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Abstract. As topology-like mathematical structures, convex structures can be characterized by between-
ness relations via (restricted) hull operators in convex spaces. In a topological approach, the aim of this
paper is to present the fuzzy counterpart of betweenness relations based on fuzzy points in fuzzy convex
spaces. Concretely, the notion of L-betweenness relations via restricted L-hull operators is introduced.
Firstly, it is proved that L-betweenness relations are categorically isomorphic to restricted L-hull operators
and L-remotehood systems, respectively. Secondly, it is shown that L-betweenness relations from two
perspectives of restricted L-hull operators and L-remotehood systems are unified. Finally, a new type of
restricted L-hull operators in accordance with L-betweenness relations is proposed and the relationship
between two types of restricted L-hull operators is displayed.

1. Introduction

Convexity, which is intriguing the extremum problems in area of applied mathematics, has been showing
its great importance. In 1993, M. van de Vel collected the theory of convexity systematically in his famous
book [19]. A convex structure on a set X is defined to be a subset E of 2X which contains both the empty set
∅ and X itself and which is closed under arbitrary intersections and directed unions. A convex structure can
be completely determined by its hull operator or even by its effect on finite sets (restricted hull operator). In
fact, a point which is in the hull of a finite set can be regarded as being between this set. That is, restricted
hull operators and betweenness relations can be determined by each other.

With the development of fuzzy set theory, the notion of convex structures has been extended to the
fuzzy case. Up to now, there have been three typical kinds of fuzzy convex structures, including L-convex
structures [5, 13], M-fuzzifying convex structures [17] and (L,M)-fuzzy convex structures [4, 18]. Many
researchers studied fuzzy convex structures from different aspects, such as fuzzy hull operators [6, 10, 16],
fuzzy (fuzzifying) interval operators [20, 22, 33, 34], categorical properties [9, 23, 26, 31], convergence
properties [7, 30], bases and subbases [8, 11, 32], degree presentations [3, 24, 29], topological convexity
[21, 28] and geometric properties [25, 27]. In particular, Shi and Li [16] extended the concept of restricted
hull operators to the M-fuzzifying case, namely, restricted M-fuzzifying hull operators, to characterize
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M-fuzzifying convex structures. More recently, Shen and Shi [15] proposed the concept of restricted L-hull
operators to characterize L-convex structures from a categorical aspect.

Considering the fuzzy counterpart of betweenness relations, Shi and Li [16] first introduced the notion
of M-fuzzifying betweenness relations to describe the fuzzy relations between classical points and finite
subsets and then investigated its categorical relationship with restricted M-fuzzifying hull operators. By
this motivation, we will consider fuzzy betweenness relations in the framework of L-convex spaces. In this
situation, we will introduce fuzzy points based betweenness relations to describe the relations between
fuzzy points and fuzzy finite L-subsets, which will be called L-betweenness relations in this paper. Also,
we will induce L-betweenness relations by means of restricted L-hull operators. Moreover, we will induce
L-betweenness relations from the aspect of L-remotehood systems, which can be used to characterize L-
convex structures. Finally, we will discuss the unities of L-betweenness relations induced by restricted
L-hull operators and L-remotehood systems.

The paper is organized as follows. In Section 2, we recall some necessary concepts and results. In
Sections 3 and 4, we first propose the concept of L-betweenness relations and then establish its categorical
relationship with restricted L-hull operators and L-remotehood systems, respectively. In Section 5, we prove
that both of the approaches of restricted L-hull operators and L-remotehood systems to L-betweenness
relations are unified. Correspondingly, a new type of restricted L-hull operators is proposed and the
relationship between the two types of restricted L-hull operators is displayed.

