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Abstract. In this research work, our chief target is to elaborate an analytical solution of the fractional linear
complement problem related to the evaluation of American put option generated by the fractional Black
and Scholes model using the Adomian decomposition method, a numerical study is set forward to perform

the theoretical result. Compared to the existent fractional model we prove that our result has a prompt
convergence to the solution.

1. Introduction

American options are very popular in the worldwide financial markets. Their evaluation is a challenge.
Indeed, it is one of the most thorny problems in option pricing literature. Compared to the European
options, the American ones are more common. They allow more flexibility since they can be exercised at
any time, between the current time and maturity. This issue has whetted the interest of both academics and
traders.

Over the last few decades, several papers investigated the problem of the American pricing options
generated by different models using many methods for instance [2], [3], [5], [9], [14], [15], [19],[23], [24], [26]
and [27]. The early exercise feature inherent in American options was related to a free boundary condition
problem in mathematics see [7], [12], and [16] , which was very complicated. For this reason, American
options have no closed form solutions. The most famous one is the Black and Scholes model [6], which
rests upon the concept that the stock price of the underlying asset is log-normally distributed conditional
on the current stock price with a constant volatility.

The fractional calculus is invested in several research axes [4], [10], [25], [29]. For example, fractional
derivation models have shown an ability to describe shape memory materials better than full derivation
models. When a material is purely elastic, it is described by an integer derivation of order zero while
when it is purely viscous it is described by an integer derivation of order one. Immediately, we can imagine
describing a viscous-elastic material by a derivation between zero and one. This justifies the use of fractional
derivation for this kind of material. We can refer the reader the Podlubny’s book [25] where he introduces
various physical models generated by differential equations with non-integer derivatives order. So out of
mathematical curiosity and to get closer to the reality of the financial market we find ourselves obliged
to use models based on fractional derivatives. Lately, it has been integrated in the Mathematical finance
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field [13],[17], [18],[20], and especially designed to resolve the pricing option problem. For instance [17],
[18], [21], [22],[28] and [29] which are devoted for the evaluation of the European option. Refer back to
[23], [30] and [31] for the American option. Numerous methods are elaborated so as to resolve linear and
nonlinear fractional differential equations. Lastly, Chen et al. [8] have shown that the splitting method is
a promising method and especially is more efficiency than the projected LU method. They have shown
also that the optimal exercise price increases as the derivative order increases. In this research work, the
Adomian decomposition method [1], [10]and [11] are used. This method is a powerful tool to compute
analytical solutions in the linear or non-linear equations.

For an American option, under the hypotheses of Black and Scholes, with the exception of that of the
payoff, the option can be exercised at any time between the date of purchase and the maturity date. By
choosing the geometrical Brownian motion as dynamics of the underlying asset price:

dSt = rStdt + Ustde (1)

where S, is the underlying asset price at time ¢, ¢ is the volatility and r is the interest rate, both are supposed
to be constants.
Using the Ito formula, we obtain the following differential equation:

oP oP 1 ,d%P
25629 _.p= 2
8t+r585+205 35 rP=0 (2)

where P is the American put price. The Boundary conditions regarding time can be written as follows :
P(S,t) = max(K — S¢,0) in the exercice case 3)
and
P(S;,t) > max(K — S;,0) in the other case 4)

Therefore, the problem of pricing American put option comes down to a linear complementarity problem
under the following system :
P oP 1 _,0°P

—_— — —_— 2_— —_— _— =
(8t+r595+265 75 rP)(P—(K—=S))=0

dP P 1 _ ,d°P

i i _ 2__p<
T +rSaS+ZGS 352 rP <0

P-(K-S)>0 Vt.

The outline of this work is as follows. In section 2, we present some preliminaries which are the basics
of fractional calculus. In section 3, we establish our main results based on the Adomian decompositions.
Section 4 includes the simulations and the numerical results. In the last section, we conclude.

2. Preliminaries

In what follows, we set forward some definitions related to the fractional calculus constituting the
cornerstone of our work. For an organic presentation of the fractional theory, we can refer readers to
Podlubny’s book [25].

Definition 2.1. The Riemann-Liouville fractional integral of order e > 0 is defined as,
1 t
[P x(t) = — f (t — ) x(1)dt
o ® I'(@) Jy,

+00
where T'(a) = f e~ 1dr,
0
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Definition 2.2. The Caputo fractional derivative is defined as

1 t . am
Df;,tx(t) = m j; (t - T) 1d’[m x(T)dT, (m —-l<ax< m)
0

When 0 < a < 1, then the Caputo fractional derivative of order a of f reduces to

. d
D () = Lf( Ly 6)

Note that the relation between Riemann-Liouville operator and Caputo fractional differential operator
is expressed by the following equality:

m—1 i’k
D5, f() = DD f(0) = fO) = ) 0, m-l<as<m. (6)
k=0

Similar to the exponential function used in the solutions of integer-order differential systems, Mittag-
Leffler function is frequently used in the solutions of fractional-order differential systems.

