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Nonlinear Oscillation and Second Order Impulsive Neutral Difference
Equations

A. K. Tripathy?, G. N. Chhatria®

*Department of Mathematics, Sambalpur University, Sambalpur - 768019, India

Abstract. In this work, the authors have discussed the necessary and sulfficient conditions for oscillation
and asymptotic behaviour of solutions of second order nonlinear (sublinear/superlinear) neutral impulsive

difference equations. The results are illustrated with examples under suitable fixed moments of impulsive
effect.

1. Introduction
In [3], Elizabeth et al. have studied the second order nonlinear neutral difference equations
Ala(n)(A(x(n) + p(n)x(h(n))))*] + f(n, x(g(n))) = 0, 1

where a(n) > 0, @ > 0 is a ratio of odd positive integers, =1 < p < p(n) < 0 and h(n), g(n) are increasing
positive sequences in the form of delays. Here, the authors have proved some necessary and sufficient
conditions that guarantee that the nonlinear equation (1) either oscillates or converges to zero when the
nonlinear function is either strongly sublinear or strongly superliner. But, in the other ranges of the neutral
coefficient, the work has been left unanswered as we understand that such equations are arising in the
models of electric networks containing lossless transmission lines which are used to interconnect switching
circuits in high speed computers (see for e.g. [6, 12]).

Let my,my, m3,- - - be the discrete moments of impulsive effect with the properties 0 <m; <my <---,m;
and lim;_,., m; = +oo. If we apply impulse m; to any solution x(1) of (1), then the impulsive solution x(m;)
could be a solution of another type of neutral difference equations of the form:

Ala(mj = 1)(A(x(mj = 1) + p(m; = Dx(h(m; = 1)))*] + f(m; =1, x(g(m; = 1))) = 0, )

where Ax(m; — 1) = x(m;) — x(m; — 1), and (1) and (2) together we call an impulsive system
Xy j i g p Yy

(E) Ala(n)(A(x(n) + p(n)x(h(m)))*] + f(n, x(9(n))) = 0, n # m;
Ala(m; = 1)(A(x(mj = 1) + p(m; = Dx(h(m; = )))*] + f(m; = 1,x(g(m; = 1))) =0, j€ N
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whose possible solution is given by x(n) = A" A" (see for e.g. [15, 17]), where (119, ) denotes the number
of impulsive points between 1y and n and A, A € IR. We notice that without impulse it is so called difference
equation (1). Hence, the studies of (E*) and (1) are comparable.

In [13], [11] and [4], the authors have studied the oscillation properties of solutions of nonlinear neutral
difference equations of the form:

Ala(n)(A(x(n) — p(n)x(n — 1)))*] + g(n) f(x(n — 0)) = ®3)

Ala(n)(A(x(n) + p(m)x(t(n)))*] + g(m)x (o(n)) = 0 4)
and

Ala(n)(A(x(n) = p(n)x(n — 1)))*1 + qm)xP (n +1-0) = 0 ®)

respectively. Keeping in view of the above facts and with the advantage of our work, we can formulate
problems of the type (E*) for (3), (4) and (5).

In this work, our purpose is to establish the necessary and sufficient conditions for oscillation of the
following neutral impulsive difference equations

Ala(n)A(x(n) + p(n)x(n — 1))] + q(n)F(x(n — 0)) = 0, n # m; (6)
( Ala(m; — )A(x(m; — 1) + p(m; — D)x(m; — = 1))] + r(m; — 1)F(x(mj —0 - 1)) = 0,j € N, (7)

where 7, 0 > 0 are integers, a, p, g, r are real valued functions with discrete arguments such that a(n), g(n),
r(mj=1) > 0, [p(n)| < coforn € N(ng) = {no, no+1,---}, F € C(R, R) satisfying the property xF(x) > 0 for x # 0,
and A is the forward difference operator defined by Au(n) = u(n + 1) — u(n). For additional results, we refer
to some of the works [8-10, 14-19], and the references cited therein and we recommend the monographs
by Agarwal [1], Agarwal et al. [2] and Lakshmikantham [7].

Definition 1.1. By a solution of (E) we mean a real valued function x(n) defined on IN(ng — p) which satisfy (E)
for n > ngy with the initial conditions x(i) = ¢(i), i = ng — p,--- ,ng, where (i), i = no — p,--- ,ng are given and
p = max{t,c}. A nontrivial solution x(n) of (E) is said to be nonoscillatory, if it is either eventually positive or
eventually negative. Otherwise, the solution is said to be oscillatory.

Definition 1.2. A solution x(n) of (E) is said to be oscillatory, if there exists an integer N > 0 such that x(n+1)x(n) < 0
forall n > N. Otherwise, it is said to be nonoscillatory.

Definition 1.3. [1](Discrete L’ Hospital Rule)
Let f(n) and g(n) be defined on N(no) and g(n) > 0, Ag(n) > 0 for all large n € IN(no). Then lim,_. g(n) = oo, and

f (n) Af(n)
n_m g(n) =1 whenever V}gl(;lo )

=1 exists.
Definition 1.4. [2] A function F is said to be strongly superlinear if there exists a constant > 1 such that

Fw)| _ [F@)]
P = o

for [u| > |v], uv >0, 8)

and it is said to be strongly sublinear if there exists a constant a € (0, 1) such that

@)l _ IF)
jul = o

for |u| > |0, uv > 0. )

Lemma 1.5. [5] Assume that 0 <y < 1. If u and v are two nonnegative integers such that u < v, then

u™” — o < (1 =y (u-0).
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2. Necessary and Sufficient Conditions

This section deals with the necessary and sufficient conditions for oscillation of all solutions of a class
of nonlinear neutral impulsive difference equations of the form (E). Throughout our discussion, we use

(Ho) A(n) = Y"1 L and lim,_e A1) = 0.

