to the relative null spaceNx. The converse
is trivial, this proves statement (2).
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For a contact CR-warped product submanifold, the inequality sign of (30) holds identically for all unit
tangent vector belong to NT at x if and only if

(i)
n1∑

p=1

n∑
q=n1+1

hr
pq = 0 (ii)

n∑
b=1

n1∑
A=1
b,A

hr
bA = 0 (iii) 2hr

pp =

n∑
q=n1+1

hr
qq, (63)

where p ∈ {1, . . . ,n1} and r ∈ {n + 1, . . . ,m}. Since Mn is contact CR-warped product submanifold, the
third condition implies that hr

pp = 0, p ∈ {1, . . . ,n1}. Using this in the condition (ii), we conclude that Mn is
D−totally geodesic contact CR-warped product submanifold in M̄m( f1, f2, f3) and mixed totally geodesicness
follows from the condition (i). Which proves (a) in the statement (3).

For a contact CR-warped product submanifold, the equality sign of (30) holds identically for all unit
tangent vector fields tangent to N⊥ at x if and only if

(i)
n1∑

p=1

n∑
q=n1+1

hr
pq = 0 (ii)

n∑
b=1

n∑
A=n1+1

b,A

hr
bA = 0 (iii) 2hr

KK =

n∑
q=n1+1

hr
qq, (64)

such that K ∈ {n1 + 1, . . . ,n} and r ∈ {n + 1, . . . ,m}. From the condition (iii) two cases emerge, that is

hr
KK = 0, ∀K ∈ {n1 + 1, . . . ,n} and r ∈ {n + 1, . . . ,m} or dim N⊥ = 2. (65)

If the first case of (64) satisfies, then by virtue of condition (ii), it is easy to conclude that Mn is a D⊥− totally
geodesic contact CR-warped product submanifold in M̄m(c). This is the first case of part (b) of statement (3).

For the other case, assume that Mn is not D⊥−totally geodesic contact CR-warped product submanifold
and dim N⊥ = 2. Then condition (ii) of (64) implies that Mn is D⊥− totally umbilical contact CR-warped
product submanifold in M̄m( f1, f2, f3), which is second case of this part. This verifies part (b) of (3).

To prove (c) using parts (a) and (b) of (3), we combine (63) and (64). For the first case of this part, assume
that dimN⊥ , 2. Since from parts (a) and (b) of statement (3) we conclude that Mn is D−totally geodesic and
D⊥− totally geodesic submanifold in M̄m( f1, f2, f3). Hence Mn is a totally geodesic submanifold in M̄m(c).

For another case, suppose that first case does not satisfy. Then parts (a) and (b) provide that Mn is
mixed totally geodesic and D− totally geodesic submanifold of M̄m( f1, f2, f3) with dimN⊥ = 2. From the
condition (b) it follows that Mn is D⊥−totally umbilical contact CR-warped product submanifold and from
(a) it is D−totally geodesic, which is part (c). This proves the theorem.

In view of (24), we have another version of the theorem 4.1 as follows

Theorem 4.2. Let M = Nn1
T ×ψ Nn2

⊥
be a contact CR-warped product submanifold isometrically immersed in a

generalized Sasakian space form M̄m( f1, f2, f3) admitting a admitting a trans-Sasakian structure. Then for each
orthogonal unit vector field χ ∈ TxM orthogonal to ξ, either tangent to NT or N⊥. Then the Ricci curvature satisfies
the following inequality.

(i) If χ is tangent to NT, then

Ric(χ) ≤
1
4

n2
‖H‖2 − n2∆lnψ + n2‖∇lnψ‖2 + (n + n1n2 − 1) f1 +

3 f2
2

− (n2 + 1) f3.
(66)

(ii) If χ is tangent to N⊥, then

Ric(χ) ≤
1
4

n2
‖H‖2 − n2∆lnψ + n2‖∇lnψ‖2 + (n + n1n2 − 1) f1

− (n2 + 1) f3.
(67)

The equality cases are similar as in Theorem 4.1.
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5. Some geometric applications in Mechanics

In this section, we investigate some applications of our attained inequalities, this section is divided in
different subsections as follows

