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Abstract. In this paper, we define (strongly) ss−discrete, semi-ss−discrete and quasi-ss−discrete modules
as a strongly notion of (strongly) discrete, semi-discrete and quasi-discrete modules with the help of
ss−supplements in [3]. We examined the basic properties of these modules and included characterization
of strongly ss−discrete modules over semi-perfect rings.

1. Introduction

In this study, R is used to show a ring which is associative and has an identity. All mentioned modules
will be unital left R−modules. Let M be an R−module. The notation A ≤M means that A is a submodule of
M. Any submodule A of an R−module M is called small in M and showed by A�M whenever A + C , M
for all proper submodule C of M. The Jacobson radical of M denoted by Rad(M). Dually, a submodule A
of a R−module M is called to be essential in M which is showed by A/M if A ∩ K , 0 for each non-zero
submodule K of M. The socle of M which is the sum of all simple submodules of M is denoted by Soc(M).
A non-zero module M is called hollow if every proper submodule of M is small in M and is called local
providing that the sum of all proper submodules of M is also a proper submodule of M. A submodule N
of M is called coclosed in M if whenever N

K �
M
K for a submodule K of M with K ⊆ N, N = K.

Let A and B be submodules of a module M. Then A is called a supplement of B in M when A is minimal
with the property M = A + B; in other words, M = A + B and A∩B�A.M is said to be supplemented if every
submodule of M has a supplement in M. Two submodules A and B of M are called mutual supplements in
M if, M = A + B, A ∩ B�A and A ∩ B�B [1]. There are a lot of papers related with supplemented modules
such as [7, 8]. If M is supplemented and self-projective, then M is called strongly discrete. The module M is
called amply supplemented if for any submodules A and B of M with M = A + B, there exists a supplement X
of A such that X ⊆ B.

In [7], a module M is called lifting if for every submodule A of M lies over a direct summand, that is,
there is a decomposition M = M1 ⊕M2 such that M1 ≤ A, A ∩M2 � M2. By [8], M is lifting iff M is amply
supplemented and every supplement submodule of M is a direct summand of it.

Following [9], the sum of all simple submodules of M which are small in M is named with Socs (M), that
is, Socs (M) =

∑
{A�M| A is simple}. Note that Socs (M) ⊆ Rad (M) and Socs (M) ⊆ Soc (M). In [3], a module

M is called strongly local providing that M is local and Rad (M) ⊆ Soc (M). In the same paper, a ring R is
called left strongly local ring if RR is a strongly local module.
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According to [3], ss−supplemented modules was examined and founded as a strong notion of sup-
plemented modules. Let M be a module and A, B ≤ M. If M = A + B and A ∩ B ⊆ Socs (B), then B is
an ss−supplement of A in M. Any module M is named ss−supplemented if each submodule A of M has a
ss−supplement B in M. As a result of this definition, any finitely generated module is ss−supplemented iff it
is supplemented and Rad (M) ⊆ Soc (M). In the same paper, amply ss−supplemented modules were defined.
A submodule A of a module M has ample ss−supplements in M if A contains an ss−supplement of B in M
with M = A + B. M is called amply ss−supplemented if every submodule of M has ample ss−supplements in
M.

According to [2], a module M is called semisimple lifting or briefly ss−lifting if for every submodule A of
M, there is a decomposition M = M1 ⊕M2 such that M1 ≤ A, A∩M2 �M and A∩M2 is semisimple. Some
new fundamental properties of ss−lifting modules will be examined in this paper.

Let c be a cardinal number. The module M is said to have the c-internal exchange property if every
decomposition M =

⊕
I

Mi with card(I) ≤ c is exchangeable. A module M has the (finite) internal exchange

property if it has the c-internal exchange property for every (finite) cardinal c [1, 11.34]. A lifting module
with the finite internal exchange property is called a semi-discrete module. The module M is called discrete if
M is lifting and satisfies the following condition:

(D2) : If N ⊆M such that M
N is isomorphic to a direct summand of M, then N is a direct summand of M.