5=1o a(s)
Theorem 2.1. Let =1 < p < p(n) < 0and F is strongly sublinear. In addition to (Hy), let’s assume that
(H1) F(-u) = —F(u), u e R.
Then every unbounded solution of (E) oscillates if and only if
(H2) X2y q(m)F(CA(n = 0) + Y32, r(mj = F(CA(mj — 0 = 1) = oo
for every constant C > 0.

Proof. Suppose that (H;) holds. On the contrary, let x(n) be an unbounded nonoscillatory solution of (E)
for n > ng > 1+ p. Without loss of generality and due to (H;), we assume that x(n) > 0, x(n — 7) > 0 and
x(n — o) > 0 for n > ny > ny. Setting

y(n) = x(n) + pn(n — 7, 10)
y(m;—1) =x(m; — 1) + p(m; — Dx(m; — t - 1).
in (E), we get
(En) Ala(n)Ay(n)] = —q(n)F(x(n — 0)) <0, n # m;
! Ala(m; — 1)Ay(m; —1)] = =r(m; — 1)F(x(mj -0 - 1)) <0, j€ N

for n > ny > ny. Therefore, a(n)Ay(n) and y(n) are monotonic for n > ny. If a(n)Ay(n) < 0 for n > ny, then we
can find y > 0 and n3 > ny + 1 such that a(n)Ay(n) < —y for n > n3 and thus a(m; — 1)Ay(m; — 1) < —y for
n > n3. Taking sum to the inequality Ay(n) < —% from n3 to n — 1, it follows that

n-1 1
ym -y~ Y Ay(mj—l)g—yzb@/

nz<m;—1<n-1

that is,
n—1 1 1
y(n) < y(ns) =y Z@+ Y. am -1 | T BT
s=n3 ng<m;—1<n-1

Hence, we can find an n4 > n3 such that y(n) < 0 for n > ny. Consequently,
x(n) < —p(m)x(n — 1) < x(n — 1) < x(n —27) < x(n —37) -+ < x(ny)
and
x(mj—1) <x(mj—1-1)<x(mj—21-1) <x(mj—31 1)+ < x(1ny)

due tononimpulsive points m;—1,mj—7t—1,m;—2t-1,--- implies that x(n) is bounded for all non-impulsive
point n and m; — 1, a contradiction. Therefore, a(n)Ay(n) > 0 for n > np. Using the above argument, we
conclude that y(n) > 0 for n > n,. Indeed, y(n) < x(n) for n > ny and hence (E) reduces to

() Ala(n)Ay(n)] + qn)F(y(n — 0)) <0, n # mj,
2 Ala(m; = 1)Ay(m; — 1)] + r(m; — 1)F(y(mj —0-1)) <0,j € N

for n > nz > ny + 1. Summing (E;) from n to/ — 1(I > n + 1), we obtain

-1

a(DAy(l) — a(n)Ay(n) — Z Ala(m; — 1)Ay(m; - 1)] + Z q(s)F(y(s — 0)) <0,

ﬂSm]‘—lﬁl—l s=n
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that is,

Y AOFWs o)+ Y rmj = DF(y(m; -0 1) < a(m)Ay(n)

n<mj—1<oco
which then implies that
1 (o)
Ay = 5|V qOF(E =)+ Y, rm = DEon o = D)|. (11)
s=n n<mj—1<co
We notice that
n-1 -1 n3=1

szﬂ@ Za(s) szao A(m) = Ans) = A(m)A(n),

where A(n) =1 - ‘ng)). Due to (Hp), we have lim,,,. A(n) = 1. So for a given A* € (0, 1), there exists 14 > 13

such that A(n) > A*, that is,

An) — A(ns) > A*A(n) for n > ny. (12)

Summing (11) from n3 ton — 1, we get

n—-1
TOREES W

= (A(n) — A(n3))

Y awFgE-o)+ Y r(mj—l)F(y(mj—a—l))]
t=n

n<mj—1<oco

N+ Y, rom=DF(y(m; -0~ 1))]

n<mj—1<oco

and because of (12),

y(n) > A*A(n)

Y aoFue-oy+ Y ”(mj_l)F(y(mj_U—l))] (13)
t=n

n<mj—1<co

for n > ny. Since a(n)Ay(n) > 0 is nonincreasing, then we can find a constant C > 0 and n5 > n4 such that
a(n)Ay(n) < C for n > ns and thus

n—=1

n—1
y(n) < y(ns) + CZ 6% < Z a(l) < CA(n).