5.1. Application of Hopf’s Lemma
In this subsection, we shall consider that the submanifold Mn is a compact such that ∂M = φ. In the

next theorem, we will see the application of Hopf’s lemma for contact CR-warped product submanifold

Theorem 5.1. Let Mn = Nn1
T ×ψ Nn2

⊥
be a contact CR-warped product submanifold isometrically immersed in a

generalized Sasakian space form M̄m( f1, f2, f3) admitting a admitting a trans-Sasakian structure. If the unit tangent
vector χ orthogonal to ξ is tangent to either NT or N⊥, then Mn is a simply Riemannian product submanifold if the
Ricci curvature satisfy one of the following inequalities.

(i) the unit vector field χ is tangent to NT and

Ric(χ) ≤
1
4

n2
‖H‖2 + (n + n1n2 − 1) f1 +

3 f2
2
− (n2 + 1) f3. (68)

(ii) the unit vector field χ is tangent to N⊥ and

Ric(χ) ≤
1
4

n2
‖H‖2 + (n + n1n2 − 1) f1 − (n2 + 1) f3. (69)

Proof. Suppose that inequality (68) holds then from (30), we get ∆ψ
ψ ≤ 0, which implies ∆ψ ≤ 0, on using

Hopf’s Lemma, we observe that the warping function is constant and the submanifold Mn is Riemannian
product. Similar result can be proved by using inequality (69).

5.2. First eigenvalue of the warping function
The lower bound of Ricci curvature contains numerous geometric properties. Suppose the subman-

ifold Mn is complete non-compact and x be a any arbitrary point on Mn. For the Riemannian manifold
Mn, λ1(Mn) denotes the first eigenvalue of the following Dirichlet boundary value problem for a smooth
function τ on Mn

∆τ = λτ in Mn and τ = 0 on ∂Mn, (70)

where ∆ denotes the Laplacian on Mn and defined as ∆τ = −div(∇φ). By the principle of monotonicity
one has r < t which indicates that τ1(Mn

r ) > λ1(Mn
t ) and Limr→∞λ1(Dr) exists and first eigenvalue is defined

as
λ1(M) = Limr→∞λ1(Dr).

Several geometers have been worked on the analysis of first eigenvalue of the Laplacian operator ([26],
[11], [21]). For a non-constant warping function the maximum (minimum) principle on the eigenvalue λ1,
we have ([6], [32])

λ1

∫
Mn
τ2dV ≤

∫
Mn
‖∇τ‖2dV. (71)

The equality holds if and only if ∆τ = λ1τ.

The relation between Ricci curvature and first eigenvalue is derived in the following theorem

Theorem 5.2. Let Mn = Nn1
T ×ψ Nn2

⊥
be a contact CR-warped product submanifold isometrically immersed in a

generalized Sasakian space form M̄m( f1, f2, f3) admitting a trans-Sasakian structure. Suppose that the warping
function lnψ is an eigen function of the Laplacian of Mn associated to the first eigenvalue λ1(Mn) of the problem (70),
then the following inequalities hold
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(i) If the unit vector field χ is tangent to NT then∫
Mn

Ric(χ)dV ≤
1
4

n2
∫

Mn
‖H‖2dV + n2λ1

∫
Mn

(lnψ)2dV

+ [(n + n1n2 − 1) f1 −
3 f2
2
− (n2 + 1) f3]Vol(Mn).

(72)

(ii) If the unit vector field χ is tangent to N⊥ then∫
Mn

Ric(χ)dV ≤
1
4

n2
∫

Mn
‖H‖2dV + n2λ1

∫
Mn

(lnψ)2dV

+ [(n + n1n2 − 1) f1 − (n2 + 1) f3]Vol(Mn).
(73)

The equality cases are same as in Theorem (4.1).

