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Abstract. This work studies the existence and the p-th moment asymptotic stability of the mild solution of
some neutral fractional stochastic integro-differential equations involving non-instantaneous impulses and
Poisson jumps. Sufficient conditions proving existence and asymptotic stability of solutions are obtained
utilizing stochastic analysis, resolvent operator and Krasnoselskii-Schaefer type fixed point theorem.

1. Introduction

Fractional differential equations has emerged in numerous engineering and scientific disciplines as
the mathematical form of systems and procedures in the areas of chemistry, physics, electrodynamics of
complex medium, aerodynamics, rheology, polymer and so forth. The nonlocal property of fractional
order differential equation is the main reason behind using such equations in various applications. This
means that the state of a system in the future is determined not only by its current state, but also by
all of its past states. For more details of differential equations of fractional order, we refer the readers
to the monographs [13-15]. Many real world processes experience an abrupt change of state at certain
moments of time. These processes, subjected to short-term perturbations whose duration is negligible in
comparison with the duration of the whole process, can be modeled by differential equations involving
impulsive effects and these equations serve as a natural description of observed evolution phenomena
of several real world problems([16, 17]). Shu et al. [28, 29] examined the existence of mild solution of
impulsive fractional evolution equations for both ordinary and partial differential equations. However,
the above small perturbations could not demonstrate the dynamic change in the development process
in totality in pharmacotherapy. We realize that the presentation of new medications in the bloodstream
and the consequent absorption for the body are steady and continuous processes. Therefore, the above
circumstance has fallen in another impulsive action starting at an arbitrary fixed point and keeping active
on a finite time interval. For demonstration of such procedure, the investigation of abstract differential
equations involving non-instantaneous impulses was initiated by Herndndez and O’Regan [39]. Recently,
differential equations on infinite dimensional spaces involving instantaneous/non-instantaneous impulses
have received considerable attention of researchers [2, 3, 11, 20, 21, 25, 39-42].
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In recent years, the study of stochastic differential equations has emerged as an important area of
research due to their appearance in various applications such as biology, physics, engineering, physics,
mathematical finance and in almost all applied sciences (see [36, 37]). Numerous important results on
the existence, uniqueness and stability of mild solution have been obtained (see [3-5, 7, 11, 20, 21, 23—
26, 38]). Very recently, Guo et al. [30] have studied the existence and Hyers-Ulam stability of solution for
an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite
delay of order 1 < < 2. Further, Shu et al. [31] have discussed the approximate controllability and
existence of mild solutions for Riemann-Liouville fractional stochastic evolution equations with nonlocal
conditions of order.

Poisson jumps have recently turned out to be very popular because it is extensively used to describe
many phenomena such as economics, finance, physics, biology, medicine and other sciences. Stochastic
differential equations with Poisson jumps are utilized to portray the system jumps from a normal state to a
bad state. Itis natural and important to include a jump term in any dynamical system to make progressively
realistic system. For more details on stochastic differential equations involving Poisson jumps, we refer
to[1, 2,5, 6,8-10, 12, 19, 22]. After reviewing the past works of stochastic evolution equations involving
Poisson jumps, we find that are not very many works that have studied the existence, uniqueness and
stability of mild solution to fractional stochastic differential equation with Poisson jumps. This reality is the
motivation of the present work. Therefore, in this paper, we are interested in the study of the existence and
asymptotic stability of the following nonlinear impulsive fractional stochastic integro-differential equation
of the form

t
CDf‘[u(t‘) + H(t, u(t — t1()))] = Alu(t) + H(t, u(t — t1())] + j; B(t — s)[u(s)

+ H(s, u(s — Tl(S))]dS + ]I}*"‘F(t, u(t — (b)) + fh(t, u(t — t4(t)), y)ﬁ(dt, dy)
z

t
) fo (t = 5)G(s, uls — 13(s)))AW(s), t € (si, tin, (1)
u(t?) = Gilti, u(t; — (), W' (E) =0, i=1,2,--- kK )
u(t) = Gi(t, u(t; —ts(t))), w'(t) =0, t € (t;,s],i=1,2,...,k (3)
uo(t) = ¢ € C ([-7,01, X), as., w'(0)=0, (4)

where a € (1,2), CDf‘ denotes the fractional derivative in Caputo sense, the state u(-) takes values in a
separable real Hilbert space X with inner product (-, -)x and norm || - [|x, A and (B(t)):»o are closed linear
operators defined on a common dense domain D(A). The notation W(t), t > 0 stands for a K-valued
Wiener process with a covariance operator @ > 0 defined on a complete probability space (Q, ¥, IP) with
a normal filtration {F};>0 which is generated by the Wiener process W. The functions H : R* x X — X,
G:R*XX - LK, X),F: R*XX - X, h : R*XXXZ — Xand G; : [0,00)XX — X(i=1,--- ,k, k € IN) are Borel
measurable, and t;, s; are fixed numbers satisfying 0 = fop =s9p < t; <51 <+ <ty < 5 <t < ngr(}o ty = 00,
Ti(t) : R* — [0,7](j = 1,---,5) are continuous functions. For t > 0, C([-7,0], X) represents a family
of all right-continuous functions with left-hand limits x from [-7,0] to X. Denote the norm of x(t) by
llxllc = SUPye(_10] E||x(¢)||. The notation N and Cb will be defined in section 2.

This article contains three sections. Sectlon 2 presents some basic notations and preliminaries. Section
3 gives a set of sufficient conditions proving existence and asymptotic behavior of mild solutions to a
class of neutral stochastic integro-differential equation involving fractional integral with non-instantaneous
impulses with the help of solution operator, stochastic analysis, stability theory and fixed point technique.

2. Preliminaries

Let X and K be two real separable Hilbert spaces with inner product (-, -)x and (-, -)x, respectively, and
Il lIx, Il - llx be their vector norms.
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Let (Q, 7, P; F)(F = {¥ }:0) be a complete probability space such that % contains all P-null sets. The set
{ei}2, is a complete orthonormal basis of K and {W(t) : t > 0} is a cylindrical K-valued Brownian motion
with a trace class operator Q, defined by Tr(Q) = Y.;2; i = p < oo that satisfies Qe; = pje;. Thus, we can have
W(t) = X2 uiWi(t)e;, where {Wi(t)}2, are mutually independent one-dimensional standard Brownian
motions. Then, the above K-valued stochastic process W(f) is called a Q-Wiener process. The symbol
L(K, X) stands for the space of all bounded linear operators from K into X with the usual operator norm
Il - llk, x) and we use the notation L(X) when X = K. For ¢ € L(K, X), we define

lelfy = Tr(c@c") = ) Il Vimceal
n=1

If ||g||i0 < 0o, then ¢ is a Q-Hilbert-Schmidt operator. Let us consider Lg(K, X) to be the space of all Q-Hilbert-

Schmizdt operators ¢ : K — X. For more details, the reader is referred to [18].