Consequently, F is strongly sublinear implies that

F(CA(n —0))

F(y(n—0)) 2 Wy“(” - 0)

for n > ns and hence (13) becomes

AA(mn) |, F(CA(t-0)) , F(CA(mj-o-1))
R M e A A ML R b s TR AL/

n<mj—1<oo

= A(n)z(n) (14)
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if we define

Z(n) = g |:i q(t)F(CLt__O_O)'))ya(t - O) + Z r(m,- — 1)P(CA(m] —9- 1)) ya(m] —0— 1)}
t=n

Ax(t A¥(mj—o-1)

n<mj—1<oco

for n > ns. From (14), we have that Z((Z)) > z(n) for n > ns. Now,

Z () j;?if 0)) a(t Z (Ig:(q(t a(i’—(f)}
t=

A P(CA(n )

—CM(”) A%(n - 0)

Az(n) =z(n+1) —z(n) =

y(m-o)<
and

Az(m;—1) = z(mj) —z(mj—1)

(o)

Y0 A D g ) gy AL (CA(t“’)’y“u—o)]

Ca e Ax(t - v A o)
G [ X ron- 1)F<§:27(:11 AL
i mf—l;—kw rimi = 1)F(IE\_:;?;(Z i__aa__li))y“(mi —0- 1)]
-~ Sty D -
- Lo - ”HXQ(LT__UG— 11))}/&(% .
<~ 2 - 1)P§i;njj_—oa_—$» a1 <0

implies that z(n) is nonincreasing for n > ng > n5 + 1 and so, lim,,_,, z(n) exists. Upon using Lemma 1.5, it
follows that

Az =2 +1) = 27%(n) < (1 — a)z*()[z(n + 1) — z(n)]
=1 -a)z7%n)Az(n)
(o) L=

Ad(n — o)

ya(n _ O_)

Y (n)q(n)F(CA(n — 0))z%(n — o),
that is,

Alz™™

(15)

for n > ng. By a similar argument, we obtain

é[zlf"‘(mj -] < —g(l —a)r(m; — 1)F(CA(m;j — 0 — 1)). (16)
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Summing (15) from n¢ to n — 1, we get

n-1
Zm) -2 )~ Y ARy @)} 4()F(CAG - 0))

ne<mj—1<n-1 s=ng

and using (16), it follows that

n—-1
—@)| Y AOFCAGs -0+ Y rmj—DF(CA(m; -0 -1))

S$=Ng ne<m;—1<n-1

<z'7%(ng) < o0,

a contradiction to (H,). Hence, (E) is oscillatory.
Conversely, let us assume that (H;) do not hold. Then there exists n* > p* > p + 1 and ¢ > 0 such that
c < C(1+2p)and

NI o

i q(n)F(CA(n - 0)) + Z r(m; = 1)F(CA(m; — o — 1)) <

n*<mj—1<oco
Set
Q={x:x(n)=0forn"—p*<n<n"and

%[A(n) - A(n")] £ x(n) < C[A(n) — A(n")] for n > n*}.

Define a map

T x(n), n*—p*<n<n
(Tx)(n) = | —p(mx(n — 1) + 2ok L [§ + T2 a(F(x(t - 0))
+ L amp1<o0 1 = DE(e(m; = 0 = 1), n > n.

For x € Q and n > n*, we have

n-1 0
T =Y % S+ Y aOF -+ Y rm = DR~ — 1)
s=n* t=s n*<mj—1<co
Cyo 1 .
>52 @ = S1AG) - AG)

and using x(n) < CA(n), we get

(Tx)(n) < —p(n)x(n —7) + — Z a(s) * ; Z ﬂ(ls

< —pClA(n - 1) — A(")] + —[A(n A + 5 Z 7

< —pClA(n) = A(m” )]+—[A(n) A + [A(n) A(n)]

= (-pC+ 5 + SIAG) - A)]

< C[A®m) - A(m")].
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Therefore, (7 x)(n) € Q. Define u* : [n* — p*, 0) — R by the recursive formula
uk(n) = (TuF (), k> 1

with initial condition
Wy =] opEn <)
5[A(n) — A(n)], n>n".

By induction, it is easy to see that
%[A(n) — A(n)] < uF(n) < uF(n) < C[A(n) — A(n*)] for n > n".

Hence, limy_,o 15(n) = u(n) exists for n > n* — p*. By Lebesque’s dominated convergence theorem [2],
(Tu)(n) = u(n), u € Q which is a positive solution of (E) for n > n* — p*. This completes the proof of the
theorem. O

Theorem 2.2. Let =1 < p < p(n) < 0. Assume that (Hy) and (H1) hold. Then every unbounded solution of the
system (E) oscillates if and only if (Hy) holds.

Proof. We proceed as in the proof of Theorem 2.1 to obtain (E;) for n > n3. As y(n) is unbounded and
monotonically increasing, we use L'Hospital rule to find

. y(m) . Ay(n)
dim oy A AAm

= lim a(n)Ay(n) = p,

where 0 < y < co. If y = 0, then lim,_,oo A() = co implies that lim, . y(1) < oo, a contradiction to our
assumption. Ultimately, u # 0. So, there exists a 4 > n3 + 1 and a constant C > 0 such that % > C for
n > ng. And for nonimpulsive points m; —1,m;—t—1,m;j—21-1,--- also, y(m;—1) > CA(m;—1) forn > ny.
Now, (Ez) becomes

Ala(n)Ay(n)] + qn)F(CA(n — 0)) <0, n # mj,n = ny,
Ala(m; — 1)Ay(m; — 1)] + r(m; — 1)F(CA(m; -0 - 1)) <0, j € N.