Definition 2.3. The Mittag-Leffler function with two parameters is defined as

Eap(®) = 2 F(koc n 5)
wherea >0, >0,z €C.
When p =1, we have E,(z) = E,1(z). Furthermore, E11(z) = €&

Adomian Method
The Adomian decomposition method consists to represented a solution Z(x) of linear or nonlinear differ-
ential equations as a decomposition form named Adomian series:

2 = ) Z(x)
k=0

where the components Z; k > 0 are converging series and can be computed in a recursive manner.

3. Main results

In order to price American put option, we need to resolve the following fractional linear complementarity
problem:

FP P 1 L,PP B
(3t S% —0S 352 —-rP)(P-(K-5))=0
FP P 1 ,PP
(W+rsas Sa_SZ_rP)SO
—(K—S,)zo vt

where0 < a < 1.
Under a constant volatility, to compute the value of American put price P(S;, V), we have to resolve the
following nonlinear fractional differential equation:

DP(S, Vi) + A[PI(S;, Vi) = 0 0<ac<l 7)
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in the unbounded domain {(S;, V;)|S; > 0, V; > 0and t € [0, T]} with the initial value
P(So, Vo). (8)

For boundary conditions, in the case of a put option, at maturity T with an exercise price K, the payoff
function is

max(K — St,0) )

where Df = % and

P 1 P
A[ ] Sg + =0S ﬁ—rP.

Theorem 3.1. Let (P;)i=o be the American option price at time t. Under the hypotheses of the Black and Scholes
model, at time | with | < t, the American put option price, which is the solution of the previous fractional linear
complementarity problem, is equal to:

P(S;, Vi) = max(max(K = 51, 0); ¢ " DE(=(t = )*A[P(S;, Vi)]))

where 0 < a < 1, E, is the Mittag-Leffler function and A[P] = rS gs + 1082 32512’ —rP.

Proof
Multiplying equation (8)by the operator D;* and taking into account of (7), we get

P(St, Vi) = P(S1, V1) + D" (=A[PI(S;, V1)) (10)

Therefore, using the Adomian decomposition method in the domain [/, t], the solution has the following
form
P(Sy, Vi) = P(S, V1) + ) Pu(St, V). (11)
k=1

By substituting (11) into (7), we have

Pui1(S:, Vi)

Dy (=A[PaI(St, V1))
(t—1na
I'(l+ na)

—A[P(S, V)I'Dy (s =) (12)

Thus, we get

_ DT k
P(S, V) = 2( Y gl SALP(S, Vo)
= a(—(t = DTALP(St, Vi) (13)
The convergence of the power series of the fractional Black and Scholes model is guaranteed for a real and
positive a. O

4. Simulations and Numerical Results

In this section, we perform the found results by presenting a numerical study of the pricing American
put option under our proposed model for different values of the fractional order (see Tables 1, 3 and 5,
Figures 1,2 and 3).
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Table 1: Pricing American put option for different values of the fractional model compared to the classical binomial model (1000
time-steps) and splitting model Spl(a = 0.9), as a function of moneyness, (K=100, o = 0.2, r=0.05, T=1/12)

S/K 0.8 ] 085 |09 095 |1 1.05 |11 115 | 1.2
BIN1000 20 | 15 10 4.627 | 2.131 | 1.093 | 0.094 | 0.051 | 0.001
Spl{a =0.9) | 20 | 15 10 5.088 | 2.379 | 1.283 | 0.123 | 0.061 | 0.002
P(a=1) 20 | 15 10 4598 | 2.077 | 1.125 | 0.117 | 0.043 | 0.0017
P(a =0.9) 20 | 15 10 5.127 | 2.354 | 1.274 | 0.129 | 0.056 | 0.003
P(a =0.7) 20 | 15 10.05 | 5.202 | 2.253 | 1.301 | 0.154 | 0.062 | 0.0034
P(a =0.5) 20 | 15 10.23 | 5.291 | 2.469 | 1.347 | 0.286 | 0.095 | 0.0068

=
[¥=)
Ln
=
=
=]
Ln

11 1,15 1,2

i BINA00 Fialph=1) —a—P{alph=0.9] —#—P{alph=0.7) Pi{alph=0.5)

Figure 1: Fig.1 Pricing American put option for different values of the fractional model compared to the classical binomial model (1000 time-steps),
as a function of moneyness, (K=100, o = 0.2, r=0.05, T=1/12).