Proof. Since Mn is compact that mean it has lower and upper bounds. Let λ1 = λ1(M) and lnψ be a solution
of Dirichlet boundary problem corresponding to the first eigenvalue λ1(Mn). Suppose χ ∈ TNT, then the
inequality (66) can be written as follows

Ric(χ) − n2‖∇lnψ‖2 ≤
1
4

n2
‖H‖2 − n2∆lnψ + (n + n1n2 − 1) f1 −

3 f2
2
− (n2 + 1) f3. (74)

Integrating above inequality with respect to volume element dV, we find∫
Mn

Ric(χ)dV − n2

∫
Mn
‖∇lnψ‖2dv ≤

n2

4

∫
Mn
‖H‖2dV − (n2 + 1) f3Vol(Mn)

+ [(n + n1n2 − 1) f1 −
3 f2
2

]Vol(Mn).

(75)

Since λ1 is an eigenvalue of the eigen function lnψ, such that ∆lnψ = λ1lnψ, then equality in (71) holds for
τ = lnψ,∫

Mn
‖∇lnψ‖2dV = λ1

∫
Mn

(lnψ)2dV, (76)

using in (75), we obtain∫
Mn

Ric(χ)dV − n2λ1

∫
Mn

(lnψ)2dV ≤
n2

4

∫
Mn
‖H‖2dV + (n2 + 1) f3Vol(Mn)

+ [(n + n1n2 − 1) f1 −
3 f2
2

]Vol(Mn).

(77)

Which proves the part (i). Similarly, one can proves the part (ii).

5.3. Dirichlet energy and Lagrangian for the warping function
Let Mn be a compact Riemannian manifold and φ be a positive differentiable function on Mn. Then

formula for Dirichlet energy of a function τ is given by [23]

E(τ) =
1
2

∫
Mn
‖∇τ‖2dV, (78)

where dV is the volume element of Mn and formula for Lagrangian of the function τ on Mn is given in
[23]

Lτ =
1
2
‖∇τ‖2. (79)
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The Euler-Lagrange equation for Lτ is given by

∆τ = 0. (80)

Considering that the contact CR-warped product submanifold Mn = Nn1
T ×ψ Nn1

⊥
is a compact orientable

without boundary such that ∂Mn = φ. Then in the following theorem we have a relation between Dirichlet
energy, Ricci curvature and mean curvature vector

Theorem 5.3. Let Mn = Nn1
T ×ψ Nn2

⊥
be contact CR-warped product submanifold of a generalized Sasakian space

form admitting a admitting a trans-Sasakian structure. Then we have the following inequalities for the Dirichlet
energy of the warping function lnψ

(i) If the unit vector field χ is tangent to NT then

E(lnψ) ≥
1

2n2

∫
Mn

Ric(χ)dV −
n2

8n2

∫
Mn
‖H‖2dV

−
1

2n2

[
(n + n1n2 − 1) f1 +

3 f2
2
− (n2 + 1)

]
Vol(Mn).

(81)

(ii) If the unit vector field χ is tangent to N⊥ then

E(lnψ) ≥
1

2n2

∫
Mn

Ric(χ)dV −
n2

8n2

∫
Mn
‖H‖2dV

−
1

2n2

[
(n + n1n2 − 1) f1 − (n2 + 1)

]
Vol(Mn).

(82)

The equality cases are similar as in Theorem 4.1.

Proof. For a positive valued differentiable function τ defined on a compact orientable Riemannian manifold
without boundary, by theory of integration on Riemannian manifold we have

∫
Mn ∆φdV = 0. On applying

this fact for the warping function lnψ, we have∫
Mn

∆lnψdV = 0. (83)

Integrating inequality (30) with respect to volume element dV on contact CR-warped product submanifold
Mn, which is compact and orientable without boundary, we get∫

Mn
Ric(χ)dV ≤

n2

4

∫
Mn
‖H‖2dV + n2

∫
Mn
‖∇lnψ‖2dV − n2

∫
Mn

∆lnψdV

+
1
n2

[
(n + n1n2 − 1) f1 +

3 f2
2
− (n2 + 1)

]
Vol(Mn).