Summing the above impulsive system from 74 to 1 — 1, we get a contradiction to (H). The necessary part
is same as in the proof of Theorem 2.1. Thus, the theorem is proved. O

Remark 2.3. In Theorem 2.2, F could be linear, subliner or superlinear.

Theorem 2.4. Let —1 < p < p(n) < 0 and F is strongly sublinear. Assume that (Hy) and (H1) hold. Then every
solution of the system (E) either oscillates or converges to zero if and only if (Hy) holds.

Proof. Let x(n) be a nonoscillatory solution of (E) for n > ng. Proceeding as in Theorem 2.1, it follows that
a(n)Ay(n) and y(n) are monotonic for n > n,. Therefore, we have four possible cases, viz.

1. a(n)Ay(n) <0, y(n) >0; 2.a(n)Ay(n) <0, y(n) <0,
3.a(n)Ay(n) >0, y(n) >0; 4. a(n)Ay(n) >0, y(n) <0.
Case 1 and Case 3 follow from Theorem 2.1.
Case 2. In this case, lim, e y(11) = —c0. Analogously, lim; . y(m; — 1) = —co due to the nonimpulsive

points mj—1,mj—t—1,m;j—27t—1,--- and so on. We note that m; —1 < m; < n and by Sandwich theorem,
lim; o y(m;j) = —co. Indeed, y(n) < 0 implies that

x(n) < —pm)x(n —t) <x(n—1) < x(n —27) <x(1 —37) - -+ < x(N2)
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and
x(mj—1) <x(mj—1—1) <x(mj -2t —1) <x(m; —31 - 1)--- < x(n2).

Hence, x(n) is bounded for all n and m; — 1, j € IN. We claim that x(1;) is bounded for all j € IN. If not, let
lim;_, x(m;) = co. Now,

y(mj) = x(m;) + p(mp)x(m; — v) = x(m;) — x(m; — 1) = x(m;) — b

implies that y(m;) > 0 as j — oo, a contradiction, where x(1m; — 7) < b. So, our claim holds and hence y(n) is
bounded for all n which is again a contradiction to the fact that y(r) is unbounded.
Case 4. Here also, x(n) is bounded and so also y(n). Thus lim,_, y(n) exists. Therefore,

02> 1}1_1’)](;10 y(n) = lim sup(x(n) + p(n)x(n — 1)) > lim sup(x(n) + px(n — 1))

> lim sup x(n) + hm 1nf(px(n — 1)) = (1 + p) lim sup x(n).
Because (1 +p) > 0, then limsup,,_,  x(n) = 0. Ultimately, lim,,_,., x(1) = 0 for all nonimpulsive points n and
mj—1,j€IN. Duetom;—1 <m; <nand an application of Sandwich theorem shows that lim;_,., x(m;) = 0.
Hence, lim,,_,., x(11) = 0 for all n. With this we conclude that (H>) is a sufficient condition. The necessary
part is same as in the proof of Theorem 2.1. This completes the proof of the theorem. [J

Theorem 2.5. Let -1 < p < p(n) < 0and a(n) > a(n — 7) for all n € N. Assume that F is strongly superlinear. If
(Ho) and (Hy) hold, then every unbounded solution of the system (E) oscillates if and only if

(Hs) L2 75 [Z2q() + T2 r(mj = 1)] = o0

Proof. Let x(n) be an unbounded nonoscillatory solution of (E) for n > ny. Then, we proceed as in the proof
of Theorem 2.1 to obtain that y(n) > 0, a(n)Ay(n) > 0 and (11) hold for n > n3. There exists 4 > n3 +1and a
constant C > 0 such that y(n — o) > C for n > ny. F is strongly superlinear implies that

F(y(n o*))ﬁ ()
e )y( —-0)2

and hence (11) reduces to

F(y(n - o)) = — ¥ -0)

a(n)Ay(nm{Zq(s) Bps-ar Y rm=0ESyPon—o- 1)]

s=n n<mj—1<oco
that is,

F(C)

a(n —o)Ay(n — o) = N

Z q(s)yP(s — o) + Z r(m; — 1)yP(mj—o - 1)]

s=n n<mj—1<oco

for n > ns > ny. Consequently,

Ay(n—o) 2 m ZQ(S)yﬁ(S -0)+ ) Z_{ r(m; = 1)yP(m; - o - 1)]
Cﬁa(n) s=n+1 (S)yﬁ(s ) n+l<;1<oo r(mj ) Dyﬁ(mj e 1)]

FOymn+1-0)| v
=T Cha() {Z CEED e 1)}

s=n+1 n+l<mj—1<oco
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which implies that

Ay(n—o)  F(© E:q@+' 2: mm_lﬁ

yﬁ(n +1- ‘7) Oga(n) s=n+1 n+l<mj—1<co

forn > ns. If y(n—o0) <u < y(n+1-o0)forn > ns, then m > uiﬁ > m Therefore, the last inequality

can be written as

FO) 1 Ay(n — o)
Ch a(s)[ Z Z r(mj—l)]s yPmn+1-o0) Sf

n+l<mj—1<co y(n—o)

y(n+1-o) du

ub’

Summing the last inequality from 15 to n — 1, we get
-1 1-0) y(n-0)
F(C) v (7 du du
q(s) + rimj—1)| < — = — < o0
5= IZ(S)[ Z n+1<;v—1<oo ] S—Zns y(s—0) uﬁ y(ns—o) uﬁ

as n — o0, a contradiction to (Hj3).
Conversely, we suppose that (H3) does not hold. Then there exists n* > p* > ¢ + 1 and C > 0 such that

F(C )2 {Zq(n) +Zr(m, -1 <

<<
5

Set
C * * C *
Q:{x:x(n):§forn —0<n<n andgﬁx(n)SCfornZn}.
Define a map

M —0<n<n,

(&
7
(Tx)(n) = { px(n 1) + € + X0 us)[ZtM(t)F(x(t_U))"'Z ~1 7(mj — D)F(x(mj — o — 1))] n>n.