Let us assume {p(t)}i=0 to be a o-finite stationary F;-adapted Poisson point process that takes values
in a measurable space (Z,8(Z)). The random measure N5 defined by N5((0,t], A) := Y.sc0 1a(p(s)) for
A € Z is a Poisson random measure which is induced by p(-). Therefore, we can define the measure N by
N (dt,dy) = Nz(dt,dy) —S(dy)dt, where 9 is the characteristic measure of N5, which is called the compensated
Poisson random measure. The notation Cbﬁ ([-7,0], X) stands for a family of all almost surely bounded,
Fo-measurable, continuous random cadlag functions from [—7, 0] to X with norm ||¢||p, := SUPe[—0) llp(D)llx -

Let Y be the space of all Fy-adapted process Y(t, w) : [-T, 00) X Q — X which is almost surely continuous
in t for fixed w € Q, limt_”;]f P(t) and limt_>t; P(t) exist, and limt_>t]— Y(t) = Y(tj), j =1,...,k. Moreover,

Y(t, w) = P(t) for all t € [-7,0] and E|[y(t, w)llz — 0 ast — oo. Y is also a Banach space equipped with
following norm defined by

Iy = sup Ell(8)lfy-
24

Definition 2.1. A one-parameter family :§a(t), t > 0 of bounded linear operators defined on X is called an a-resolvent
operator for

‘Diu(t) Au(t) + ft B(t — s)u(s)ds, (5)
u0) = wupelX uO’(O) =0, (6)
if the following are fulfilled:
(1) :S\a(-) : [0, 00) — L(X) is continuous in strong sense and :S\a(O)z =z foreveryz € Xand a € (1,2).

(2) Forz e D(A), we have :S\a(')z € C([0, ), D(A)) N C1((0, o), X), so that
—_ —_ t —_
‘DiS )z = AS.(Hz+ f B(t — 5)S,(s)zds,
0
—_— —_— tA
‘DiS.(t)z = Sa(t)Az + f S, (t —5)B(s)zds, foreveryt >0,
0

ie., ga(t)z is the solution of equation (5).
Next, we consider the following hypotheses:

(P1) The operator A : D(A) ¢ X — X is a closed, densely linear operator with [D(A)] dense in X. Let
a € (1,2). For some ¢ € (0,7t/2] for every ¢ < ¢y, there exists a constant Cy = Co(¢p) > 0 such that
u € p(A) for each

pe Z ={ueC pu#0, larg(w) <an, )

0,an
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where 1= ¢ + n/2 and |[R(u, A)l| < Co/|ul for all u € ZOM.

(P2) B(t) : D(B(t)) € X — X for t > 0 is a closed linear operator with D(A) € D(B(t)) and B(-)z is strongly
measurable on (0, o) for every z € D(A). For z € D(A) and ¢ > 0, there exists d(-) € L1 (IR*) such that

d(y) Laplace transform of d(-), exists for Re(u) > 0 and ||B(t)z|| < d@®)||z|l;. Furthermore, B: ZOn 2=
L([D(A)], X) has an analytical extension which is denoted by Bto Zo,q such that ||B(/J)z|| < IIB(y)II l1zll1
for each z € D(A) and ||B(u)|| = O(ﬁ), L — oo.

(P3) There exist positive constant C; and a subspace Dc D(A) dense in [D(A)] such that A(@) C D(A),
B(u)(D) € D(A) and [AB(u)yll < Cillyll for all y € Dand p € X,
In continuation, we have,
forr>0and 0 € (1/2,1n),
={ueC: pu#0, r<|ul, larg(u)l <6},

1,0
and for I';g
1"},9 = {te?: t>7),
1"‘3,9 = {re": —6<0<6),
l"fﬂ = {te70: t>7), (8)

where T ;9, i =1,2,3 are the paths such that I',p = U F’ is oriented counter-clockwise. Moreover, we
consider the following sets p,(G.) as

Pa(Ga) = (€ C: Galp) = u* (™1 = A - AD()) ™ € L(X)). ©)
Define the operator family :§a(t), t>0by

— L MG (wdu, t>0,

Sa(t) — {2711 jl;v,e e g (Au) H (10)

I, t=0.

Lemma 2.2. [44] Let o € (1,2). Then we define ﬁa(t), t>0by

—_— t —

Rt = [ gualt=08,0u4, £20, a1
where go—1(t) = r(a 1), t>0, a—1>0.

Lemma 2.3. [43] There exists a number r1 > 0 such that ), n € C pa(Ga) and themap G, : Y,
Furthermore, we have

r — L(X) is analytic.

Gal) = u*'R(u®, A)I - B(u)R(u®, A)] ™ (12)
and there are constants ]\7Ii fori=1,2such that
M,
o < T
G ()l |H|
NAG.(w)zll < il |IZ|I1, z € D(A),
M
IAGa (Il < sz (13)

foreach €}, .
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Lemma 2.4. [43] If the conditions (P1)-(P3) are satisfied, then there exists a unique a-resolvent operator for the
system (5)-(6).

For more results on §a(t) and /ﬂsa(t), we refer to article [43].
Definition 2.5. A process {u(t),t € [0, T]}(0 < T < o0), which is stochastic, is called a mild solution of (1)-(4)
if

(i) u(t) is adapted to 7, ¢ > 0 and [ [u(t)Pdt < +oo as.

(i) u(t) € X has cadlag paths on t € [0, T] a.s and for each t € [0, T], u(¢t) fulfills the integral equation

Sa (t)[cz>(0) + H(0, p(=71(0))] — H(t, u(t — 71(1)))

+ fo (t — s)E(s, u(s — T2(s)))ds + fO Salt = 9)G(s, u(s — t3(5)))dW(s)

+ fo fzvz (t — 8)h(s, u(s — T4(s)), y)N(ds,dy), t € [0, 1],

u(t) = 1 Salt = s)Gilsi, ult; = Ts(t)) + His;, u(si = 1 (si)] = H(E u(t = 71(1) (14)
+ [ Salt = 9)F(s, u(s — T2(6)ds + [ Salt = 5)G(s, u(s — T3(5)AW(s)

+ t fzﬁa(t—s)h(s, u(s — 14(s)), y)N(ds,dy), € (si,tis1)],

Gi(t,ut; —ts(t), te(tisidl, i=1--k

and u(t’) = Gi(ti, u(t; —ts(t)))),i=1,--- k.

Definition 2.6. [18] Equation (14) is called exponentially stable in the p-th moment if for any initial data ¢,
there exists a pair of positive constants u > 0 and B such that

Ellu(t)lP < Bx llplle™, t=0,

where E represents the expectation with respect to the probability measure IP, p > 2 is an integer and u(f)
is the mild solution of equation (1).

Definition 2.7. Equation (14) is called asymptotically stable in the p-th moment if it is stable in the p-th
moment and for any ¢ € C([-7, 0], X),

lim E|sup|lu®)lf,| = 0.
T—+c0 [ tZTP ( ) X]
Lemma 2.8. [46] Forany p > 1 and for arbitrary LY(K, X)-valued predictable process ¢(-), the following holds:

sup ]E|| (v)dW(v)||ff <Gy x( f (IE||(p(s)||L0)1/Pds) t>0,

s€[0,t]
where C; = (p(2p — 1)).