2. Preliminaries

Let L be a complete lattice. The largest element and the smallest element in L are denoted by > and ⊥,
respectively. A nonempty subset D ⊆ L is called directed (in symbols D⊆dir L) if for each a, b ∈ D, there
exists c ∈ D such that a, b 6 c. In particular, we use the notation x =

∨
↑D to express that the set D is directed

and x is its least upper bound. For x, y ∈ L, x is way below y (in symbols x� y) if for any D⊆dir L such that∨
↑D exists, y 6

∨
↑D always implies the existence of some d ∈ D with x 6 d. A complete lattice L is called

continuous if it satisfies the axiom of approximation: (∀x ∈ L) x =
∨
↑
⇓ x, where ⇓ x = {u ∈ L | u� x} (See

[2]).
Throughout this article, L is always assumed to be a continuous lattice.
For a nonempty set X, we write 2X and 2(X) for the powerset of X and for the collection of all finite

subsets of X, respectively. Each mapping A : X −→ L is called an L-subset on X, and the collection of
all L-subsets is denoted by LX. LX is also a continuous lattice by defining 6 on LX in a pointwise way.
The way below relation on LX is also denoted by �, if no confusion will rise. Further, for each A ∈ LX,
⇓ A = {F ∈ LX

| F � A} is directed and A =
∨
↑
⇓ A. The largest element and the smallest element in LX

are denoted by > and ⊥, respectively. We call an L-subset A on X finite if its support set {x ∈ X | A(x) , ⊥}
is finite. Let L(X) denote the collection of all finite L-subsets on X. The set of all fuzzy points xλ (i.e., an
L-subset A ∈ LX such that A(x) = λ , ⊥ and A(y) = ⊥ for y , x) is denoted by J(LX).

Given a mapping f : X −→ Y, define f→L : LX
−→ LY and f←L : LY

−→ LX by f→L (A)(y) =
∨

f (x)=y A(x) for
A ∈ LX and y ∈ Y, and f←L (B) = B ◦ f for B ∈ LY, respectively.

We give some useful properties of the way below relation� between L-subsets on X (refer to [15]).

Proposition 2.1. The following statements hold for any A,B ∈ LX and any {Di | i ∈ I} ⊆dir LX:

(1) if A 6 B, then ⇓ A ⊆⇓ B;
(2) ⇓

∨
↑

i∈I Di =
⋃

i∈I ⇓ Di.

Proposition 2.2. Let f : X −→ Y be a mapping and let A ∈ LX.

(L1) F� A implies f→L (F)� f→L (A);
(L2) F� f←L (H) if and only if f→L (F)� H.

Next, we recall briefly some basic definitions and results on L-convex spaces.
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Definition 2.3. (Maruyama [5] and Rose [13]) A subset C of LX is called an L-convex structure on X if it
satisfies the following conditions:

(LC1) ⊥,> ∈ C;
(LC2) if {Ci | i ∈ I} ⊆ C is nonempty, then

∧
i∈I Ci ∈ C;

(LC3) if {C j | j ∈ J} ⊆dir
C, then

∨
↑

j∈J C j ∈ C.

For an L-convex structure C on X, the pair (X,C) is called an L-convex space.

Definition 2.4. (Pang and Shi [9]) A mapping f : (X,CX) −→ (Y,CY) between L-convex spaces is called
L-convexity-preserving (L-CP, in short) provided that for any B ∈ CY, f←L (B) ∈ CX.

The category whose objects are L-convex spaces and whose morphisms are L-CP mappings will be
denoted by L-CS.

Definition 2.5. (Shen and Shi [15]) A mapping h : L(X)
−→ LX is called a restricted L-hull operator on X if it

satisfies the following conditions:

(LRH1) h(⊥) = ⊥;
(LRH2) for any F ∈ L(X), F 6 h(F);
(LRH3) for any F ∈ L(X), G� h(F) implies h(G) 6 h(F);
(LRH4) for any F ∈ L(X), h(F) =

∨
↑

G�F h(G).

For a restricted L-hull operator on X, the pair (X, h) is called a restricted L-hull space.