For x € Q and n > n*, we have

(Tx)(n) =

a0

and

n—-1 oo oo
(T x)(n) < —p(n)x(n — 1) + g +FQ)) % [Z gty + ) rim; - 1)]
s=n* t=s j=1

Cc C 2 (2
—pC+§+§—(§— )CSC, lf(g—p)gl

Therefore, (7 x)(n) € Q. Define u* : [n* — p*, 00) — R by the recursive formula
uk(n) = (TuFN(n), k>1

with the initial condition
C * * *
=, n—-—p <n<n
wWm)y={2 P
C n>=n".
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By induction, it is easy to see that

Sle!

<u"Ym) <uf(m) < C, forn > n".

Therefore, limy_,o u*(n) = u(n) exists for n > n* — p*. By Lebesgue’s dominated convergence theorem [2],
(Tu)(n) = u(n) and u € Q which is a positive solution of the impulsive system (E) for n > n* — p*. This
completes the proof of the theorem. [J

Theorem 2.6. Let —1 < p < p(n) < 0and a(n) > a(n — 1) for all n € IN. Assume that F is strongly superlinear.
Furthermore, assume that (Hy) and (Hy) hold. Then every solution of (E) oscillates or converges to zero if and only if
(H3) holds.

Proof. The proof of the theorem follows from the proofs of Theorem 2.4 and Theorem 2.5. Hence, the details
are omitted. [J

Theorem 2.7. Let 0 < p(n) < p < 1and a(n) > a(n — o) for all n € IN. Assume that F is strongly superlinear. If
(Ho) and (Hy) hold, then every solution of the system (E) oscillates if and only if (H3) holds.

Proof. Let x(n) be a nonoscillatory solution of (E). Then proceeding as in Theorem 2.4, we have two possible
cases:

1. a(n)Ay(n) < 0,y(n) > 0; 2. a(n)Ay(n) > 0, y(n) > 0.

Proof for Case 1 follows from the proof of Theorem 2.4. Consider Case 2. Using the fact that y(n) is
nondecreasing, we have

(1 =p)y(n) < yn) - p(n)y(n — 1)
= x(n) + p(m)x(n — 1) — p(M)x(n — 1) — p(M)p(n — V)x(n — 27)

= x(n) - p(n)p(n — Vx(n - 27) < x(n)

n > ny. Since y(n) is nondecreasing, then we can find an n3 > 1, and a constant C > 0 such that y(n) > C for
n > n3. Using F as strongly superlinear, it follows that

F(1 - p)y(n - o))
(1 -pFyf(n-o)
F(C(1-p)
~ CB(1-p)P

1 -pfyP(n-o)

F(C(1 -
- ppyfn -0 = P i)

F(1-p)yn-o)) =

for n > ns3. So, (E) can be written as

Head p))q(n)yﬁ(n 0)<0, n#mj

Ala(m)Ay(m)] +
F(C(l P) r(m] _ 1)yﬁ(m] 0-1)<0, jelN.

Ala(mj = 1)Ay(m; —1)] +

Summing the impulsive system fromnto! -1 (I > n+1, we get

F(C(1 -p))

Z q(s)yP(s — o) + Z r(m; — 1)yP(m; — o — 1)| < a(n)Ay(n).

n<mj—1<oco

The rest proof of this case follows from Theorem 2.5.
Conversely, let us assume that (Hz) do not hold. Let X = I be the Banach space of all real valued
bounded sequence x(n) for n > n; with the norm defined by

|lx|l = sup{lx(n)| : n > nq}.
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Consider a closed subset Q of X such that
Q={xeX:p <x(n) <Pa,n=n},
where f1, 82 > 0 are so chosen that 1 < (1 — p)pz. Let f1 + pp2 <y < B2 be such that
y L [Z )+ Z rm, - 1)} by 17)
£

where M = max{F(x) : f1 < x < f,}. For x € QQ and n > ny, we define two maps

_ ) Twx(m), m—p<n<mn,
(Tm = { y—px(n =), n > m
and
7 | Tax(m), m—-p<n<m,
(72001 = Loln ﬁ[ﬁzs qtF(x(t — 0)) + X32y r(m; — DF(x(m; — 0 — 1))],71 > 1.
Indeed,

Tix(m) + Tax(n) = y = plae(n 1)+ Y, [Z AOF(x(t = 0) + Y, rlm; = DF(x(m; = 0 = 1))

s=n ﬂ(S) t= j=1

§y+2$ iq(t)M+ir(mj—l)M}

=1

(i Zq(t>+2r<m]—1>] <p

[}

||Mg

and
T1x(n) + Tox(n) 2 y —p(n)x(n — 1) = f1 + pp2 — pp2 = p1.