We have investigated the American put price as a function of moneyness. As data, we have considered
K=100, ¢ = 0.2, r=0.05. For the maturity time, we considered three cases: the first one is equal to 1/12, the
second equals 1/4 and finally the third equals 1/2.

We take as “true” reference price, the one issued of the Binomial model [3] with 1000 steps. From the
obtained results, all curves have the same profiles as the one related to the binomial model, which goes in
good accordance with the option’s theory.

We notice that, when moneyness is located near to one, there is slight difference between the obtained
results and the binomial model. In the otherwise, the difference between the premium of the American
put option is almost useless, which proves in terms of accuracy, for every value of the fractional order, all
results are almost the same(see Tables 2, 4 and 6).

In their work [8], Chen et al. prove that the splitting method is promising and especially is more efficient
than the projected LU method. In correlation with our method, Chen et al. prove that the optimal exercise
price increases as the derivative order increases. So, to compare with our solution we implement the results
of Chen et al. for @ = 0.9 noted by Spl(a = 0.9).

Now we make a comparison between our method based on the Adomian decomposition and the method
presented in the work of Chen et al. [8] based on the splitting method. In the first we must indicate that
the two methods are easy to implement nevertheless the Adomian decomposition has a rapid convergence
(CPU time) to the solution than the splitting method (see Table 7), and this is logical since the solution of
the first method is written as a Mittag-Leffler function contrariwise to the second method which based on
iterative functions.
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Table 2: The error between the value of American put option under the fractional model for different values of a and the classical
binomial model (1000 time-steps), as a function of moneyness, (K=100, o = 0.2, r=0.05, T=1/12)

S/K 08108 |09 |09 |1 1.056 | 1.1 115 | 1.2
|IBIN1000 — Spl(e = 0.9)| | O 0 0 0.461 | 0.248 | 0.19 | 0.029 | 0.01 | 0.001
|IBIN1000 — P(a = 1)| 0 0.029 | 0.054 | 0.032 | 0.023 | 0.008 | 0.0006
|BIN1000 — P(a = 0.9)| 0 0.5 0.223 | 0.181 | 0.035 | 0.005 | 0.0019
|IBIN1000 — P(a = 0.7)| 0.05 | 0.575 | 0.122 | 0.208 | 0.06 | 0.011 | 0.0023
|BIN1000 — P(a = 0.5)| 0.23 | 0.664 | 0.338 | 0.254 | 0.192 | 0.044 | 0.0057

o|o|o|o
(o] Nen] Nen)] Raw)

Table 3: Pricing American put option for different values of the fractional model compared to the classical binomial model (1000
time-steps) and splitting model Spl(a = 0.9), as a function of moneyness, (K=100, ¢ = 0.2, r=0.05, T=1/4)

S/K 0.8 | 0.85 0.9 095 |1 1.05 | 1.1 115 | 1.2

BIN1000 20 | 15 10.092 | 5.015 | 3.429 | 1.912 | 0.722 | 0.181 | 0.041
Spl(a =0.9) | 20 | 15.01 | 10.203 | 5.021 | 3.470 | 1.986 | 0.745 | 0.213 | 0.075
P(a=1) 20 | 15 10.156 | 5.003 | 3.451 | 1.857 | 0.736 | 0.186 | 0.047

P(a =0.9) 20 | 15.012 | 10.184 | 5.038 | 3.492 | 2.094 | 0.759 | 0.197 | 0.069
P(a =0.7) 20 | 15.057 | 10.197 | 5.109 | 3.617 | 2.251 | 0.883 | 0.244 | 0.089
P(a =0.5) 20 | 15.113 | 10.175 | 5.483 | 3.983 | 2.475 | 1.088 | 0.319 | 0.095

0,95 1 1,05 11 1,15 12
—— BIN4DD Plalph=1} —@—P{alph=0.9) —#—Pialph=0.7) Plalph=0.5)

Figure 2: Fig.5 Pricing American put option for different values of the fractional model compared to the classical binomial model (1000 time-steps),
as a function of moneyness, (K=100, ¢ = 0.2, r=0.05, T=1/4).