Definition 2.6. (Shen and Shi [15]) A mapping f : (X, hX) −→ (Y, hY) between restricted L-hull spaces is
called L-hull-preserving (L-HP, in short) if for any F ∈ L(X), f→L (hX(F)) 6 hY( f→L (F)).

The category whose objects are restricted L-hull spaces and whose morphisms are L-HP mappings will
be denoted by L-RHS.

For notions on category theory, we refer to [1, 12].

3. L-Betweenness Relations from Restricted L-Hull Operators

In the classical case, a betweenness relation is a subset B ⊆ 2(X)
× X and a restricted hull operator is a

mapping h : 2(X)
−→ 2X which satisfies certain axiomatic conditions, respectively. Further, a restricted hull

operator h can induce a betweenness relation Bh in a natural way [19]:

(F, x) ∈ Bh
⇐⇒ x ∈ h(F).

In the theory of L-convex structures, we usually replace the points by fuzzy points and replace (finite)
subsets by (finite) L-subsets. This results in the definition of restricted L-hull operators h : L(X)

−→ LX in
[15]. By the above-mentioned analysis, what is the fuzzy counterpart of a betweenness relation induced by
a restricted L-hull operator? It should be a subset Bh ⊆ L(X)

× J(LX) and

(F, xλ) ∈ Bh ⇐⇒ “xλ ∈ h(F)”.

Here, xλ and h(F) are both L-subsets and thus there is no belonging relation between them. In order to deal
with “xλ ∈ h(F)”, we usually adopt “xλ 6 h(F)”. Hence we obtain

(F, xλ) ∈ Bh ⇐⇒ xλ 6 h(F).

However, what kind of conditions shouldBh satisfy? To this end, we first present the following proposition.



H.Yang, B.Pang / Filomat 35:10 (2021), 3521–3532 3524

Proposition 3.1. Let (X, h) be a restricted L-hull space and define Bh ⊆ L(X)
× J(LX) as follows:

Bh = {(F, xλ) ∈ L(X)
× J(LX) | xλ 6 h(F)}.

Then Bh satisfies the following conditions:

(LB1) (⊥, xλ) < Bh;
(LB2) ∀xλ 6 F, (F, xλ) ∈ Bh;
(LB3) if (G, xλ) ∈ Bh and (F, yµ) ∈ Bh for all yµ 6 G, then (F, xλ) ∈ Bh;
(LB4) (F, xλ) ∈ Bh if and only if ∀µ� λ,∃G� F s.t. (G, xµ) ∈ Bh;
(LB5) (F, x∨i∈Iλi ) ∈ B

h if and only if ∀i ∈ I, (F, xλi ) ∈ B
h.

Proof. (LB1) and (LB2) are straightforward.
(LB3) Suppose that (G, xλ) ∈ Bh and (F, yµ) ∈ Bh for all yµ 6 G. Then xλ 6 h(G) and yµ 6 h(F) for all

yµ 6 G. This implies G 6 h(F). Then

xλ 6 h(G) =
∨
↑

H�G h(H) (by (LRH4))
6
∨
↑

H�h(F) h(H)
6 h(F), (by (LRH3))

which means (F, xλ) ∈ Bh.
(LB4) By (LRH4), it follows that

(F, xλ) ∈ Bh ⇐⇒ xλ 6 h(F) =
∨
↑

G�F h(G)
⇐⇒ ∀µ� λ,∃G� F s.t. xµ 6 h(G)
⇐⇒ ∀µ� λ,∃G� F s.t. (G, xµ) ∈ Bh.

(LB5) Suppose that F ∈ L(X) and {xλi | i ∈ I} ⊆ J(LX). Then we have

(F, x∨i∈Iλi ) ∈ B
h
⇐⇒ x∨i∈Iλi 6 h(F)
⇐⇒ ∀i ∈ I, xλi 6 h(F)
⇐⇒ ∀i ∈ I, (F, xλi ) ∈ B

h.

This completes the proof.