Lemma 2.9. [1] Let p > 2. Then, there exists 5 > 0 such that
S ) 5/2
Esap [ [ HopNaoal < ox{l( [ [ e prse)”]
se0,4] 0 Jz
S
+IE| f f IH(v, y)||P8dydv]}.
0 Jz

Lemma 2.10. [46] Let 51,62 be two operators such that



A. Chadha, S. N. Bora / Filomat 35:10 (2021), 3383-3406 3388
(a) 51 is a contraction map, and

(b) @y is completely continuous.
Then, either

(i) the operator Eﬁlx + @x has a solution, or

(ii) theset Y ={xe X: /\al(ﬁ) + /\azx = x} is unbounded for A € (0, 1).

3. Main results

In this section, we present our result on asymptotic stability in the p-th moment of mild solutions of
system (1)-(4). Now, we make the following hypotheses:

(B1) The operator families ga(t) and ﬁa(t) are compact for all £ > 0, and there exist constants M > 0,6 > 0
such that [|S,(H)llLx) < Me™® and [[R,(H)llLcx) < Me™ for every t > 0.

(B2) The function H : [0, 00) X X — X is continuous and there exists Ly > 0 such that

EINH(t, 1) — H(t, o)l < Lullyr — @1ll}],
EINH(t, yu)lly < Lullyally],
foreach t > 0,1, w1 € X with H(t,0) = 0.

(B3) The function F : [0, o0) X X — X is continuous satisfying the following condition:

There exist a continuous function my : [0,00) — [0, ) and a continuous increasing function O :
[0, 00) — (0, o0) such that

EIIF(t, po)lly, < me(HOp(Ellynlly), >0, g1 € X.

(B4) The function G : [0, 00) X X — L(K, X) is continuous satisfying the following condition:
There exist a continuous function mg : [0,00) — [0,00) and a continuous increasing function g :
[0, 00) — (0, o) such that

EIG(t, p1)Il}, < me(HOG(Ellunll), t=0,v: € X,

with

0 1
f1 OISO (15)

(B5) The functions G; : [0, ) X X — X are equi-continuous and there are constants Lg,i=1 /. 2,...k such
that El|Gi(t, u1) — Gilta, w)lly < Lg,[It1 — tol + Ellur — uall}] and ElGi(tr, u)lly, < Lg lllly, for every
u,up € X, t,th € [O, T], T < o0 and g,‘(f,O) =0.

(B6) The function 4 : [0, 00) X X x U — X satisfies the Lipschitz condition and there are constants L, > 0,
Ly, > 0 such that

A

f Elln(t, u(t-), pIPSdy < LElul,
Z

IA

fz Ellh(, u(-), y) - h(t, o), pIPSdy < LiEllu—olf, (16)

forallu,ve Xandy € Z c U.
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Theorem 3.1. Assume that the conditions (B1)-(B6) hold and p > 2 is an integer. Then the fractional impulsive
stochastic differential equation (1)-(4) is asymptotically stable in the p-th moment, provided that

&7 max Lo [MPLg, + (=AY PIPMPLys + (- A) PIP L + MPTey(L]? + Ly)| < 1.

i€{1,2,

Proof. We define the nonlinear operator W : Y — Y as (Wu)(t) = ¢(t) for t € [-7,0] and for t > 0,

(Wu)(t) =

a(f)[dJ(O) +H(0, ¢(=11(0))] = H(t, u(t — 71(1)))

+ fo S)F(s, u(s — 12(s)))ds + fO Salt — 9)G(s, u(s — 73(5)))dW(s)
+ [ fZRa(t—s)h(s, u(s — 14(s)), y)N(ds, dy), t € [0,1],

Salt = s)[Gi(si, ulti = ws(t) + Hisi, uls; = Ta(s:))] = Ht, u(t = ta(1)
+ [ Salt = $)FGs, u(s — T2(5)ds + [ Salt = $)G(s, u(s — 73(5)dW(s)
+ 1 [, Ralt = (s, uls = Ta(s)), N(@s, dy),  t€ (i i,

Gi(t,ult; —ts5(t)), tetysl i=1,-k

and (W)u(t?) = Gilty, ut; = t5(t)),i=1,--- k.
At first, we show that the map W is p-th moment continuous on [0, o0) and a well-defined map from Y itself

(17)

(18)
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Y. Let u € B, f > 0 and |&] be sulfficiently small. Then for f € [0, ], by using Holder’s inequality, we have
Ell(Wu)(F + &) - (Pu))l
< §VE||[SulF + &) = Sa(®(@(0) + HO, p(~1 @)y + 8 E|[HE + & uF + 1 - 11(F + £)))

— — Z: - S P
- HEuf = u®)I + 8 E| f [Salf + & =) = Salf = )IF(s, u(s — Ta(s))ds][
0
e P
+ 8!7—115“ f Su(F+ & —5)F(s,u(s — TZ(S)))dSHZ
3
- - ;
+ 81| f [Sa(F+ &= 5) = Salf = 9)IG(s, u(s ~ Ta©NAW ),
0
- e 2
+ &1 f So(f+ &= 9)G(s, u(s = T3NAWE)|
t
v B ~ :
+ 1| f f [Ra(F + & = 5) = Ralf = 5)](5, u(s — 74(5)), y)N(ds, dy)|[;,
0 Jz

F+& - = 3
+ 71| f f RalF + & = 9)h(s,u(s = 74(5)), yINGs, dy)|f
f z

<8 E[[SaF + &) Su®IF X Ell(@(0) + HO, p(-t1 Oy + & "E[[HE + & uE+ & - 11 (F+ )
_ fo_ - 5
— HE uF - @)l + 87 E] fo I[SalF + & = 5) = SulF = G, us — T2(s)lxds]
F+& —
+ 8§ ME] f e EINF(s, u(s — 1a(6)lixds]
Z: —_ —_ - — —
+877Gy| f (BU[Sa(F + & = 5) = Sal = 9)IG(s, u(s = Ta() Iy PdsP’>
0
f+& - _
G [ (BIS, G+ & - G0, uts - TIPS
t
F _
+ 8 5lE| fo fz IRa(F+ & — ) = RolF — )]s, us — a(s)), y)IPdsddy] "
_ e p/2
+ 8 c5lE| j; fz Ra(F + & — s, us — 4(s)), y)IPdsddy]
E —_ —_ —
+ @ IGEL [ [ IR+ £ =9) = Ro(F= s s = 1), POy

B+ - _
+ ] f f [RalF+ & = sYi(s, us - a(s)), y)|PdsSdy]
f Z

< GE[[SalF + &) = Su®IF X Ell(S(0) + HO, p(~r1 ONI + & E[JHE + & ulE + & = 1a(F + £))

N A ~ 5y Pl
— HE uE -t @)l + 87| fo ISulF + & =) = Sa(F - 907 ts|

t F+& =
X f IEIlF(s,u(s—Tz(s)))||§(ds+85’1Mﬁ[ f e*@‘s/ﬁfl)(“‘f’s)dsr '
0 f
F+& _ f . .
x [ EIFG UG - s + 1G] [ @IS, E £ -9 - 5,6
f 0
— o qp/2 _ B+ — _
% Glsuts = @R Pas]  + G [ IS+ € = )60, uGs - raONI PSP
F
_ Er —~ 5/2
#8706 [ [ IR+ £ =) =R IPEIRG, uts = (6), Pdssidy]
]5/2