The module M is called quasi-discrete if M is lifting and satisfies the following condition;
(D3) : If N and K are direct summands of M such that M = N + K, then N ∩K is a direct summand of M

(See [7]).
By [7, Lemma 4.6], (D2) implies (D3). In [1, 4.29], the notion of ∩-direct projective modules is defined as

an equivalent condition to the property (D3). By [1, 4.21], a module M is direct projective if and only if M
has the property (D2).

In the first part of this study, we define semi-ss−discrete and quasi-ss−discrete modules based on
the definition of ss−lifting module. We give examples of these modules. We show that every quasi-
ss−discrete module is ss−lifting and amply ss−supplemented. The factor module of a quasi-ss−discrete
module is showed to be quasi-ss−discrete again under special conditions. In addition, theorems related
with the decomposition of quasi-ss−discrete modules are obtained. In the second part, we define (strongly)
ss−discrete modules and determine their relationship with ss−supplemented modules.

2. Semi-SS-Discrete and Quasi-SS-Discrete Modules

In this section, semi-ss-discrete modules and quasi-ss-discrete modules are defined and some of the
basic features of these modules are obtained.

Definition 2.1. If M is an ss-lifting module with finite internal exchange property, then M is called a semi-ss-
discrete module. If M is both a π-projective and ss-supplemented module, then M is called a quasi-ss-discrete
module. Let N be any submodule of M. Any submodule K of M is called N-ss-lifting if every homomorphism
M −→ M

N∩K where N ∩ K is semisimple lifts to an endomorphism of M. If K is a ss-supplement of N of M,
then K is called a N-lifting ss-supplement in M.

Recall from [1] that a module K is said to be generalized M-projective if, for any epimorphism 1 : M −→ X
and homomorphism f : K −→ X, there exist decompositions K = K1 ⊕ K2, M = M1 ⊕M2, a homomorphism
h1 : K1 −→M1 and an epimorphism h2 : M2 −→ K2, such that 1 ◦ h1 = f|K1

and f ◦ h2 = 1|M2
.

Proposition 2.2. The following statements are equivalent for M:

1. M is semi-ss-discrete;
2. M is ss-supplemented, every ss-supplement in M is a direct summand and K ∩ L are relatively generalized

projective, for every decomposition M = K ⊕ L,
3. M is ss-lifting and K, L are relatively generalized projective, for every decomposition M = K ⊕ L.
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Proof. (1) ⇒ (2) Since M is ss-lifting, it is ss-supplemented and every ss-supplement is a direct summand
by [2, Theorem 1]. Let M = N + K. Then N contains an ss-supplement N′

of K which is a direct summand of
M. So, we have M = N′

⊕ L′ ⊕ K′ with L′ ⊆ L and K′ ⊆ K since M has the finite internal exchange property.
Thus L is generalized K-projective by [1, 4.42]. Similarly, it is easy to see that K is generalized L-projective.

(2) ⇒ (3) It is enough to prove that M is ss-lifting. Let N ⊆ M. By the hypothesis, N has an ss-
supplement K which is a direct summand of M, that is M = L ⊕ K. Then L is generalized K-projective and
so M = N′

⊕ L′ ⊕ K′ = N′

+ K, where N′

⊆ N, K′ ⊆ K and L′ ⊆ L by [1, 4.42] since M = N + K. From here
N = N′

+ (N ∩ K). Since N ∩ K � K and N ∩ K is semisimple, we have M is an ss-lifting module.
(3)⇒ (1) Suppose M = K⊕ L. It is obtained from [2, Theorem 3] that K and L are ss-lifting modules, and

so K and L are relatively generalized projective. It follows from [1, 23.10] that M has the 2-internal exchange
property.

Recall from [5] that a module M is called duo if for every submodule U of M is fully invariant, i.e.
f (U) ⊆ U for every f ∈ End(M) and U ⊆M.

Proposition 2.3. Let M = M1 ⊕ . . . ⊕Mn be a duo module where each Mi is semi-ss-discrete. Then the following
statements are equivalent:

1. M is semi-ss-discrete;
2. M is ss-lifting and M = M1 ⊕ . . . ⊕Mn is an exchange decomposition;
3. For any direct summand K of

⊕
I

Mi and any direct summand L of
⊕

J
M j, K and L are relatively generalized

projective where I, J non-empty disjoint subsets of {1, 2, . . . ,n};
4. If M′

i is any direct summand of Mi and T is any direct summand of
⊕
j,i

M j, then M′

i and T are relatively

generalized projective for any 1 ≤ i ≤ n;

Proof. is clear by [1, 23.14] and [2, Theorem 10].