(84)

Using the formula (78) and after some computation, the required inequality is derived. In a similar method,
we can prove the inequality (81)

Further, in the following theorem we will compute the Lagrangian for the warping function lnψ

Theorem 5.4. Let Mn = Nn1
T ×ψNn2

⊥
be a compact orientable contact CR-warped submanifold isometrically immersed

in a generalized Sasakian space form M̄( f1, f2, f3) admitting a trans-Sasakian structure such that the warping function
lnψ satisfies the Euler-Lagrangian equation, then
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(i) If the unit vector field χ is tangent to NT, then

Llnψ ≥
1

2n2
Ric(χ) −

n2

8n2
‖H‖2 −

1
2n2

[(n+n1n2 − 1) f1 +
3 f2
2

− (n2 + 1) f3].
(85)

(ii) If the unit vector field χ is tangent to N⊥, then

Llnψ ≥
1

2n2
Ric(χ) −

n2

8n2
‖H‖2 −

1
2n2

[(n + n1n2 − 1) f1 − (n2 + 1) f3] (86)

Where Llnψ is the Lagrangian of the warping function defined in (79). The equality cases are same as theorem. 4.1

Proof. The proof follows immediately on using (79) and (80) in theorem 30.

Further, the Hamiltonian for a local orthonormal frame at any point x ∈ Mn is expressed as follows
[23]

H(p, x) =
1
2

n∑
i=1

p(ei)2. (87)

On replacing p by a differential operator dφ, then from (22), we get

H(dφ, x) =
1
2

n∑
i=1

dφ(ei)2 =
1
2

n∑
i=1

ei(φ)2 =
1
2
‖∇φ‖2. (88)

In the next result we obtain a relation between Hamiltonian of warping function, Ricci curvature and
squared norm of mean curvature vector

Theorem 5.5. Let Mn = Nn1
T ×ψ Nn2

⊥
be a contact CR-warped product submanifold isometrically immersed in a

generalized Sasakian space form admitting a trans-Sasakian structure, then the Hamiltonian of the warping function
satisfy the following inequalities

(i) If χ ∈ TNT, then

H(dlnψ, x) ≥
1

2n2
{Ric(χ) −

n2

4
‖H‖2 − (n + n1n2 − 1) f1 −

3 f2
2

+ (n2 + 1) f3 (89)

(ii) If χ ∈ TN⊥, then

H(dlnψ, x) ≥
1

2n2
{Ric(χ) −

n2

4
‖H‖2 − (n + n1n2 − 1) f1 + (n2 + 1) f3 (90)

The equality cases are same as theorem 4.1

Proof. By the application of (88) in theorem 4.1, we get the required results.

5.4. Application of Obata’s differential equation
This subsection is based on the study of Obata [22]. Basically, Obata characterized a Riemannian

manifolds by a specific ordinary differential equation and derived that an n−dimensional complete and
connected Riemannian manifold (Mn, 1) to be isometric to the n−sphere Sn if and only if there exists a
non-constant smooth function τ on Mn that is the solution of the differential equation Hτ = −cτ1, where Hτ

is the Hessian of τ. Inspired by the work of Obata [22], we obtain the following characterization
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Theorem 5.6. Suppose Mn = Nn1
T ×ψ Nn2

⊥
be a compact orientable contact CR-warped product submanifold isometri-

cally immersed in a generalized Sasakian space form Mm( f1, f2, f3) admitting a trans-Sasakian structure with positive
Ricci curvature and satisfying one of the following relation

(i) χ ∈ TNT orthogonal to ξ and

‖Hessτ‖2 = −
3λ1n2

4n1n2
‖H‖2 −

3λ1

n1n2

[
(n + n1n2 − 1) f1 +

3 f2
2
− (n2 + 1) f3

]
(91)

(ii) χ ∈ TN⊥ and

‖Hessτ‖2 = −
3λ1n2

4n1n2
‖H‖2 −

3λ1

n1n2

[
(n + n1n2 − 1) f1 − (n2 + 1) f3

]
, (92)

where λ1 > 0 is an eigenvalue of the warping function τ = lnψ. Then the base manifold Nn1
T is isometric to the sphere

Sn1 (λ1
n1

) with constant sectional curvature λ1
n1

.

Proof. Let χ ∈ TNT. Consider that τ = lnψ and define the following relation as

‖Hessτ − tτI‖2 = ‖Hessτ‖2 + t2τ2
‖I‖2 − 2tτ1(Hessτ, I). (93)

But we know that ‖I‖2 = trace(II∗) = p and

1(Hess(τ), I∗) = trace(Hessτ, I∗) = traceHess(τ).