F+& .
g f f Ral+ & = S)IPEIIAGs, u(s = T4(5)), y)IPdsSdy
t VA

f
+ 8] f f [Ru(F + & = ) = Ru(F — S)IPEINGs, (s — 74(5)), y)IPdsSely]
0 7
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Similarly, for any f € (¢, ti11], i=1,--- ,k, we have
Ell(P2)(F + &) - (P @)

< FE[[SalF + & = 1) = SalF = s)Gisi, u(ty = T5(8) + Hisi, uls; = Ta(sIfy
+ FVE|[HE + & u(E + & - 11+ ) - HE uE - @),

o N i
+ 8| f [Sa(f+ & = 5) = Sulf = )IF(s, u(s = Ta(s))ds[
~ s’f+é e a
+ & TE| f Salf + & = $)F(s, u(s — Ta(s))ds],
3
. - i
+ 6 E] f [SalF+& =) = SalF = 9IGGs, u(s ~ TNV
P+ i
+ 1| f Sulf + & = 5)G(s, u(s — Ta(s)AWE)|[
f
o R ~ i
+ 8| f fz[&(f + &= 8) = Rolf = )5, u(s = 4(5)), y)N(s, dy)|x

F+& . — 7
+ 827—1]]3” f fRa(f + & = s)h(s, u(s — t4(s)), y)N(ds, dy)“i
- f z . B _
< FTE[Saf + & — i) = Salf ~s)lly X ElGilsi, ult: — (1)) + Hisi, usi = rus)Ily
+ 8 UE|H(E + & u(f + & - 1 + &) - HE u - @),

P < pl@ P t k
) 8p_1[f s -9 Bl S)“Ep(éggfl))ds]p L f EIIF(s, u(s — 72(5)))) Il ds
_ ,l BE -1 i | i’
| f (PRI gg) f EIF(s, u(s = Ta(s)))llyels
: f
o R L
L9716 f (EIS.(F + & - 5) — SalF ~ 9IG(s, u(s — T )IE)7ds]
f+& — 725 gs]
+871G f (EIS.(F + & - )G(s, u(s — ra@IPds]
F
b A _
+ 8”—1cp[f f||72a(f+ & —5) = Ra(F = s)IPElIh(s, u(s — 14(5)), y)||2‘7ls‘9dy]p/2
si JZ
F+& — ’
- 8”—1cp[f fHRa(E + & = 8)IPElIh(s, u(s — Ta(s)), y)HZdSde]p/Z
7 VA

— ? —_ —_ —_ —_
+ 8¢5 f fz [Ra(E+ & = 5) = Ru(E = )IPEl(s, u(s — Ta(s)), )P dsSdy]

+ 8] f - f [Ra(F + & = S)PEN(s, us — T4(5)), y)IPdsSdy]
-0 t ’
as & — 0. Thus, forallu(f) € Y, t >0, by using the equi-continuity of G;, we have
EI(Wu)(F +&) - (Pw)BI}, -0, as&— 0. (19)

Thus, W is continuous in the p-th moment on [0, o). Next, we show that W(Y) C Y.
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E|[Wu(t)lly

< @ EIS, OO + 6 EIS.(OHO, (-1 O] + & EIH(, u(t - ri®)I

t _ B t _
+ &) fo Salt = )E(s,u(s — 2(&)dsll + 6 E] fo Salt = 5)G(s, u(s — ENAWE)

t —_— — —_—
+ 6] f f Rat — (s, uls — 1a(s)), Y)N(s, dy)|F
0 Z
< & MPePE|QO)II, + 67 MPe | (~A) FIPLuElp (=1 (), + 67 I(=A) FIPLy

X Ellu(t — 1 (#)II5, + 67" MPS' P x f e mp(s)Op(Ellu(s — t2(s))Ilk )ds
0

t —
+671C; M”[M]l o f eI (5)OG (Ellu(s — t3(6)I})ds
0

(r-2)
26(p - 1)

-2 )=

p-1._[aAP1 P2 B
+ 6" ey {MPLY( G —T)

P2 — _
) ? f EIE (s — T4(s))lfds + M”Lh(
0

t _
xf e E||u(s — T4(S))“§(ds}'
0

Similarly, for any ¢t € (s;, ti11], i =1,--- ,k, we have
Elu®)Il

< 8 ElISa(t - 5)Gilsi, ulti — Tt + 6 EISa(t — s)H(s:, usi — i)l

—_ t,\ e
+ 6B, ut = O + B [ St 9616 = o)l

t _ _ t — — _
+ 61| f Salt = 5)G(s, u(s = 13(s))AW )y + 6] f f Ra(t = s)h(s, u(s = Ta(5)), y)N(ds, dy)IF
Si Si Z
< 67 MPe PPN (Lg TE|lu(t; — T5(ti))||§7<) + 57 MPe P! |(—A) PP Ligllua(s; — n(si))lli
p— — — — t by
+ 67 I(=A) FIPLGElu(t — (¢, + 6 MP6' 7 f e mp(s)Or (Ellu(s — 2(s))Il})ds

Si

26<p 1)

1-p/2 7
e f &g (5)OG(Elu(s — TyNI)ds

oy _ -2 (B
22:;7 —2)1)> j; eI fJu(s — T4(5))llyds + MPLy( T )

t _
Xf e—b‘(t—S)]EHu(s—T4(S))”§<ds}'
Si

+ 67 (ML) 2(

Fort e (t,si], i=1,--- ,k, we have
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ElGi(t, uti — T5(t)Ily
= NIGi(t, Salti = 5i-)[Gi-1(5i1, u(ti-1 = T5(ti1))) + H(si-1, (i1 — T1(5i-1)))]
—H(t;, u(t; — T1(1))) + f ' Sut: — $)F(s, u(s — T2(s)))ds

+ Sa(t —8)G(s, u(s — 3(s)))dW(s) +f fR (t; — s)h(s, u(s — 14(s)), y)N(ds dy))llp

Si-1

< Lg,-”Sa(ti = 5i-)[Gi-1(5i-1, u(ti-=1 — T5(ti-1))) + H(si—1, u(si-1 — t1(5i-1)))]
fio
Hb = 6N + [ Sult - 96 s - a6
- Si-1 : N N
+ Sa(ti = 8)G(s, u(s — 3(5)))dW(s) + f fRa(ti = 8)h(s, u(s — 14(s)), y)N(ds, dy))ll
Si1 si1 JZ
— 0, as t — oo. (20)

Thus, for all u(t) € Y and ¢ € [0, 0), we get
EWu(bP,
< 6 MPe P E||p(0)If;, + 67 MPe P |(=A) PIPLuEllp(—T1 (O)I
+ 67 MPe P (L Ellu(s; — ts(si)I) + 67~ MPe P ||(~A) FIPLyEllu(s; — T1(s))I

o _
+ 6" I(=A) PIPLGEu(t — T (#)lfy + 67~ MP6' P f = mp(5)Or (Ellu(s — 12(5)) I} )ds
0

LgIC MP[MT P2 f I (5)Oc (Ellus — Tl )ds
0

TG0 B) 7 [ — el
AR TS N X

_ D —2) \52 b -
+MPL,1(2(6%_)1)) X fo e IEflu(s — 14(5))lds).