5. Conclusion

Investing the Adomian decomposition, we provide and show the rapid convergence (CPU time) of the
power series related to the pricing American put option problem under our proposed model. In order to
perform the theoretical results, we set forward numerical solutions for different values of the fractional
order. All results are correlated with the American option’s theory.
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Table 4: The error between the value of American put option under the fractional model for different values of a and the classical
binomial model (1000 time-steps), as a function of moneyness, (K=100, o = 0.2, r=0.05, T=1/4)

S/K 08085 |09 095 |1 1.05 | 11 115 | 1.2
|IBIN1000 — Spl(e = 0.9)| | O 0.01 | 0.111 | 0.006 | 0.041 | 0.074 | 0.023 | 0.032 | 0.034
|IBIN1000 — P(a = 1)| 0 0.064 | 0.012 | 0.022 | 0.055 | 0.014 | 0.005 | 0.006

0.012 | 0.092 | 0.023 | 0.063 | 0.182 | 0.037 | 0.016 | 0.028
0.057 | 0.105 | 0.094 | 0.188 | 0.339 | 0.161 | 0.063 | 0.048
0.113 | 0.083 | 0.468 | 0.554 | 0.563 | 0.366 | 0.138 | 0.054

IBIN1000 — P(a = 0.9)]
IBIN1000 — P(a = 0.7)]
IBIN1000 — P(a = 0.5)]

o oo o

Table 5: Pricing American put option for different values of the fractional model compared to the classical binomial model (1000
time-steps) and splitting model Spl(a = 0.9), as a function of moneyness, (K=100, ¢ = 0.2, r=0.05, T=1/2)

S/K 0.8 | 0.85 0.9 095 |1 1.05 | 1.1 115 | 1.2
BIN1000 20 | 15 10.155 | 5.252 | 3.482 | 2.009 | 0.769 | 0.194 | 0.0688
Splla =09) | 20 | 15.054 | 10.206 | 5.294 | 3.596 | 2.149 | 0.813 | 0.229 | 0.125
Pla=1) 20 | 15.003 | 10.171 | 5.277 | 3.475 | 2.059 | 0.788 | 0.209 | 0.0696
P(a =0.9) 20 | 15.081 | 10.193 | 5.316 | 3.554 | 2.177 | 0.791 | 0.237 | 0.109
P(a =0.7) 20 | 15.099 | 10.217 | 5.441 | 3.702 | 2.301 | 0.933 | 0.264 | 0.157
P(a =0.5) 20 | 15.131 | 10.379 | 5.509 | 3.896 | 2.593 | 1.025 | 0.351 | 0,232

Table 6: The error between the value of American put option under the fractional model for different values of a and the classical
binomial model (1000 time-steps), as a function of moneyness, (K=100, ¢ = 0.2, r=0.05, T=1/2)

S/K 08085 |09 09 |1 1.05 | 11 115 | 1.2

|IBIN1000 — Spl(a = 0.9)] | O 0.054 | 0.051 | 0.042 | 0.114 | 0.14 | 0.044 | 0.035 | 0.0562
|BIN1000 — P(a = 1) 0.003 | 0.016 | 0.025 | 0.007 | 0.05 | 0.019 | 0.015 | 0.0008
|IBIN1000 — P(a = 0.9)| 0.081 | 0.038 | 0.064 | 0.072 | 0.168 | 0.022 | 0.043 | 0.0402
|BIN1000 — P(a = 0.7)| 0.099 | 0.062 | 0.189 | 0.22 | 0.292 | 0.164 | 0.07 | 0.0882
|IBIN1000 — P(a = 0.5)| 0.131 | 0.224 | 0.257 | 0.414 | 0.584 | 0.256 | 0.157 | 0.1632

(o] Hew] Hen] Naw)

Table 7: Calculation time for the various methods, (K=100, ¢ = 0.2, r=0.05, T=1/2)
) BINT000 | Spl(ar = 0.9)] | P(ar = 1)
CPUtime | 55s 247s 62s
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Figure 3: Fig.5 Pricing American put option for different values of the fractional model compared to the classical binomial model (1000 time-steps),
as a function of moneyness, (K=100, ¢ = 0.2, r=0.05, T=1/2).

References

(1
[2]

[3]
[4]
[5]
[6]
[7]
(8]
9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

G Adomian. Nonlinear stochastic operator equations. Academic Press, New York 1986.

V Bally, L Caramellino and A Zanette (2005). Pricing and hedging American options by Monte Carlo methods using a Malliavin
calculus approach. Monte Carlo Methods and Applications 11: 97-133.

M Broadie and ] Detemple (1996). American option valuation: new bounds, approximations, and a comparision of exixting
methods securities using simulation. The Review of Financial Studies 9: 1221-1250.

M Benchohra, JR Graef and Mostefai FZ (2011). Weak Solutions for Boundary-Value Problems with Nonlinear Fractional Differ-
ential Inclusions. Nonlinear Dynamics and Systems Theory 3: 227-237.