Then equation (93) transform to

‖Hessτ − tτI‖2 = ‖Hessτ‖2 + pt2τ2
− 2tτ∆τ. (94)

Assuming λ1 is an eigenvalue of the eigen function τ then ∆τ = λ1τ. Thus we get

‖Hessτ − tτI‖2 = ‖Hessτ‖2 + (pt2
− 2tλ)τ2. (95)

On the other hand, we obtain ∆τ2 = 2τ∆τ+ ‖∇τ‖2 or λ1τ2 = 2λ1τ2 + ‖∇τ‖2 which implies that τ2 = − 1
λ1
‖∇τ‖2,

using this in equation (95), we have

‖Hessτ − tτI‖2 = ‖Hessτ‖2 + (2t −
pt2

λ1
)‖∇τ‖2. (96)

In particular t = −λ1
n1

on (96) and integrating with respect to dV∫
Mn
‖Hessτ +

λ1

n1
τI‖2dV =

∫
Mn
‖Hessτ‖2dV −

3λ1

n1

∫
Mn
‖∇τ‖2dV. (97)

Integrating the inequality (66 ) and using the fact
∫

Mn ∆φdV = 0, we have∫
Mn

Ric(χ)dV ≤
n2

4

∫
Mn
‖H‖2dV + n2

∫
Mn
‖∇τ‖2dV+

+ [(n + n1n2 − 1) f1 −
3 f2
2
− (n2 + 1) f3]Vol(Mn).

(98)

From (97) and (98) we derive

1
n2

∫
Mn

Ric(χ)dV ≤
n2

4n2

∫
Mn
‖H‖2dV −

n1

3λ1

∫
Mn
‖Hessτ +

λ1

n1
τI‖2dV

+
n1

3λ1

∫
Mn
‖Hessτ‖2dV +

1
n2

[(n + n1n2 − 1) f1

+
3 f2
2
− (n2 + 1) f3]Vol(Mn).

(99)
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According to assumption Ric(χ) ≥ 0, the above inequality gives∫
Mn
‖Hessτ +

λ1

n1
φI‖2dV ≤

3n2λ1

4n1n2

∫
Mn
‖H‖2dV +

∫
Mn
‖Hessτ‖2dV

−
3λ1

n1n2
[(n + n1n2 − 1) f1 +

3 f2
2

− (n2 + 1) f3]Vol(Mn).

(100)

From (91), we get∫
Mn
‖Hessτ +

λ1

n1
τI‖2dV ≤ 0. (101)

but we know that∫
Mn
‖Hessτ +

λ1

n1
τI‖2dV ≥ 0. (102)

Combining last two statements, we get∫
Mn
‖Hessτ +

λ1

n1
τI‖2dV = 0⇒ Hessτ = −

λ1

n1
τI. (103)

Since the warping function τ = lnψ is not constant function on Mn so equation (103) is Obata’s [22]
differential equation with constant c = λ1

n1
> 0.As λ1 > 0 and therefore the base submanifold Nn1

T is isometric
to the sphere Sn1 (λ1

n1
) with constant sectional curvature λ1

n1
. This proves the theorem.

In [21] Rio et al. studied another version of Obata’s differential equation in the characterization of
Euclidean sphere. Basically, they proved that if τ be a real valued non constant function on a Riemannian
manifold satisfying ∆τ+λ1τ = 0 such that λ < 0, then Mn is isometric to a warped product of the Euclidean
line and a complete Riemannian manifold whose warping function τ is the solution of the following
differential equation

d2τ

dt2 + λ1τ = 0. (104)

Motivated by the study of Rio et al [21] and Ali et al. [20] we obtain the following characterization.