Furthermore, for any € > 0, there exists a T > 0 such that E||u(t — ’ci(t))lli < € fort > 7. Thus, we get
E[Wu(t)|ly

< 6 MPe PE|p(0) |5, + 67 MPe P!|(~A) FIPLuIEllp(~1 (O)IF,
+ 6 MPe P (L Ellu(t; — T5(t)I) + 6 MPe P X ||(—A) PIPLEllu(s; — T (s

+ 6 M (=A) PIPLGEllu(t - Ti(t)lfy + 67 MP&P e f e my(s)Op (Ellu(s — 72(5)) Il )ds
0

I 25(7 — 1)41-7/2
+ 6" IMP5 PO (€) X sup f 3= (s)ds + 67 Cy; MP[(p—Z)] 7
>0 Jt

x ¢ 0t fOT eésmc(s)@c(]EHu(s—TS(S))” )ds + C W[Zé(p 1)]1 5/2

¢
Oc(€) sup I e ms(s)ds

t>0

25(F — V) q1-p/2. 5 —o 257 — 1) 11-7/2
+6771 M”[L] ’ [+ 1l f P Elu(s — a(s))Ilhds + 67! M”[p—)] g
0

_ ¢
X [LZ/2 + LyJe x supﬁ e~ gs.
T

>0
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Therefore, we conclude that E|[Wu(t)|[P — 0 as t — co. Hence, W maps Y into itself. Next, we are going to
show that there exists a fixed point of the operator W which is a mild solution of the problem (1)-(4). To this
end, we introduce the decompositions of map W as W1 + W, for t € [0, T], where

Sa(HH(O, <¢><—n(o ) = Ht, u(t - t1(1)))
+ fo fz — $)h(s, u(s — 4(s)), y)N(ds, dy), t € [0, 1],
(Wra)(t) = 1 Salt — s)[Gilsi, ulti — T5(t)) + Hsy, u(s: — T1(s))] = H(t, u(t — T1(1)))

+ [ [ Ralt = 9h(s, u(s = 7a(s)), y)N(ds, dy), t€ (si,tia],
Gi(t, u(ti - TS(t ), tetysil, i=1,---,k,

and

Sa()p(0) + [ Salt = $)F(s, us — Ta(s)))ds
+ [ Salt = $)G(s, u(s — T3(s)AW(s), t € [0,41],

L Salt = )F(s, uls = 1a(s))ds + [ Sult = )G(s, uls — 1a(s)AW(s), ¢ € (s, tinal,
0, te,s] i=1,---,k

(Wau)(t) =

Now, we will prove that V; is a contraction while W is a completely continuous operator. We prove the
result in the following steps.
Step 1. To show that W, is a contraction on Y.

Lett € [0,t1] and uy, up € Y. We have
E||(W1u1)(t) — (W1u) (Bl

_ _ t - .
< P UEH(E, 1t - 11 (8) - H(t 1t - I, + 2 fo fz Rat = (s, 15 — 74(5)), y)N(ds, dy)

t —_ — p—
- f f Ru(t - $)hs, 12(s — 74(5)), y)N(ds, dy)IP
0 Z B . _
< P (=AY PIPLeEllus (t = T1(8) — uat — i (O + 27 MPIL)? + 1]
 Elluy (t — 74(t)) — ua(t — Ta(®)II
< (=AY PIPLigllis — ol + 2P LesTMPILE + Lyl — walf,

Similarly, we have for any t € (s;, tit1],i=1,...,k,
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Ell(W1u1)() — (Wru) (DIl

< FYE|S.(t - $)IGisi, 11 (b — T5(1))) — Gilsi, ualt — Ts(t))]Il
+ 4’5*1]E||:§a(t = s;)[H(si, ui(si — 11(si))) — H(s;, ua(si — T1(Si)))]||§(
n 45_1]E||H(t, ur(t —t1(t))) — H(t, ux(t — T1(t)))||§7<

B [ [ Rute- 9066 - o), NG ) - [ ffa“*)
Si VA §i

X (s, 1x(s — T4(s)), y)N(ds, dy)|’

< T IMPLG Bl (t — T5(t)) — a(ti — Ts(E)I, + P (=A) FIPMPLy
X Ellu(t — 11() — ua(t — i)l + (A PIPLyEllu (t — 71(H) — ua(t — 1Bl
+ FIMPTEHL) + LBl (= Ta(h) — ua(t — Ta®)ly
s#“Emghhﬁ@+mﬂﬂﬂm@m+mw®ﬂﬁﬂ+Mﬁ¢@?+Eﬂ

i
X [y — ua}.-

Forte (t;,s], i=1,-- ,lc, we have
Ell(W1u1)(t) — (Wru) (DIl

< ENGi(t, wr(ti — T5(1))) — Gilt, ua(ti — Tt
< Lg, Ellur(t — s(t)) — ua(ti — st

< 471 MPLg, + |(—A) PIPMPLy + |(~A) | Ly + MPTe;(LP* + L [
< max L4 ieun,‘f.’.(,k}[ 6 T I=A)PIPM Ly + [I(=A)"IPLy ea(L)” + L)l = ualfy

Thus, for allt € [0, T], B
Ell(W1u1)(t) — (Pru) (DI

<4 max Lg [MPLg, + (=AY FIPMP Ly + (=AY PIPLy + MPTep(L) + Ly)| X Il — wa

Taking supremum over ¢, we get

W11 — Wil < Ll — wally, (21)
where £ = 47 maxieq ...y Lg,[MPLg, + (=A) FIPMPLys + [(—A) #IPLyy + MPTcy(L}* + L))| < 1. Because of
inequality (17), it implies that £ < 1. Hence, it can be concluded that \V; is a contraction on Y.

Step 2. To show that W, maps bounded sets into bounded sets in Y.
To prove this, it is enough to show that there exists a constant M > O such that foreachu € 8, = {u : lullf, < q},

one has ||\I/2u||’7 <M. Now, for t € [0, 1], we have

—_— tA
(Wau)(t) = Sa(H)P(0) + j(: Salt = 5)F(s, u(s — 72(s)))ds
(22)

t
+ f Sa(t —5)G(s, u(s — t3(s))dW(s).
0
Letue Bq. Then, from the definition of Y, we have

Ellu(s - ts)Il}, < sup Elu@)lf, <q, i=34,5.
s€[0,T]
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By assumptions (B1), (B3)-(B4), inequality (22) and Holder’s inequality, for f € [0, t1], we get
Ell(W2u)(®I,
. _ _ b _
< 3 VE[S. ()0}, + 37 E| f Salt = $)F(s, u(s — 72(5)))ds][,
0
t _
+ 37 E|| f Salt = 5)G(s, u(s — 73())dAWE)|[;
0
L = _ [t 5-1
< T IMEIISO)IF, + 3 M7 f e00-9s]
0
t _
x [ OB s - TaoIfs
0
= — t T — — _ ﬁ/z
T ICM [ e me@a(Elus - r )R]

_ _ . _ ot _
< T IMPEIGO)I, + 3 MPS'T fo ¢ ()@ (Ellu(t — T2t )ds

ZEPTE [ e mec i - ronifods

+371CMP x|
— _ — — t
< F MO, + P M5 POr(g) f e Img(5)ds
5@ — 1)71-5/2
4+ 3P 1C MPOG( )[L] p f e mg(s)ds := M.
0

Similarly, for any ¢t € (s;, ti11], 1 = 1,...,k, we obtain
(Wau)(t)

t t
= f St —s)F(s, u(s — 12(8)))ds + f S.(t —9)G(s, u(s — 13(8)))dW(s).