Thus, f1 < T1x + T2x < pp for n > ny. For xq,x, € Q and n > nj, we have
[T1x1(n) = Trxa(n)] < [p(m)llxa(n = 7) = x2(n = T)] < plxr(n = 7) = x2(n = 7))

for which
171261 = T12x2ll < pllxr — x2l,

that is, 77 is a contraction mapping with contraction constant p < 1.
In order to show that 75 is completely continuous, we need to show that 7,x is continuous and relatively
compact. Let xx € Q) be such that xx(n) — x(n) as k = oo, of course x = x(n) € Q. For n > n;, we have

(T2 = (T < ) [ 3 qOIFGa(t = ) = FGxt = o)
+ Z r(m; = DIFCa(m; — 0 = 1) — F(x(mj — o = 1)|]
=1

Since |F(xx(n — 0)) = F(x(n — 0))| — 0 as k — oo, then applying Lebesgue’s dominated convergence theorem
[2, Lemma 5.3.4] we have that limy_, [(72xx) (1) — (72x)(1)] — 0. Therefore, 75x is continuous. To show that
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Tx is relatively compact, we show that the family of functions {77x : x € )} is uniformly bounded and
equicontinuous on [n1, ). Indeed, 7,x is uniformly bounded. For n3 > 1, > n7 and x € Q, it follows that

[T2x(13) - Tox(mo)| = | Z o [Z AOF(x(t = 0) + Y, rlm; = DF(x(m; = 0 = 1))
j=1

S=n3

ia(s) 2 F(x(t—a))+z — 1)F(x(m; — o — 1)) ]‘

<MZQ()[;q(t)+;r(mj—l)].

s=ny

pa=y

+i» we can find a 6 > 0 such that

ForO<e<

|T2x(n3) — Tox(n2)] < € when ever 0 < 13 — 1y <9,

and this relation continues to hold for every ny, n3 > ny. Therefore, {72x : x € Q} is uniformly bounded and
equicontinuous for n > n; and hence 75x is relatively compact. By Krasnoselskii’s fixed point theorem,
71 + 72 has a unique fixed point x € Q such that 77x + 7,x = x, that is,

| Tax(m2), m <ma—p<n<nmn,
D=0 1) + ¥, LI L2 aOFE(t - 0) + £ rmj — DE((m; — 0 = 1)], n > na.

It is easy to show that x(n) is a positive solution of the impulsive system (E). This completes the proof of
the theorem. O

Theorem 2.8. Let 0 < p(n) <p < 1anda(n) > a(n— o) forall n € N. Assume that (Hy) and (Hy) hold. Then every
bounded solution of the system (E) oscillates if and only if (H3) holds.

Proof. The proof of the theorem is same as in the proof of Theorem 2.7 and hence the details are omitted. [

Theorem 2.9. Let1 < p(n) <p < 00,0 = tand a(n) > a(n—o) forall n € Ng. Assume that F is strongly sublinear.
In additiion to (Hy) and (H1), assume that

(Hy) F(u)F(v) = F(uv) foru,v > 0;u,v € R

(Hs) there exists A > 0 such that F(u) + F(v) > AF(u +v) foru,v > 0;u,v € R

and

(Hs) oo, QuF(CAGn —0)) + £24 R(m; — DF(CA(mj — 0 — 1)) = o0

for every C > 0 hold, where Q(n) = min{q(n), q(n — 1)}, R(m; — 1) = min{r(m; — 1),r(m; — 7 - 1)}, n > 7. Then
every solution of (E) oscillates.

Proof. Let x(n) be a nonoscillatory solution of (E). Proceeding as in the proof of Theorem 2.7, we get
a(n)Ay(n) > 0 for n > ny. Therefore, lim,,,. a(n)Ay(n) exists. From and using (6), it follows that

Ala(n)Ay(n)] + qm)F(x(n — 0)) + F(p)(Ala(n — 1)Ay(n — 1)] + g(n — ©)F(x(n — T - 0))) = 0.
Due to (Hj) the above inequality can be written as

Ala(n)Ay(n)] + F(p)Ala(n — ©)Ay(n — 1)] + Qm)F(x(n — 0)) + F(px(n — 7 - 0)) <0
which in turn

Ala(n)Ay(n)] + F(p)Ala(n — 1)Ay(n — 7)] + AQ)F(x(n — o) + px(n —t—0)) <0
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due to (Hs). Using y(n — o) < x(n — 0) + px(n — T — 0) in the last inequality, we find
Ala(n)Ay(n)] + F(p)Ala(n — 1)Ay(n — )] + AQ(n)F(y(n — o)) < 0. (18)
By a similar argument, (7) reduces to
Ala(m; — 1)Ay(m; — 1)] + F(p)Ala(m; — 7 = 1)Ay(m; — T — 1)] + AR(m; — 1)F(y(m; — o — 1)) < 0. (19)
Summing (18) fromnto! -1 (I 2 n+1, n > ny > n; + o) and then using (19), we get
a()Ay(1) — a(m)Az(n) + F(p)a(l — D)Ay( ~ ) ~ F(pa(n — DAY — 1)
— Y [AlaGn; - DAYem; - D]+ F@p)AlaGn; - T = D)Ay(m; - 7 - 1)]]

n<m;-1<I-1
-1

+1 ) QEF(y(s—0) <0,

that is,

-1
1Y QOEWs—o)+A Y Rm;~DF(y(m;~o ~1)

n<m;—-1<I-1
< a(n)Ay(n) + F(p)a(n — 1)Ay(n — 1),
<a(n - 1)Ay(n — ) + F(p)a(n — 1)Ay(n — 1),
= (1+F(p))a(n — 1)Ay(n — 1)

for n > n,. Consequently,

A
(1 + F(p))a(n —

-1
Ay(n -1) 2 5 Z QEF(y(s—o)+ ), Rmj=DF(y(m;~o - 1»]

n<m;—1<I-1

A

-1
Z T+ Fp)atn) ; Q(s)F(y(s — 0)) + Z R(m; — 1)F(y(m; — o — 1))].