By means of (LB1)–(LB5), we will introduce the fuzzy counterpart of betweenness relations, which will
be called L-betweenness relations. Now we give the axiomatic definition.

Definition 3.2. An L-betweenness relation on X is a subsetB ⊆ L(X)
× J(LX) which satisfies (LB1)–(LB5). For

an L-betweenness relation B on X, the pair (X,B) is called an L-betweenness space.

Next, we give some examples of L-betweenness relations on X.

Example 3.3. (1) Let X be any nonempty set. Define B = {(F, xλ) ∈ L(X)
× J(LX) | xλ 6 F}. It is trivial that B

is an L-betweenness relation on X.
(2) Let X be a poset. Define B = {(F, xλ) ∈ L(X)

× J(LX) | λ 6
∨

(F(x1) ∧ F(x2)), x1, x2 ∈ X, x1 6 x 6 x2}. Then
B is an L-betweenness relation on X.

(3) Let X be a vector space over a totally ordered filed K. Define B = {(F, xλ) ∈ L(X)
× J(LX) | λ 6∨

(F(x1) ∧ · · · ∧ F(xn)), xi ∈ X, x =
∑n

i=1 tixi,
∑n

i=1 ti = 1,n ∈ Z+, ti ∈ K, ti > 0 (i = 1, 2, · · · n)}. Then B is an
L-betweenness relation on X.

In order to construct the category of L-betweenness spaces, we further introduce the following definition.
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Definition 3.4. A mapping f : (X,BX) −→ (Y,BY) between L-betweenness spaces is called L-betweenness-
preserving (L-BP, in short) provided that

∀F ∈ L(X),∀xλ ∈ J(LX), (F, xλ) ∈ BX implies ( f→L (F), f (x)λ) ∈ BY.

It is easy to check that all L-betweenness spaces as objects and all L-BP mappings as morphisms form a
category, denoted by L-Bet.

Considering L-HP mappings between restricted L-hull spaces, we have

Proposition 3.5. If f : (X, hX) −→ (Y, hY) is L-HP, then f : (X,BhX ) −→ (Y,BhY ) is L-BP.

Proof. Since f : (X, hX) −→ (Y, hY) is L-HP, it follows that hX(F) 6 f←L (hY( f→L (F))) for any F ∈ L(X). Then for
each xλ ∈ J(LX), we have

(F, xλ) ∈ BhX ⇐⇒ xλ 6 hX(F)
=⇒ xλ 6 f←L (hY( f→L (F))
⇐⇒ f (x)λ 6 hY( f→L (F))
⇐⇒ ( f→L (F), f (x)λ) ∈ BhY ,

as desired.

By Propositions 3.1 and 3.5, we construct a functor F : L-RHS−→L-Bet defined by

F(X, h) = (X,Bh) and F( f ) = f .

Conversely, we will construct restricted L-hull operators via L-betweenness relations.
Given an L-betweenness relation B on X, define hB : L(X)

−→ LX as follows:

∀F ∈ L(X), hB(F) =
∨
{xλ ∈ J(LX) | (F, xλ) ∈ B}.

In order to show that hB is a restricted L-hull operator, we first give the following lemma.

Lemma 3.6. Let (X,B) be an L-betweenness space. Then:

(1) µ 6 λ and (F, xλ) ∈ B imply (F, xµ) ∈ B;
(2) xλ 6 hB(F) if and only if (F, xλ) ∈ B.

Proof. (1) It follows immediately from (LB5).
(2) It suffices to show the necessity. Suppose that xλ 6 hB(F), i.e.,

λ 6 hB(F)(x) =
∨
{µ ∈ L | (F, xµ) ∈ B}.

Denote U = {µ ∈ L | (F, xµ) ∈ B}. By (LB5), we have (F, x∨U) ∈ B. Since λ 6
∨

U, it follows from (1) that
(F, xλ) ∈ B.

Proposition 3.7. Let (X,B) be an L-betweenness space. Then hB is a restricted L-hull operator on X.