By assumptions (B1), (B3)-(B4), equation (23) and Hoélder’s inequality, we have for ¢ € (s;, ti11], i =1, ...

E||(Wau) (¢,

2 _
<) f Salt - 5)E(s, u(s — 2(s))ds
4 2?—115“ f :S\a(t —$)G(s, u(s — Ts(S)))dW(S)”i

t —
< 2PIMPEPT X f eI mp(s)Op(Bllu(t — Ta(1))l)ds

Si
26(p - 1)
i
< M5O (g) f e (s)ds + 27 C;MPO ()|
Si

1-p/2 7
e 2T DT [ oo - uonfs

26(p — 1)]1—@2
P2

t
X f e me(s)ds := M.
Si

Let M = maxo<i<x M;. Thus, for each u € 8,, we conclude that ||‘I’2u||’7 <M.

3396

(23)
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Step 3. To show that W, : Y — Y is a continuous map.
Let {u,(H)},2, € Y be such that u, — u(n — o0) in Y. Then there exists a number g > 0 such that
E|lu,(t)|f}. < g forall nand a.e. t € [0, T], so that u, € B, and u € B,. By assumptions (B3) and (B4), we have

E|IF(s, tta(s — 72(5))) — F(s, u(s — Ta(s))I, = 0 asn — oo,

ENIG(s, (s = 75(5)) = G(s, u(s — ta(s))If > 0 asn — oo
for each s € [0, t], and since

E|IE(s, ta(s — 72(5))) — F(s, u(s — Ta(s))Il}, < 2mr(HOF(q),
EIIG(s, ta(s — T3(5))) — Gs, u(s — 3N, < 2me(HOc(q),

then by the dominated convergence theorem, for ¢ € [0, 1], we have

Ell(Wa,)() — (Pau)(BI,

t _
< 2P M f e INEG, (5 — Ta(s))) — F(s, (s — Ta@)llxels]
0
t _ _
+ 27 M| f (EINSa(t ~ IC(s, s ~ ) — G, s — @I 7ds]
0
t _
<2 IMPs P f e IEIF(s, (s = 72(5)) = F(s, u(s = T2(6)))lfyds

0

_ _r = o P2

e f eI EIIG(s, (s = T6)) = Gls, u(s = Ta( I ds]
0

—0 asn— oo.

Foranyt € (s;, tis1],i=1,2,...,k,

Ell(Wa,)() — (W) (DI,

t _
< zp—lMP(sl—Pf e YE||E(s, un(s — T2(5))) — F(s, u(s — 72(5))) Il ds

t - _
+ zp—lcpMP[f e 29 (E|G(s, un(s — 3(5))) — G(s, u(s — T3(S)))||§<)2/ﬁds]p/2

Si

— 0 asn— oo
Thus, for all t € [0, T], we get

[|Wou, — Voully > 0 asn — oo. (24)
Therefore, W, is continuous on 8.

Step 4. To show that W, maps bounded sets into equicontinuous sets of Y.
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Let 0 < & < & < t1. Then, by using Holder’s inequality, for each u € B;, we have

EI(W2u)(E2) — (Wau) (€I
< 7P EI[Sa(&) — Se(ED1PO)IF,

B S1—e . =
7] [ 1169 = Sutes ~ Mol 16 = ol

B &1 - o
+ 777K f ISa(&2 — 5) ~ Sa(&1 — i colIFGs, u(s — Ta())lxds]

c1

B Er =
+ 7] | 1Sa(ea = lhoolGs, uts - 73(5)))llxcts|

+ 777G fo U8 -9 - Suter - M (BIGs, s = T )PP
+771G| f;[l&(éz = 5) = Sulé1 = 9] (BIGE, s ~ ma@IR)PPas]
+ 771G fg 118e2 = I (BIGES, (s — wa(s)IR)Pas]

< B[S (&) - SuEISON, + 71T fog” ISa(&2 = 5) = Sal&1 = )l

_ _ _ 3} L 5.1 (& L
X ()@ (Ellu(s = T2(s))If)ds + 1471V fé e [ ey

&1—¢

— _ _ &2 ) 7—1
X Op(Ellu(s — 72()))If5 )ds + 7”‘1M”[£ e‘b(‘gz_s)ds]p

&1—e

&2 _ _ . _
x f e ()0 (Ellu(s — Ta()Ids + 77y f [1Sa(E2 — 5) — Sul& =9,

& 0

. 1) B _ 31 .
X mG(s)Oc(Ellu(s — Ta(s)I)2Pds|~ + 147 CoMP | f [e P& mg(s)

&1—¢

_ 5 &2 _ =
x @c(Eluts - tORPPas] + 7G| [l me(o)cEluts - raMRPas]

_ — — - cime —
< T VE|[Sul(&2) - SalED)IGO)IE, + 7 TP O (q) fo ISa(&2 ) = Sal&r — 9y mr(s)ds

- B s B _ &
+ 147 MPOp(g)5" 7 f e C1 ) mp(s)ds + 77 MP@F(q)0' P f e mp(s)ds
&1—¢ &1

_ E1—¢ R
70| [ i -9 - Suter - Mo as]

25(p — 1)71-5/2
+ 1477 CMPOG(q)| ;”_2 )] ? f e E) o (s)ds

c1—¢€

20 1)41-p/2
+ 771 CMP@ ()[ (” )] o f &)y (s)ds.

&

Similarly, for any &1, &5 € (sy, ,-+1], &1 <&,i=1,...,k, we have

£ ¢
(Wou)(t) = f S, (t = s)F(s, u(s — 12(8)))ds + f St —9)G(s, u(s — 13(8)))dW(s).