As an immediate consequence of Proposition 2.3, we have the following corollary.

Corollary 2.4. Let M = M1 ⊕ . . . ⊕Mn be a duo module where each Mi is a semi-ss-discrete module. If Mi and M j
are relatively generalized projective for each i , j, then M is semi-ss-discrete.

Recall from [1, 12.1] that an R-module M is said to be an LE-module if its endomorphism ring End(M) is
local.

Theorem 2.5. Let M be an ss-lifting module with an indecomposable decomposition M =
⊕

I
Mi is a duo module.

Then M is a semi-ss-discrete module if one of the following statements is satisfied:

1. Mi is an LE-module for all i ∈ I;
2. every non-zero direct summand of M contains a non-zero indecomposable direct summand and the decomposition

M =
⊕
i∈I

Mi complements maximal direct summands.

Proof. A module M with an indecomposable exchange decomposition has the internal exchange property.
Hence we can apply [1, 24.13, 24.10] to [3, Theorem 30].

We can compare quasi-ss-discrete modules, ss-supplemented modules and ss-lifting modules in follow-
ing lemmas.

Lemma 2.6. If M is a quasi-ss-discrete module, then M is ss-lifting.
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Proof. Since M is π-projective, it is clear by [1, 20.9] and [2, Theorem 1] that ss-supplements are direct
summands in M. So it is enough to prove that M is amply ss-supplemented. Suppose that M = U + V and
X is an ss-supplement of U in M. Then for any f ∈ End(M) with Im( f ) ⊆ V and Im(1 − f ) ⊆ U, we have
M = U + f (X) and U ∩ f (X) = f (U ∩ X) � f (X). Since U ∩ X is semisimple, U ∩ f (X) is semisimple by [8,
20.3]. Thus f (X) is an ss-supplement of U contained in V.

By the help of [8, 41.15], it can be seen that if the intersection of any pair of mutual ss-supplements is
zero in an ss-supplemented module, then ss-supplement submodules of M are direct summands.

Lemma 2.7. If M is an ss-lifting and π-projective module, then M is amply ss-supplemented and the intersection of
any pair of mutual ss-supplements in M is zero.

Proof. Follows from [2, Theorem 1] and [1, 20.9].

Corollary 2.8. If M is a quasi-ss-discrete module, then M is amply ss-supplemented and the intersection of any pair
of mutual ss-supplements in M is zero.

Proof. Clear by Lemmas 2.6 and 2.7.

It is clear that every quasi-ss-discrete module is quasi-discrete by Definition 2.1. The following example
shows that the converse is not need to be true. So the notion of quasi-ss-discrete module is a stronger than
that of quasi-discrete module.

Example 2.9. For any prime integer p, consider the left Z-module M = Zp∞ . M is supplemented but not ss-
supplemented by [3, Example 17]. Since M has the property (D3), M is quasi-discrete but not quasi-ss-discrete.

The following corollary is obtained by automatically by Lemma 2.7.

Corollary 2.10. If M is an ss-lifting module and has the property (D3), then M is a quasi-ss-discrete module.

Lemma 2.11. Let M be a quasi-ss-discrete module, K be a submodule of M and L be an ss−supplement of K. If N is
an ss−supplement submodule of M contained in K, then N ∩ L = 0 and N ⊕ L is a direct summand of M.

Proof. Since M is a quasi-ss-discrete module, M is ss−lifting by Lemma 2.6. If we use [2, Theorem 1], it can
be concluded that L and N are direct summand of M. Therefore there exists a submodule N1 of M such
that M = N ⊕N1. It is clear that K = (K ∩N1) ⊕N and so M = N + L + (K ∩N1). By [2, Theorem 1], K ∩N1
contains an ss−supplement X of N + L, where X is a direct summand of M. Thus X⊕N is a direct summand
of M due to X ≤ N. However, we have that (X ⊕N) ∩ L is a direct summand of M by [4.14 (4)]. From here
(X ⊕N) ∩ L ≤ K ∩ L ⊆ Socs(L). Finally we can get (X ⊕N) ∩ L = 0 and so M = X ⊕N ⊕ L.