Theorem 5.7. Suppose Mn = Nn1
T ×ψNn2

⊥
be a compact orientable contact CR- warped product submanifold isometri-

cally immersed in generalized Sasakian space form admitting a trans-Sasakian structure with positive Ricci curvature
and satisfying one of the following statement

(i) χ ∈ TNT and

‖Hessτ‖2 = −
3λ1n2

4n1n2
‖H‖2 −

3λ1

n1n2

[
(n + n1n2 − 1) f1 +

3 f2
2
− (n2 + 1) f3

]
(105)

(ii) χ ∈ TN⊥ and

‖Hessτ‖2 = −
3λ1n2

4n1n2
‖H‖2 +

3λ1

n1n2

[
(n + n1n2 − 1) f1 − (n2 + 1) f3

]
, (106)

where λ1 < 0 is a negative eigenvalue of the eigen function τ = lnψ. Then Nn1
T is isometric to a warped product

of the Euclidean line and a complete Riemannian manifold whose warping function τ = lnψ satisfies the differential
equation

d2τ

dt2 + λ1τ = 0. (107)
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Proof. Since we assumed that the Ricci curvature is positive then by the Myers’s theorem according to
which, a complete Riemannian manifold with positive Ricci curvature is compact that mean Mn is compact
contact CR-warped product submanifold with free boundary [28]. Then by (99)

1
n2

∫
Mn

Ric(χ)dV ≤
n2

4n2

∫
Mn
‖H‖2dV −

n1

3λ1

∫
Mn
‖Hessτ +

λ1

n1
τI‖2dV

+
n1

3λ1

∫
Mn
‖Hessτ‖2dV +

1
n2

[(n + n1n2 − 1) f1

+
3 f2
2
− (n2 + 1) f3]Vol(Mn).

(108)

According to hypothesis Ricci curvature is positive Ric(χ) > 0, then we have∫
Mn
‖Hessτ +

λ1

n1
τI‖2dV <

3n2λ1

4n1n2

∫
Mn
‖H‖2dV +

∫
Mn
‖Hessφ‖2dV

+
3λ1

n1n2

[
(n + n1n2 − 1) f1 +

3 f2
2
− (n2 + 1) f3

] (109)

If equation (105) holds, then from last inequality we get ‖Hessφ + λ1
n1
ψI‖2 < 0, which is not possible hence

‖Hessφ + λ1
n1
φI‖2 = 0. Since λ < 0, then by result of [21], the submanifold Nn1

T is isometric to a warped
product of the Euclidean line and a complete Riemannian manifold, where the warping function on R is
the solution of the differential equation (107). This proves the theorem. Similarly by assuming (106), we
can also prove the theorem.

Acknowledgment: The authors are highly thankful to anonymous referee for his/her valuable suggestions
and comments which have improved the contents of the paper.

References

[1] B. Y. Chen, CR-submanifolds of a Kaehler manifold I, J. Differential Geometry, 16(1981), 305 - 323.
[2] B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds I, Monatsh Math., 133(2001), 177 - 195.
[3] B. Y. Chen, Pseudo-Riemannian Geometry, δ−invariants and Applications, World Scientific Publishing Company, Singapore,

2011.
[4] B.Y. Chen, A general inequality for submanifolds in complex space forms and its applications, Arch. Math., 67 (1996), 519 - 528.
[5] B.Y. Chen, Mean curvature and shape operator of isometric immersions in real space forms, Glasg. Math. J., 38(1996), 87-97.
[6] B.Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimension, Glasg. Math. J.,

41 (1999),33-41.
[7] B.Y. Chen, On isometric minimal immersions from warped products into real space forms, Proc. Edinb. Math. Soc., 45(03) (2002),

579-587.
[8] B.Y. Chen, Differential Geometry of Warped Product Manifolds and Submanifolds, World Scientific, 2017.
[9] B.Y. Chen, F. Dillen, L. Verstraelen, L. Vrancken, Characterization of Riemannian space forms, Einstein spaces and conformally

flate spaces, Proc. Amer. Math. Soc., 128 (2) (199), 589–598.
[10] B. Y. Chen, A survey on geometry of warped product submanifolds, arXiv:1307.0236, arxiv.org, 2013.
[11] B. Palmer, The Gauss map of a spacelike constant mean curvature hypersurface of Minkowski space, Comment. Math. Helv., 65

(1990), 52-57.
[12] K. Arslan, R. Ezentas, I. Mihai, C. Ozgur, Certain inequalities for submanifolds in (k, µ)−contact space form, Bull. Aust. Math.