3398

(25)
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Then, we have
EJl(Wou)(&2) — (Pau) (€Il

B E1—¢ __ — 2

< E| f [Su(&2 — 5) = Sulér — 9IF(s, u(s — Ta&)ds]],
B 1 &1 — P
| f [Sa(&2 = 5) = Sa(€1 = $)IF(s, u(s - T2(s))s|y

+ 6 E|| ﬁ"z Sa(&2 ~5)G(s, u(s Ts(S)))dSHi

c1

_ 51—6 - - —
6] [ B -9 - Sulr - 9166 us - moNWE],

+ 6?‘115“ ;1 _[ga(éz —5)— ga(él = 8)]G(s, u(s — 73(5)))dW(S)”Z

+ 61| ;2 Sal&a = 9)G(s, u(s = ()W),
: E1—e

< 6”‘1T’”®F(q)f ISa(E2 = 9) = Salés - ] ()

+ 12ﬁ‘1Mﬁ@p(q)61_ﬁ f e 1 (s)ds
&1—¢

i

+ 6P IMPOR(g)0' P f e &2 (s)ds
p-1 2/p P2
+7'G0c()| | 08a(e2 -9 - Sule =9I i ()P s

+ 67 LCMPOG( )[M]1 r f =00 (s)ds
&1—

+ 671 CMPO( )[M]1 ”/Zf ¢ me(s)ds.
&1

The compactness of S,(t) for t > 0 gives the continuity in the uniform operator topology. Since ¢ is
sufficiently small, the right-hand side of the above inequality is independent of u € 8, and tends to zero as
&» — &1 — 0. The equicontinuity for the cases & < & < 0or & <0 < & < T are very simple. Thus the set
{Wu : u € B,} is equicontinuous.

Step 5. To show that the set W(t) = {(Wu)(t) : u € B,} is relatively compact in X.
It is clear that W(0) = {(W2u)(0) : u € B,} is a compact subset of X due to the compactness of the operator

ga(t), t > 0. Next, we show that {(W,u)(t) : u € B,}isrelatively compact foreveryt € (0, T]. Let0 <t <s <t
be fixed and let ¢ be a real number such that 0 < ¢ < t. For u € 8;, we define

(Pou))(t) = Sa(t)p(0) + fo Sa(t — 8)F(s, u(s — t2(5)))ds
f—¢
+ f Sa(t —5)G(s, u(s — 13(s)))dW(s). (26)
0

Using the compactness of :§a(t) for t > 0, we can deduce that the set U.(t) = {(WSu)() : u € B,} is relatively
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compact in X for every ¢,0 < ¢ < t. Moreover, by using Holder’s inequality, we have, for every u € 8,

EII(Wou)(H) — (Wsu) )OI
— t - 2 - ' o P
<2 8| [ Sue-9r s = momaslf+ 2] [ St 966,16 - e,
t —
< 2P‘1M7’61"’f e mp(s)Op(Ellu(s — t2(5))Il5 )ds
t—¢

M| f [P ()0 (Ellu(s — T I Pas]

< P I\Ps- P@)F(q)f Y (s)ds + 27 CMP O (g)| —= 6(p 1)]1 "

t
X f e ms(s)ds.
t—e

Forany t € (s, tis1], i =1,...,k lets; <t <s < tiy; be fixed and let € be a real number such that 0 < ¢ < t.
For u € 8,, we define

t—e t-e __
(Piu)(t) = f S (t = s)F(s, u(s — 12(s)))ds + f S, (t = 5)G(s, u(s — 3(s)))dW(s).

Using the compactness of ga(t) for t > 0, we deduce that the set U.(t) = {(W5u)(t) : u € B} is relatively
compact in X for every ¢,0 < ¢ < t. Moreover, for every u € 8; we have

Ell(Pa1)(t) — (Wau) DI,

f_ _ B t _
< 2P| f Salt = $)F(s, u(s — T2(s))ds||, + 2P| f Salt = 5)G(s, u(s — T4(s)dw(s)|[;

25(F — 1)71-5/2
< P MPS P Or(g) f e (s)ds + 271 CMP O )[L] ’

¢
X f e 2 mc(s)ds.
t—e

There are relatively compact sets which are arbitrarily close to the set W(t) = {(Wu)(t) : u € B,}, and W(¢)
is relatively compact in X. It is easy to see that W»($;) is uniformly bounded. Since we have shown W,(8,)
is an equicontinuous collection, by the Arzela-Ascoli theorem, we conclude the relatively compactness of
W. Therefore, we obtain that operator W, is a compact map.

Step 6. We shall show theset Y = {u e Y: )\1\1’1(/\”—1) + AW, (u) = u for some A; € (0,1)} is bounded on [0, T].
To prove this, we consider the following nonlinear operator equation:

u(t) = MWu(t), 0< Ay < 1, 27)

where W is already defined by equation (18). Next, we give a priori estimate for the solution of the above
equation. Indeed, let u € Y be a possible solution of u = A;W(u) for some 0 < A; < 1. Therefore, for each
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€ [0, T], we have

MSa(lp(0) + H(O, (=1 O] = M H(t, ult = 71 (1)

+A1 fo Salt = )F(s, u(s = T2(s))ds + M I Salt = )G, u(s — 14(s)))dW(s)

+A1 fo fZ (t — s)h(s, u(s — T4(s)), y)N(ds,dy), t € [0, 4]

1) =) MSalt = s)IGi(si, u(ti = () + Hisi,u(si = Ta(si))] = AH(E, u(t = 1 (8) @8
+A1 [ Salt = F(s,u(s = Ta(s))ds + A1 [ Sult = 5)G(5, u(s = 15(5))dW)

+A fo fz (t — s)h(s, u(s — 14(s)), y)N(ds dy), t e (si tis]

MGi(t u(ti — t5(t), te s i=1,-- k.

By using Holder’s inequality and Lemma 2.8, we have, for t € [0, t]

Ellu(t)lly
< FIESL(O(0) + HO, o(-raONII + 5 EIH(E, u(t - I

f _ B b _
+ 57| fo Salt = $)F(s, u(s — t3(s))ds||, + 5| fo Salt = 5)G(s, u(s — T4E))AWE)|[;
+ 5B [ [ Rute - 906 6 - (o), NG, )P
0 Z
< 107 MPLE[p(O)IF, + EIIH(O, p(—t1O)I] + 5 EIHE, u(t — ti))IF,
¢ 5 t = o= P
+ 57 MPE| fo e IS, u(s — Ta()lixds| + 57| fo [ PG, u(s — tEIPPds]
_ L pl2
+ 57 e {IE( j; L ||‘Ra(t—s)h(s,u(s—u(s)),y)llzdsde)p
t
+]Ef f||’7§a(t—s)h(s,u(s—u(s)),y)ll”ds&dy}
0 Z
< 107 MPIEIGO)IF + Lull(=A) IPEIp(-t1 O] + 5 Lisll(=A) PIP (Bt = 71 (1))
t = t _
+5?*1M?[ f e*@/ﬁfl)(tfs)ds]” ! f me(s)Op(Ellu(s — 12(s))Il5)ds
0 0

t _ _
+ G| [ 1P ma(OcElG - o as]
0
_ t p/2
+ e [ 1R [ s s = s, P sdys)

t — — —
+ fo 1R (t = s)IIP L]EIlh(s, u(s — 74(s)), y)ll”&dyds}
< 107 MPLENGO)I, + 27 Lsll(—A) PIPENG (-T2 (ODI] + 5 Ligll(-A) PIP (Ellu(t - T2 ($)I)

I o -1 -
+5’HM’”[ f e’(V‘S/F’*l)(f*S)ds]p f mp(s)Op(E|lu(s — 12(5))I5)ds
0 0

_ Mt — 32
+ 5GP [ e meOc(Els - R ds]

2}76 )( -2

+5771 71\/177{(( )

TL Bt = wa(t)IF + (%)1_pTLh]E||u(t — u@)IP).
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Forany t € (s;, tis1],i=1,...,k, we have