Proposition 2.12. If K, L are direct summand of a quasi-ss-discrete module M and L is hollow, then
(i) K ∩ L = 0 and K ⊕ L is a direct summand of M or
(ii) K + L = K ⊕ S with S ⊆ Socs(M) and L is isomorphic to a summand of K.

Proof. Suppose that T is an ss−supplement of K+L. Then we have M = T+ (K + L) and T∩ (K + L) ⊆ Socs (T).
By Lemma 2.11, K ∩ T = 0. Let’s complete the proof by evaluating the following two situations.

(1) If L � K ⊕ T, then L∩ (K + T) = 0 and so L is an ss−supplement of K + T. It follows that K∩ L = 0 and
K ⊕ L is a direct summand of M by Lemma 2.11.

(2) Assume that L ≤ K ⊕ T. Since M = K + T + L = K + T and K ∩ T = 0, we have M = K ⊕ T. If we
intersect the equality M = K +T with K +L, then we can write K +L = K⊕S where S = (K + L)∩T. Moreover
S ⊆ Socs(M) by [2, Theorem 1]. Since L is a direct summand of M, there exists a submodule L1 of M such that
M = L⊕ L1. It follows that M = K + L + L1 = K + [(K + L) ∩ T] + L1 = K + L1 because (K + L)∩T �M. Let N1
be an ss−supplement of L1 contained in K. Then, we get M = [N1 ⊕ (K ∩ L1)] + L1 = N1 ⊕ L1 and L � N1.

Theorem 2.13. If M is a quasi-ss-discrete module, then M is ss-lifting and for every decomposition M = K ⊕ L, K
and L are relatively projective.
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Proof. We obtain by Lemmas 2.6 and 2.7 that M is amply ss-supplemented and the intersection of any pair
of mutual ss-supplements in M is zero. Since M is ss-supplemented, ss-supplements are direct summands
and so M is ss-lifting by [2, Theorem 1]. Suppose that M = U + V where U and V are direct summands of
M. Let X be an ss-supplement of V such that X ⊆ U. Then M = X ⊕V. As U = X ⊕ (U ∩V), we get U ∩V is
a direct summand of M. Therefore M is ∩-direct projective. The rest follows from [1, 4.14(2)].

By the definition, every quasi ss-discrete module is semi-ss-discrete. But the converse is not always true
as in the following example.

Example 2.14. Consider the Z-module U = Z
pZ and V = Z

p2Z
where p is prime. Then U and V are relatively

generalised projective but U is not V-projective. So M is not a quasi ss-discrete module although M is an ss-lifting
module. Since M = U ⊕ V is a ss-lifting module with the finite internal exchange property, M is semi-ss-discrete.

Now we can obtain properties of quasi ss-discrete modules.

Proposition 2.15. Let M be a quasi-ss-discrete module. Then every direct summand of M is quasi-ss-discrete and
every ss-supplement submodule of it is a direct summand.

Proof. Let N be a direct summand of M. Since M is ss-lifting and π-projective, every ss-supplement
submodule of M is a direct summand by [2, Theorem 1]. Since every direct summand of a π-projective
module is again π-projective, N is ss-supplemented by [3, Corollary 38]. Therefore N is quasi-ss-discrete
module.

Since ss-supplemented modules are supplemented, proofs of the following facts are clear by [8, 41.16-
(2,3)].

Lemma 2.16. Let M be a quasi ss-discrete module and S = End(M). Let e ∈ S be an idempotent and N be a direct
summand of M. If (1 − e)(N)� (1 − e)(M), then N ∩ (1 − e)(M) = 0 and N ⊕ (1 − e)(M) is a direct summand in M.

Proposition 2.17. Let M be a quasi-ss-discrete module. If {Ni}i∈I is a directed family of direct summands of M with
respect to inclusion, then

⋃
i∈I

Ni is also a direct summand in M.

Recall from [3, Proposition 16] that an ss−supplemented hollow module is strongly local.

Lemma 2.18. Let M be a quasi-ss-discrete module. Then for every 0 , m ∈M, there is a decomposition M = M1⊕M2
such that m < M1 and M2 is strongly local.