M Brennan and ES Schwartz (1977). The valuation of American put options. Journal of Finance 32: 449-462.

F Black and MS Scholes (1984). The pricing of options and corporate liabilities. The journal of political economy 81: 637-654.

A Bensoussan (1984). On the theory of option pricing. Acta Applicandae Mathematicae 2: 139-158.

C Chen, Z Wang and Y Yang (2019). A new operator splitting method for American options under fractional Black-Scholes
models. Computers and Mathematics with Applications 77: 2130-2144.

J Detemple and W Tian (2002). The valuation of American options for a class of diffusion processes. Management Science 48:
917-937.

V Daftardar-Gejji and S Bhalekar (2008). Solving multiterm linear and nonlinear diffusion wave equations of fractional order by
Adomian decomposition method. Appl. Math. Comput 202: 113-120.

V Daftardar-Gejji and H Jafari (2005). Adomian decomposition: a tool for solving a system of fractinal differential equations. ]
Math Anal Appl 301 : 508-518.

N ElKaroui, C Kapoudjan, E Pardoux, S Peng and MC Quenez (1997). Reflected solutions of Backward SDE’s and related obstacle
problems for PDE’s. The Annals of Probability 25: 702-737.

HA Fallahgoul, SM Focardi and F] Fabozzi (2017). Fractional Partial Differential Equation and Option Pricing. Fractional Calculus
and Fractional Processes with Applications to Financial Economics Theory and Application: 59-80,

SL Heston (1993). Closed form solution for options with stochastic volatility with application to bonds and currency options.
Rev Financ Stud 6: 327-343.

J Huang, M Subrahmanyam and Yu G (1996). Pricing and Hedging American Options: A Recursive Integration Method. Review
of Financial Studies 9: 277-300.

S Ikonen and ] Toivanen (2007). Effcient numerical methods for pricing American options under stochastic volatility. Numerical
Methods for Partial Differential Equations 24: 104-126.

MAM Ghandehari and M Ranjbar (2014). European Option Pricing of Fractional Version of the Black-Scholes Model: Approach
Via Expansion in Series. International Journal of Nonlinear Science 17(2) : 105-110.

MAM Ghandehari and M Ranjbar (2014). European Option Pricing of Fractional Black-Scholes Model with new Lagrange
multipliers. Computatinal Methods for Differential Equations 2(1) : 1-10.

IJ Kim (1990). The Analytical Valuation of American Options. Review of Financial Studies 3 : 547-572.

I Karatzas (1988). On the pricing of American options. Applied Math. Optimization 17 : 37-60.

M Kharrat (2018). Closed-Form Solution of European Option under Fractional Heston Model. Nonlinear Dynamics and Systems
Theory 18(2) : 191-195.

S Kumar, A Yildirim, Y Khan, H Jafari, K Sayevand and L Wei (2012). Analytical Solution of Fractional Black-Scholes European
Option Pricing Equation by Using Laplace Transform. Journal of Fractional Calculus and Applications 2(8) : 1-9.



[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

M. Kharrat / Filomat 35:10 (2021), 3433-3441 3441

M Kharrat (2019). Pricing American Put Options under Stochastic Volatility using the Malliavin Derivative. Revista De La Union
Matematica Argentina 60: 137-147.

FA Longstaff and ES Schwartz (2001). Valuing American options by simulations: a simple least squares approach. The Review of
Financial Studies 14 : 113-148.

I Podlubny. Fractional Differential Equations Calculus, Academic, Press, New York 1999.

L Rogers (2002). Monte Carlo valuation of American options. Mathematical Finance 12: 271-286.

LA Turki and Lapeyre B (2012). American Options by Malliavin Calculus and Nonparametric Variance and Bias Reduction
Methods. SIAM ] FINANCIAL MATH 3: 479-510.

Y Xiaozhong, W LifeiEmail, S Shuzhen and Z Xue (2016). A universal difference method for time-space fractional Black-Scholes
equation. Advances in Difference Equations 71.

JM Yu, YW Luo, SB Zhou and XR Lin (2011). Existence and Uniqueness for Nonlinear Multi-variables Fractional Differential
Equations. Nonlinear Dynamics and Systems Theory 2 : 213-221.

H Zhang, F Liub, I Turner and Q Yang (2016). Numerical solution of the time fractional Black-Scholes model governing European
options. Computers and Mathematics with Applications 71 (9).

Z Zhou and X Gao (2016). Numerical Methods for Pricing American Options with Time-Fractional PDE Models. Mathematical
Problems in Engineering 2: 1-8.