Ellu(t)Il,
< 5P YE|IS, ( — s)Gilsi, uti — ts(4)) + Hsi, u(si — Ti(s))IE, + 5 BIH(E, u(t — 1)),

b — _ f —

+ 5 || f Salt = $)F(s, u(s — 72(s)))ds|[s, + 5 ' f Salt = 5)G(s, u(s — t3(&))AWE)|,
it Si

+571E|| f fﬁa(t —s)h(s, u(s — t4(s)), y)ﬁ(ds, dy)ll’7
Si Z

< 107 MP[Lg lu(t; - Ts (I + (=AY PIPLallu(s; = T (s | + 5 LuElu(t — Ta(e)Ify
_ _ t _ -1 t _
#5700 [ @R [ et - mE)If)

_ o — 2 _
+ 577 1GMP| f [e*P5<f*S>mG(s)®G(1E||u(s—Tg(s)))||§’()]zfﬂds]p + 57 ey MP

2p0 \@-P2__3 _ po \1-7 _
(Gog) T Bl - wOIF + (55) X T Bl - wo)F),

Forte (t;,s], i=1,--- ,k, we have

Ellu()If, < Lg,Ellut — ts(t))Ily.- (29)
Thus, for all f € [0, T], we have

Elu()I

< 107 ' MP[Elp(0)l + LuEllp(—T1 O)II] ] + 10?‘1M‘7[LgiJEIIu(t- — ws(E)ly + I(=A)FIP

1
X LuEllu(si = (sl ] + 57 I(=A) PIPLyEllu(t - @)l + 57 M| f -9 gs]”

x f eSO (Ellu(s — (I ds + 477 G| f [P o ()OG(Elluls — s I ds|

2pb \@-p)/2 - po _
1 p/2
+57 ch{(p 5) T ]Ellu(t—T4(t))||p+(ﬁ_1) "L % T Elutt - m@)IF)

By the definition of Y, it follows that

Ellu(s — 7j(s))lly, < sup Ellu(s)l, j =1,2,3,4,5.

s€[0,t]
Let u(t) = SUPe(o 1 ]Ellu(s)lli. We obtain that
u(t) < 107 MPLEIGOI], + Lill(~A) PIPEIG(~11 DI ] + 107 MP[Lg, u(t) + Lall(~AY FIPu()]

_ — — — — p-1
+ 5 (=A) FIPLuu(t) + 57 M7 f e PP g f me(s)OF (u(H)ds
0 0

25(3 )(2—!7)/2 /2

| )
+FICM [f [P me OGO ds| + i e h
O .

+(59) Lo
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[ eEmeoa] ™ [ noecuens

257
P ]1 P2 fo me(s)Oc(u(s))ds.

Also we have

IA

[ [ e meeesuenrra]
0

[_

Thus, we obtain
u(t) < 107 MBSO, + Lisll(=A) PIPENG(—T1 (O)If] + 107 MP|Lg, + Lull(=A) PIP u(t)

= =t
+ 577 I(=A) PIPLy x u(t) + 5F’—1M’9(7%)1 ' f me(s)Op(u(s))ds
- 0

20p

2p6 \@-p/2_ 3
p ) 4 TI p/2
-2

+ 81 CGMP =
( ©-2 !

t - _
) fo‘ mg(s)Oc(u(s))ds + 57"1CEMP{(

+ (%) LhT}y(t).

Since

L = max{10P"'"MP[Lg + Lul(=A)PIF] + 5 |(=A) FIPLy + 57~ LesMP
Gi

1<i<k

2p6 \@e-p/2_ - o -p
x{(ﬁ) " +(;GPT1> LhT}}<1, (30)

therefore, we get

— - _ — _ _ 6 -
_1 L [107 MPENGO)II + Lsll(—A) FIPEllp (-1 (0)IF] + 5*’-11\4?(;_7’%1)1 ’

p(t) < )

26p

t t
X f me(s)®p(u(s))ds + 57 Cs M”(p 2) f mc(s)®c(u(s))ds].
0 0

Denoting by &(t) the right-hand side of the above inequality, we have
u(t) < E(t) forallt €[0,T],

£0) = L[lop 1MP[1E||¢<0>||” + Lull(~A) FIPElp (-1 )y 1]
&) = [5*’ 1MP[ 11 Pme(H)OF(u(t)) + 5 Cy MP[ 11 PPmg(HOc(u(t))]

=1 E [5’*"1Mﬁ[;7 — 1P mp(HORE®) +57'Cy M”[ 11 e (o ()]
< m* (OIOF(E(H) + Oc(EW)],

where

=51, Mv(p25P ) o),

m'(t) = max{ — 5" 1M”(pp Po 1) ?mp(t),

1-L
This implies that

E(t) do T
— < m*(s)ds < oo.
L‘(O) Of(0) + O¢(0) ~f0 €
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The above inequality provides that there is a constant C such that ) < E,t € [0,T], and hence |ju]ly <
&) < E, where C depends only on M, Gy, ¢z, 6, p, and on the functions mg(-), m(-), () and Og(:). It implies
that the map W is bounded on [0, T]. Consequently, by Lemma 2.9, we conclude that W; + ¥, has a fixed
point u(-) € Y and that fixed point is a mild solution of the system (1)-(4) with u(s) = ¢(s) on [-7,0] and
]EIIu(t)II’;( — 0 ast — oo. This gives the asymptotic stability of the mild solution of (1)-(4). In fact, let ¢ > 0
be given and choose § > 0 such that § < ¢ and satisfies

255 - 1)

[1077 M7 + 57 IMP[6'F X ILp + Gy x (=
p-2

)1‘2/5]LG]]5 +le<e,

where Lr = sup,,, ﬁ; e mp(s)ds, t > T and Lg = sup,,, j; e me(s)ds. If u(t) = u(t,w) is a mild
solution of (1)-(4), with ||w||';( + LHlEllw(—Tl(O))ll’;( < §, then (Wu)(t) = u(t) such that IEIIu(t)II’;( < ¢ for every

t > 0. It is noticed that ]Ellu(t)lli < eont € [-1,0]. If there is a f such that ]EIIu(f)IIi = ¢ and lEIIu(s)IIi < ¢ for
s € [-1, ], then we have

Ellu(t)Il;
26(p - 1)

52 )1_2/’5LG]]5 +Le<e,

< [107 I MPe P 4 57 IMP[6517 x L + C ¢ (
which contradicts the definition of £. Therefore, the mild solution of (1)-(4) is asymptotically stable in the
p-th moment. Thus the proof is complete. [

4. Conclusion

This work studies the asymptotic stability in the p-th moment of the mild solution of an impulsive neutral
fractional stochastic differential equation driven by Poisson jumps. The asymptotic stability of the stochastic
system with Poisson jumps is obtained by virtue of resolvent operator theory via Krasnoselskii-Schaefer
fixed point theorem and these results generalize the past results on asymptotic stability of stochastic
differential equation with non-instantaneous conditions. The stability of the mild solution of a neutral
fractional differential equation with impulsive conditions driven by fractional Brownian motion will be
investigated via fixed point technique in our future work.
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