Proof. Given 0 , m ∈ M. Let’s define the set S = {T ⊂M| T is direct summand and m < T}. This set is
non-empty and inductive with respect to inclusion by Proposition 2.17 and has a maximal element M1 by
Zorn’s Lemma. Since M1 is a direct summand, there exists a submodule M2 of M such that M = M1 ⊕M2.
By Proposition 2.15 and Lemma 2.6, M2 is a quasi-ss-discrete module and M2 is ss−lifting. Therefore M2
must be strongly local. If M2 is not hollow, then there is a proper non-superfluous submodule in M2, say
U. It follows that there exists a nontrivial decomposition M2 = V ⊕ V1 with V ⊂ U and U ∩ V1 ⊆ Socs(V1)
for some submodule V, V1 of M2. Then we can write M = M1 ⊕M2 = M1 ⊕ V ⊕ V1. By the maximality of
M1, we get m ∈M1 ⊕ V and m ∈M1 ⊕ V1. But this means m ∈M1 contradicting the choice of M1. Therefore
all proper submodules in M2 are superfluous, i.e. M2 is hollow. By [3, Proposition 16], we deduce that M2
is strongly local.

Observe from [3, Lemma 13] that an ss-supplemented and radical module is zero. Using this fact we
prove that the following fact:

Theorem 2.19. Let M be a quasi-ss-discrete module. Then M has a decomposition M =
⊕
i∈I

Hi, where each Hi is

strongly local. In particular, if N is a direct summand of M, there exists a subset J ⊂ I such that M =

⊕
J

Hi

 ⊕N.
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Proof. We indicate by Ω the set of all strongly local submodules in M and take into account Φ = {℘ ⊂ Ω|
∑

H∈℘
H

is a direct sum and a direct summand in M}. Then, since M is a quasi-ss-discrete module, M has a strongly
local submodule that is a direct summand of its by [3, Lemma 13] and Lemma 2.6. So this set is non-empty
and inductive with respect to inclusion by Proposition 2.17 has a maximal element ℘ by Zorn’s Lemma. By
indexing the elements in ℘ with i, let L =

⊕
i∈I

Hi. Since L is a direct summand, there exists a submodule K

of M such that M = L ⊕ K. If we prove that K = {0}, then the proof will be completed. Suppose that K , {0}.
Then, there is an element a of K with a , 0. Moreover, K is a quasi-ss-discrete module by Proposition 2.15.
We get that a decomposition K = K1 ⊕ K2 such that a < K1 and K2 is strongly local by Lemma 2.18. Then
we have M = L ⊕ K = L ⊕ K1 ⊕ K2 = (L ⊕ K2) ⊕ K1 and so K2 , {0} because of a < K1. Therefore, the direct
summand L ⊕ K2 of M is properly larger than L. This contradicts the maximality of L. Consequently K = 0
and we deduce that M =

⊕
i∈I

Hi.

Suppose that N is a direct summand of M. Let’s define S = {Λ ⊂ I| N ∩
(⊕

Λ

Hλ

)
= {0} and N ∩

(⊕
Λ

Hλ

)
is a direct summand in M}. By using Proposition 2.17 and Zorn’s Lemma, we can say that S has a maximal

element J. Assume that L = N ∩

⊕
J

Hi

. We must prove that M = L. Assume that L , M. Therefore

there exists an element a ∈ M\L. Then by Lemma 2.18, we have a decomposition M = K ⊕ H with L ⊂ K
and H is strongly local. If we show that H = {0}, then the proof is completed. Suppose that H , {0}.
We consider the canonicial projection p : M → H. It is clear that if p

(
H j

)
= H holds for some j ∈ I, then

M = K + H j. If K ∩H j = H j, then M = K and so H = {0}. Because of K ∩H j , H j, we get that K ∩H j � H j.
Since M is π−projective, we have K ∩ H j = {0}, i.e. M = K ⊕ H j. L ⊕ H j is a direct summand of M because
L is a direct summand of M. Since j < J, this is a contradiction to the maximality of J. It follows from
p (Hi) , H for every i ∈ I. From here, if we say T = Hi1 ⊕ Hi2 ⊕ ..... ⊕ Hin for every finite i1, i2, ......, in ∈ I,
then p (T) = p