n<m;—1<I-1

Again summing the preceding inequality from 7, to n — 1, we obtain

A n-1 1 00 )
Yr= 1) =y =) 2 e Z ) [Z QUF(y(t ~a)) + ), Rmj = E(y(m; o - 1))},

=

that is,
AA - -
Y-z g f;z;)) Z QUF(y(t ~0)) + ; R(m;j = DF(y(m; — 0 - 1»] :
As a result,
W20 A Y QR - o)+ Y Romy— Dy, — o - 1))} . 0)

Aln—0) = 1+ Fp) | & L
Since a(n)Ay(n) is nonincreasing, then there exists a constant C > 0 and n3 > n, such that a(n)Ay(n) < C for
n > nz and thus y(n) < CA(n) for n > n3. F is strongly sublinear implies that

F(y(n - 0)) F(CA(n - 0))

Fly(n = 0)) = v (n — o) CxA%(n — o)

yi(n-o0)z y'(n—-o)
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and therefore, (20) can be written as

00

yin—1) _ AC™ F(CA(t o)) ) F(CAGm; - o - 1))
Ao 2 v Fg) | 220 Ao VO ‘”*ZR ) o1y Yo D)

The rest of the proof follows from Theorem 2.1. Hence, the theorem is proved. O

Theorem 2.10. Let 1 < p(n) < p < 00, 0 > 7 and a(n) > a(n — o) for all n € Ny. Assume that F is strongly
superlinear. In additiion to (Hy), (H1), (Hs) and (Hs), assume that

(Hy) L2y 75 | TR QW) + L2 Romj — 1)) = o0
hold, where Q(n) and R(m; — 1) are defined in Theorem 2.9. Then every solution of (E) is oscillatory.

Proof. The proof of the theorem follows from Theorem 2.9. Hence, details are omitted. [

Theorem 2.11. Let —co < py < p(n) < p3 < =1, pa,p3 > 0. Assume that (Hp) and (Hy) hold. Then every bounded
solution of (E) is oscillates or converges to zero if and only if (Hz) holds.

Proof. Assume that x(n) is a nonoscillatory solution of (E) which is bounded for n > ny > max{z, d}.
Proceeding as in the proof of Theorem 2.1, we have that a(n)Ay(rn) is monotonically nonincreasing and y(n)
is monotonic. Here, we have following four cases:

1. a(n)Ay(n) <0,y(n) >0; 2. a(n)Ay(n) <0,y(n) <0
3. a(n)Ay(n) > 0,y(n) >0; 4. a(n)Ay(n) > 0,y(n) <O0.

The proofs for Case 1 and Case 2 follow from Theorem 2.4.

Case 3. We can find a n3 > 1, + 1 and a constant L > 0 such that y(n — 0) > L and hence y(m;j -0 —-1) > L
for n > n3. y(n) > 0 implies that x(1) > y(n). Therefore, for n > ny > n3 + o, the impulsive system (E) can be
written as

Ala(n)Ay(n)] + F(L)q(n) < 0, n # m;,
Ala(m; — 1)Ay(m; - 1)] + F(L)r(m; = 1) <0, j € N.

Summing the last impulsive system from n to [ — 1, we get

-1

F(L) [Z qE©)+ Y, rm- 1)] < a(mAy(n) - a)Ay(l) < a(mAy(),

s=n n<m;-1<I-1

that is,

F(L) |+ -
r) [;‘ q(s) + ;‘ r(mj—1)

which implies that

< Ay(n)

n—-1

1 0 =)
Z @ [; Q(f) + ; 1’(111]‘ - 1)} < y(i’l) — y(n3) < y(n) < o,

S=n3

a contradiction to (H3).
Case 4. Since y(n) is nondecreasing and negative, then lim,_,., y(11) = 6, —co < 6 < 0 exists. We claim that
6 = 0. Ifnot, then there existsany > n3and a C > Osuch that y(n+7-0) < -Cand y(m;j+7-0-1) < -C,j € N.
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Clearly, y(n + t —0) > p(n + t — 0)x(n — o) implies that y(n + T — 0) > px(n — 0), that i is, 27 € < x(n -o0). Also,

p—zc < x(mj — o — 1) holds true. Therefore, (E) can be written as

Ala(n)Ay(n)] + F( ” )q(n) <0,n+m
Ala(m;j — 1)Ay(m; — 1)] +F( ” )r(m] -1)<0,jeN.