Proof. It suffices to show that hB satisfies (LRH1)–(LRH4).
(LRH1) hB(⊥) =

∨
{xλ ∈ J(LX) | (⊥, xλ) ∈ B} =

∨
∅ = ⊥.

(LRH2) For each F ∈ L(X), take each xλ ∈ J(LX) with xλ 6 F. By (LB2), we have (F, xλ) ∈ B. Then it follows
from Lemma 3.6 (2) that xλ 6 hB(F). By the arbitrariness of xλ, we have F 6 hB(F).

(LRH3) Suppose that F,G ∈ L(X) with G � hB(F). Take each xλ ∈ J(LX) such that xλ 6 hB(G). By Lemma
3.6 (2), we have (G, xλ) ∈ B. Then for each yµ ∈ J(LX) such that yµ 6 G, it follows that yµ 6 hB(F) i.e.,
(F, yµ) ∈ B. This shows (F, yµ) ∈ B for all yµ 6 G. By (LB3), we obtain (F, xλ) ∈ B, i.e., xλ 6 hB(F). By the
arbitrariness of xλ, we have hB(G) 6 hB(F).
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(LRH4) Take each F ∈ L(X) and xλ ∈ J(LX). It follows from Lemma 3.6 (2) and (LB4) that

xλ 6 hB(F) ⇐⇒ (F, xλ) ∈ B
⇐⇒ ∀µ� λ,∃G� F s.t. (G, xµ) ∈ B
⇐⇒ ∀µ� λ,∃G� F s.t. xµ 6 hB(G)
⇐⇒ xλ 6

∨
↑

G�F h
B(G).

Therefore, hB(F) =
∨
↑

G�F h
B(G).

Proposition 3.8. If f : (X,BX) −→ (Y,BY) is L-BP, then f : (X, hBX ) −→ (Y, hBY ) is L-HP.

Proof. Since f : (X,BX) −→ (Y,BY) is L-BP, it follows that (F, xλ) ∈ BX implies ( f→L (F), f (x)λ) ∈ BY. Then, for
any F ∈ L(X), we have

f→L (hBX (F)) = f→L (
∨
{xλ ∈ J(LX) | (F, xλ) ∈ BX})

=
∨
{ f (x)λ ∈ J(LY) | (F, xλ) ∈ BX}

6
∨
{ f (x)λ ∈ J(LY) | ( f→L (F), f (x)λ) ∈ BY}

6
∨
{yµ ∈ J(LY) | ( f→L (F), yµ) ∈ BY}

= hBY ( f→L (F)),

as desired.

By Propositions 3.7 and 3.8, we construct a functor G : L-Bet−→L-RHS defined by

G(X,B) = (X, hB) and G( f ) = f .

Theorem 3.9. L-Bet and L-RHS are isomorphic.

Proof. It suffices to verify that (1) hB
h

= h and (2) Bh
B

= B for any restricted L-hull space (X, h) and any
L-betweenness space (X,B).

(1) For any F ∈ L(X), we have

hB
h

(F) =
∨
{xλ ∈ J(LX) | (F, xλ) ∈ Bh} =

∨
{xλ ∈ J(LX) | xλ 6 h(F)} = h(F).

(2) For any F ∈ L(X) and xλ ∈ J(LX), we have

(F, xλ) ∈ Bh
B

⇐⇒ xλ 6 hB(F)
⇐⇒ (F, xλ) ∈ B, (by Lemma 3.6 (2))

as desired.

4. L-Betweenness Relations from L-Remotehood Systems

In [34], Yang and Li introduced the concept of L-remotehood systems, which can be used to characterize
L-convex structures. In this section, we will study L-betweenness relations from the perspective of L-
remotehood systems. Firstly, let us recall the definition of L-remotehood systems.