Soc., 64 (2001), 201-212.
[13] K. Arslan, R. Ezentas, I. Mihai, C. Ozgur, Ricci curvature of submanifolds in Kenmotsu space forms, Int. J. Math. Mathematical

Sci., 29(12) (2002), 719-726.
[14] K. Arslan, R. Ezentas, I. Mihai, C. Ozgur, Contact CR-warped product submanifolds in Kenmotsu space forms, J. Korean Math.

Soc., 42(5) (2005), 1101-1110.
[15] F. R. Al-Solamy, M. A. Khan, Application of Hopf’s Lemma on contact CR-warped product submanifolds of a nearly Kenmotsu

manifold, 43(1) (2017), 95-107
[16] D. Cioroboiu, B. Y. Chen, Inequalities for semi-slant submanifolds in Sasakian space forms, Int. J. Mathematics and Mathematical

Sciences, 27 (2003), 1731-1738.
[17] A. Mihai, C. Ozgur, Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection, Taiwanese

J. Math., 14(2010), 1465-1477.



M. A. Khan, C. Ozel / Filomat 35:1 (2021), 125–146 146

[18] D. W. Yoon, Inequality for Ricci curvature of slant submanifolds in cosymplectic space forms, Turk. J. Math., 30(2006), 43-56.
[19] K. Kenmotsu, Class of almost contact Riemannian manifolds, Tohoku Mathematical Journal, 24 (1972), 93-103.
[20] A. Ali, Piscoran Laurian-Ioan, Ali H. Al-Khalidi, Ricci curvature on warped product submanifolds in spheres with geometric

applications, Journal of Geometry and Physics, 2019, In press.
[21] E. Garcia-Rio, D.N. Kupeli, B. Unal, On a differential equation characterizing Euclidean sphere, J. Differential Equations, 194

(2003), 287 - 299.
[22] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, 14 (1962), 333-340.
[23] O. Calin, D.C. Chang, Geometric Mechanics on Riemannian Manifolds: Applications to Partial Differential Equations, Springer

Science & Business Media, 2006.
[24] R.L. Bishop, B. O’Neil, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-9.
[25] R.H. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom., 17 (1982), 255-306.
[26] S.S. Cheng, Pectrum of the Laplacian and its Applications to Differential Geometry (Ph.D. Dissertation), Univ. of California,

Berkeley, 1974.
[27] S.Y. Cheng, Eigenvalue comparison theorem and its geometric applications, Math. Z., 143 (1975), 289-297.
[28] S.B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J., 8 (2) (1941), 401-404.
[29] S. Nolker, Isometric immersions of warped products, Differential Geom. Appl. 6 (1996), 1-30.
[30] N. Ejiri, Some compact hypersurfaces of constant scalar curvature in a sphere, J. Geom., 19 (2) (1982), 197-199.
[31] K. Sekigawa, Some CR-submanifolds in a 6-dimensional sphere, Tensor (N.S.), 41 (1) (1984), 13-20.
[32] M. Berger, Les Varietes riemanniennes ( 1

4 )-pinces, Ann. Sc. Norm. Super. Pisa CI. Sci., 14(4) (1960), 161-170.
[33] J. K. Beem, P. Ehrlich, T. G. Powell, Warped product manifolds in relativity. Selected studies, North-Holland, Amsterdam-New

York, 1982.
[34] S. W. Hawkings, G. F. R. Ellis, The large scale structure of space-time, Cambridge Univ. Press, Cambridge, 1973.
[35] B. O’Neill, Semi-Riemannian Geometry with application to Relativity, Academic Pres., 1983.
[36] D. E. Blair, Contact manifolds in Riemannian Geometry Lecture Notes in Math. 509, Berlin: Springer-Verlag, 1976.
[37] P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian space forms, Israel J. Math., 141 (2004),157-183.
[38] M. Atceken, Contact CR-warped product submanifolds in Kenmotsu space forms, Bull. of the Iranian Math. Soc., 39 (3)(2013),

415-429.
[39] M. Atceken, Contact CR-warped product submanifolds in Cosymplectic space forms, Collect. Math. , 62(2011), 17-26.
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