Summing the above impulsive system from # to / — 1 and then from #4 to n — 1, we get a contradiction to
(H3). Thus, our claim holds. As a result,

0= 1}1_{?0 y(n) = liﬂgf(x(n) +p(n)x(n — 1)) < liqurl)igf(x(n) + p3x(n — 1))

< lim sup x(n) + lim inf(psx(n — 7))

n—oo

= (1 + p3) lim sup x(n).

n—oo

Since (1 + p3) < 0, then lim,,—, x(1) = 0. Analogously, lim;_,. x(m; — 1) = 0 due to the nonimpulsive points
mj—1,mj—1-1,mj—2t—1,---. Noting that m; — 1 < m; < n and an application of Sandwich theorem
shows that lim;_,. x(m;) = 0. Therefore, lim;, x(1) = 0 for all n.

Conversely, let us assume that (H3) do not hold. Let X = I be the Banach space of all real valued
bounded functions x(1) for n > n* > p + 1 with the norm defined by ||x|| = sup{|x(n)| : n > n*}. Consider a
closed subset Q) of X such that

Q={xeX:ps<x(n) <Psn=n",

where 5 > 0 and ¢ > 0 are so chosen such that —p,f5 < (=1 — p3)ps and let —p2f5 <y < (=1 — p3)Bs be such
that

EZa@)E:“”+§:“mf‘”] pﬁS @1

where M = max{F(x) : f5 < x < f¢}. For x € Q, we define two maps

| Tax(n*), n* —p<n<n
(Tax)(n) = { ~ o~ X+, m>

and

Tox(n*), " —p<n<n,

(T2x)m) = { LT LT gOF(( - 0)) + T, rm; — DF((m; — o = )], n > 1

For y € Q) and using (21), we have

T1x1(n) + Taxz(n)

y n(+1)

Tpnrn paro (n+T)Z‘a(s ZW)”Z“‘ “2“’“]—”@2( j—o=1)

L [(-1 = po)Be + ol = pe
pP3
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and

T1x1(n) + T2xo(n)

n+t

14 1
p(n+ 1) ’ p(n + 1) & Z a(s) [Z ARt = )+ Z r(mj = DFQea(mj -0 = 1))

>y m () > Loy g

Therefore, f5 < T1x1 + T2x2 < Pg for every n > n*. It is easy to verify that 77 is a contraction mapping
with contraction constant 0 < (;—31) < 1. Proceeding as in the proof of Theorem 2.7, we can show that T is

completely continuous. By Krasnoselskii’s fixed point theorem, T; + T> has a unique fixed point x € Q such
that T1x + Trx = x and hence

s — el 4 s Y L[ TR gOF((t - 0)) + L2y rim; — DF(x(m; — o = 1)], n > .

{ x(n), nz—p<n<nz,
x(n) =

Indeed, x(n) is a positive solution of the impulsive system (E). This completes the proof of the theorem. [
Theorem 2.12. Let1 < py < p(n) < ps < oo. If
(Hs) L2y 75 [T at) + T2y rm; = 1] < o0,

then (E) admits a positive bounded nonoscillatory solution.

Proof. The proof of the theorem can similarly be dealt with the necessary part of Theorem 2.11. O

3. Examples

Example 3.1. Consider the impulsive difference equation of the form:

) Ala(m)A(x(n) + p(n)x(n = D) + g(n)x'3(n —3) =0, n #mj, n >4, jeN,
Ala(m;j — 1)A(x(mj — 1) + p(m;j — 1)x(m; — 2))] + r(m; — D)x3(m; — 4) =

where T =1, 0 = 3, p(n) = =1/2, q(n) = 222 a(n) = L and A(n) = €=t Here, r(m; — 1) = 2—63“’:,;2{1”
e 3
when m; = 3j for j € N and F(u) = u'®. Let a = 3. Then F(f‘) < X it and only if us > vé foru > v > 0 and
u2 U

F(—u) = (—u)3 = —u3 = —F(u). Clearly,
Z q(s)E(CA(s — 0)) + Z r(m; — 1)F(CA(m; — o — 1))
j=1

>} q(s)F(CAG - o)

S

1]
Q

1/3
) — 0045 N — oo.

Qe +e” 1+3X(65‘3—e

5 e—1

]
w

S

Indeed, all conditions of Theorem 2.1 are satisﬁed In particular, x(n) = (=1)"e" is an unbounded oscillatory solution
of the first equation of (E") while (=1)"ie™ is an unbounded oscillatory solution of the second equation of (E’).
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Example 3.2. Consider the impulsive difference equation of the form:

Ala(m)A(x(n) + p()x(n — 2))] + g(n)x*(n—1) =0, n mj, n>2,

(E) Ala(mj = 1)(x(m; — 1) + p(m; — D)x(m; — 3)] + r(m; — 1)x3(mj -2)=0, jeNN,

where Tt = 2,0 =1, pn) = L, gn) =4+ 5+ 2+ 1 an) = 1and A(n) = n. Here, r(m; — 1) =

n+2 n+1 n’

4+ 2o+ Ao Ly L when my = 3j for j € Noand Fu) = u®. Let p = 2. Then 2% > 52 if and

m;+3 mj+2 m;j mj—1

only ifu > v for u,v > 0 and F(—u) = —F(u). Clearly,

ic% iq(tnir(m—l)] ziﬂ%[iqm] zii% - o,
5=2 t=s j=1 s=2 t=s s=2 t=s

Indeed, all conditions of Theorem 2.7 are satisfied. In particular, x(n) = (=1)" is an oscillatory solution of the first
equation of (E"") while (—1)™ is an oscillatory solution of the second equation of (E"’).
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