(
Hi1

)
⊕ p

(
Hi2

)
⊕ ..... ⊕ p

(
Hin

)
� H. Moreover, for the canonicial projection e : M→ K, we get

that p = IM − e and p (T) = (IM − e) (T) � H = (IM − e) (M). Then we have T ∩ H = 0 by Lemma 2.16. This

situation is valid for every finite i1, i2, ......, in we obtain
(⊕

I
Hi

)
∩ H = {0} and so H = M ∩ H = {0}. It is a

contradiction to the H , {0}. Hence H = {0}, this means M = L.

Recall that a module M is called coatomic if every proper submodule of M is contained in a maximal
submodule of M. A ring R is called left max if every non-zero R-module has a maximal submodule. Note
that if R is a left max ring, then every R-module is coatomic.

Corollary 2.20. Let M be a quasi-ss-discrete. Then M is coatomic and Rad(M) is semisimple.

Proof. It follows from Theorem 2.19 and [3, Theorem 27].

Proposition 2.21. The following statements are equivalent for an amply ss-supplemented module M.

1. M is quasi-ss-discrete;
2. M is π-projective.

Proof. Clear by [8, 41.15] and [3, Proposition 26].

Recall from [1, 4.13] that any factor module M
N of aπ-projective module M by a fully invariant submodule

N is π-projective.
The following proposition can be proven by [3, Proposition 26].

Proposition 2.22. Let M be a quasi-ss-discrete module and N be a fully invariant submodule of M. Then M
N is

quasi-ss-discrete.

Proposition 2.23. The following statements are equivalent for any module M.
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1. M is quasi-ss-discrete;
2. M is amply ss-supplemented and all ss-supplements of any coclosed submodule N of M are K-ss-lifting.

Proof. (1) ⇒ (2) It is clear that M is amply ss-supplemented by [3, Proposition 37]. Let N be a coclosed
submodule of M and K be an ss-supplement of N in M. Then N and K are ss-supplements of each other and
so K ∩N = 0 by [7, Proposition 4.11].

(2)⇒ (1) It is enough to prove that M is π-projective. Let N and K be submodules of M with M = N + K.
Since M is amply ss-supplemented, there exists a submodule K′ of M such that M = N + K′ , N ∩ K′ � K′ ,
N ∩ K′ is semisimple, K′ ⊆ K and a submodule N′

of M such that M = K′ + N′

, K′ ∩ N′

� N′

, K′ ∩ N′

is
semisimple and N′

⊆ N. Therefore K′ and N′

are ss-supplements of each other. Define ϕ : M −→ M
K′∩N′ by

ϕ(k′ + n′ ) = k′ + (K′ ∩ N′

) (k′ ∈ K′ ,n′ ∈ N′

). By the hypothesis, there exists a homomorphism θ : M −→ M
where θ(M) ⊆ K′ and (1 − θ)(M) ⊆ N′

. Hence M is π-projective.

Lemma 2.24. Let N be a submodule of M such that M
N � M

N′ with N′ is a coclosed submodule of M. If K is a N-lifting
ss-supplement, then M = N ⊕ K.

Proof. Suppose that K is an ss-supplement of N in M. Then we have M = N + K, N ∩ K � K and N ∩ K is
semisimple, and every homomorphism ψ : M −→ M

N∩K lifts to a homomorphism of M. Since M
N � M

N′ , then
an isomorphism ξ : M

N′ −→
M
N . We can similarly obtain rest of the proof follows from [4, Lemma 2.2].

Corollary 2.25. Let N be a coclosed submodule of M. If K is a N-lifting ss-supplement in M, then M = N ⊕ K.

Proof. Clear by Lemma 2.24.

In the following theorem, we give a characterization of ss-lifting modules via coclosed submodule from
renaissance of [4, Theorem 2.4].

Theorem 2.26. Let M be an amply ss-supplemented module. M is ss-lifting if and only if every coclosed submodule
N of M has a N-lifting ss-supplement.

Proof. Follows from Corollary 2.25 and [2, Theorem 1].