Definition 4.1. (Yang and Li [34]) An L-remotehood system on X is a set R = {Rxλ | xλ ∈ J(LX)}, where
Rxλ ⊆ LX satisfies the following conditions:

(LR1) ⊥ ∈ Rxλ ;
(LR2) ∀A ∈ Rxλ , xλ 
 A;
(LR3) ∀A ∈ LX,A ∈ Rxλ if and only if ∃B ∈ LX s.t. xλ 
 B > A and ∀yµ 
 B,B ∈ Ryµ ;

(LR4) ∀{A j} j∈J ⊆
dir LX,

∨
↑

j∈J A j ∈ Rxλ if and only if ∃µ� λ such that A j ∈ Rxµ for each j ∈ J.
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For an L-remotehood system R on X, the pair (X,R) is called an L-remotehood space and Rxλ is called an
L-remotehood of xλ.

Proposition 4.2. (Yang and Li [34]) Let (X,R) be an L-remotehood space. If A ∈ Rxλ and B 6 A, then B ∈ Rxλ .

Definition 4.3. A mapping f : (X,RX) −→ (Y,RY) between L-remotehood spaces is called L-CP provided
that

∀B ∈ LY, xλ ∈ J(LX), B ∈ RY
f (x)λ

implies f←L (B) ∈ RX
xλ .

It is easy to check that all L-remotehood spaces as objects and all L-CP mappings as morphisms form a
category, denoted by L-REH.

In [34], Yang and Li provided the transformation formulas between L-convex space (X,C) and L-
remotehood space (X,R) as follows:

R 7−→ C
R = {A ∈ LX

| ∀xλ 
 A, A ∈ Rxλ };

C 7−→ R
C = {RCxλ | xλ ∈ J(LX)},

where RCxλ = {A ∈ LX
| ∃B ∈ C s.t. xλ 
 B > A}. Moreover, CR

C

= C and RC
R

= R (i.e., RC
R

xλ = Rxλ for all
xλ ∈ J(LX)).

Now, let us show the relationships between L-REH and L-CS.

Proposition 4.4. (1) If f : (X,CX) −→ (Y,CY) is L-CP, then so is f : (X,RCX ) −→ (Y,RCY ).
(2) If (X,RX) −→ (Y,RY) is L-CP, then so is f : (X,CRX

) −→ (Y,CRY
).

Proof. (1) Since f : (X,CX) −→ (Y,CY) is L-CP, it follows that f←L (C) ∈ CX for every C ∈ CY. Then for each
xλ ∈ J(LX) and B ∈ LY, we have

B ∈ RCY
f (x)λ

⇐⇒ ∃C ∈ CY s.t. f (x)λ 
 C > B
=⇒ ∃ f←L (C) ∈ CX s.t. xλ 
 f←L (C) > f←L (B)
⇐⇒ f←L (B) ∈ RCX

xλ .

(2) Since (X,RX) −→ (Y,RY) is L-CP, it follows that B ∈ RY
f (x)λ

implies f←L (B) ∈ RX
xλ for any xλ ∈ J(LX) and

B ∈ LY. Then we have
B ∈ CRY

⇐⇒ ∀yµ 
 B,B ∈ RY
yµ

=⇒ ∀ f (x)λ 
 B,B ∈ RY
f (x)λ

=⇒ ∀xλ 
 f←L (B), f←L (B) ∈ RX
xλ

⇐⇒ f←L (B) ∈ CR
X
.

This completes the proof.

Proposition 4.5. (Yang and Li [34]) L-remotehood systems and L-convex structures are one-to-one corresponding.

By Propositions 4.4 and 4.5, we have

Theorem 4.6. L-REH and L-CS are isomorphic.

Next, we will induce L-betweenness relations via L-remotehood systems.

Proposition 4.7. Let (X,R) be an L-remotehood space and define BR ⊆ L(X)
× J(LX) as follows:

BR = {(F, xλ) ∈ L(X)
× J(LX) | F < Rxλ }.