3. SS-Discrete Modules and Strongly SS-Discrete Modules

In this section, we define notions of ss-discrete modules and strongly ss-discrete modules, and we obtain
some elementary characterizations of these notions.

Definition 3.1. Let M be a ss-supplemented module which is π-projective and direct projective, then M is
called a ss-discrete module. If M is a ss-supplemented module which is self-projective, then M is called a
strongly ss-discrete module.

By this definition, we can obtain that if a module M is ss-lifting and has the property (D2), then M is a
ss-discrete module.

Lemma 3.2. Let N be an ss-supplement in M. N is a direct summand of M if and only if there exists an ss-supplement
K of N in M such that K is a direct summand of M and every homomorphism f : M −→

M
N∩K can be lifted to a

homomorphism ϕ : M −→M.

Proof. (⇒) Clear.
(⇐) Let K be an ss-supplement of N in M with the stated property and f : M −→ M

N∩K be the homo-
morphism defined by f (a + b) = a + (N ∩ K) for every a ∈ N and b ∈ K. By the hypothesis, there exists
a homomorphism ϕ : M −→ M such that f can be lifted to the homomorphism ϕ. We have M = K ⊕ K′

for some submodule K′ of M and K ∩ N � N and K ∩ N is semisimple. By [6, Lemma 2.1], we have
M = ϕ(K′ ) ⊕ K. Since ϕ(K′ ) ≤ N, then N = ϕ(K′ ) ⊕ (N ∩ K). This implies that N ∩ K = 0. Thus N is a direct
summand of M.
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Now we can characterize ss-lifting modules via the above lemma.

Corollary 3.3. Let M be an amply ss-supplemented module. M is ss-lifting if and only if for every ss-supplement N
in M there is a direct summand ss-supplement K of N in M such that every homomorphism f : M −→ M

N∩K can be
lifted to a homomorphism ϕ : M −→M.

Proposition 3.4. Let M be a module with Rad(M) ⊆ Soc(M). If M is a (quasi-)discrete module, then M is a
(quasi-)ss-discrete module.

Proof. Clear by [3, Theorem 20].

Proposition 3.5. Let M be an ss-discrete module. Then every direct summand of M is an ss-discrete module.

Proof. Let N be a direct summand of M. Since M is direct projective by [1, 4.22], we have N is direct
projective, i.e. N has the property (D2). Since M is ss-supplemented and π-projective, M is ss-lifting by [2,
Theorem 2]. Thus N is ss-lifting by [2, Theorem 3] and so N is an ss-discrete module.

Example 3.6. Consider the self-projectiveZ-module M = Z
4Z . Since M is ss-supplemented, M is strongly ss-discrete.

Proposition 3.7. Let M be a projective module. M is a strongly ss-discrete module if and only if M is a strongly
discrete module and Rad(M) ⊆ Soc(M).

Proof. Since M be a projective module, M is self-projective. The proof is obvious by [3, Theorem 20]

Proposition 3.8. Let M be a strongly ss-discrete module. Then every direct summand of M is a strongly ss-discrete
module.

Proof. As self-projective modules are closed under direct summands, the proof clear by [2, Theorem 3].

Theorem 3.9. Let {Mi}i∈I be any finite family of R-modules and let M =
⊕
i∈I

Mi. Suppose that for every i ∈ I,

Rad(Mi) ⊆ Soc(Mi). Then the following statements are equivalent.

1. M is strongly ss-discrete;
2. (a) each Mi is strongly discrete;

(b) for each i ∈ I, Mi is M j-projective for j , i.

Proof. The proof similar to these of [1, 27.16] and [3, Theorem 20].

In the following corollary, we prove that strongly ss-discrete rings thanks to semiperfect ring.

Corollary 3.10. The following statements are equivalent for a ring R:

1. RR is ss-supplemented;
2. RR is semiperfect and Rad(R) ⊆ Soc(RR);
3. for any finite set I and for each i ∈ I, every left R-module M =

⊕
i∈I

Mi where Mi is a strongly local M-projective

module;
4. RR is strongly ss-discrete.

Proof. Follows from [3, Theorem 41].

Finally we give the following hierarchy for any module:
strongly ss-discrete⇒ ss-discrete⇒ quasi-ss-discrete⇒ semi-ss-discrete⇒ ss-lifting
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