Then BR is an L-betweenness relation on X.
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Proof. It suffices to show that BR satisfies (LB1)–(LB5).
(LB1) and (LB2) follow immediately from (LR1) and (LR2).
(LB3) Suppose that (G, xλ) ∈ BR and (F, yµ) ∈ BR for any yµ 6 G, i.e., G < Rxλ and F < Ryµ for all yµ 6 G.

Then F < Rxλ . Otherwise, F ∈ Rxλ . By (LR3), there exists A ∈ LX such that xλ 
 A > F and A ∈ Rzν for each
zν 
 A. Let B =

∨
{zν ∈ J(LX) | F < Rzν } and C =

∨
{zν ∈ J(LX) | A < Rzν }. Then G 6 B 6 C 6 A. Since G < Rxλ ,

it follows from Proposition 4.2 that A < Rxλ . This implies xλ 6 A, which is a contradiction.
(LB4) Take each F ∈ L(X) and xλ ∈ J(LX). Then

(F, xλ) ∈ BR ⇐⇒ F < Rxλ
⇐⇒

∨
↑

G�F G < Rxλ
⇐⇒ ∀µ� λ,∃G� F s.t. G < Rxµ (by (LR4))
⇐⇒ ∀µ� λ,∃G� F s.t. (G, xµ) ∈ BR.

(LB5) Take each F ∈ L(X) and {xλi | i ∈ I} ⊆ J(LX). Then

(F, x∨i∈Iλi ) < B
R

⇐⇒ F ∈ Rx∨i∈Iλi

⇐⇒ ∃A ∈ LX s.t. x∨i∈Iλi 
 A > F and ∀yµ 
 A,A ∈ Ryµ (by (LR3))
⇐⇒ ∃A ∈ LX,∃i0 ∈ I, xλi0


 A > F and ∀yµ 
 A,A ∈ Ryµ
⇐⇒ ∃i0 ∈ I,F ∈ Rxλi0

(by (LR4))
⇐⇒ ∃i0 ∈ I, (F, xλi0

) < BR.

This implies
(F, x∨i∈Iλi ) ∈ B

R
⇐⇒ ∀i ∈ I, (F, xλi0

) ∈ BR.

As a consequence, we obtain that BR is an L-betweenness relation on X.

Proposition 4.8. If f : (X,RX) −→ (Y,RY) is L-CP, then f : (X,BRX
) −→ (Y,BRY

) is L-BP.

Proof. Since f : (X,RX) −→ (Y,RY) is L-CP, it follows that

∀B ∈ LY, ∀xλ ∈ J(LX), B ∈ RY
f (x)λ

implies f←L (B) ∈ RX
xλ .

Now take each F ∈ L(X) such that (F, xλ) ∈ BR
X
, i.e., F < RX

xλ . By Proposition 4.2, it follows that f←L ( f→L (F)) <
R

X
xλ . This implies f→L (F) < RY

f (x)λ
, whence ( f→L (F), f (x)λ) ∈ BR

Y
.

By Propositions 4.7 and 4.8, we obtain a functor H : L-REH−→L-Bet defined by

H(X,R) = (X,BR) and H( f ) = f .

Conversely, we induce L-remotehood systems via L-betweenness relations. For this purpose, we first
give the following lemmas.

Lemma 4.9. Let (X,B) be an L-betweenness space and define CB ⊆ LX as follows:

C
B = {C ∈ LX

| ∀F� C, ∀xλ ∈ J(LX), (F, xλ) ∈ B implies xλ 6 C}.

Then CB is an L-convex structure on X.

Proof. It suffices to verify that CB satisfies (LC1)–(LC3).
(LC1) It is trivial.
(LC2) Suppose {Ci | i ∈ I} ⊆ CB. If F �

∧
i∈I Ci, then it follows that F � Ci for all i ∈ I. Since

{Ci | i ∈ I} ⊆ CB, we have (F, xλ) ∈ B implies xλ 6 Ci for all i ∈ I. That is, (F, xλ) ∈ B implies xλ 6
∧

i∈I Ci.
Hence

∧
i∈I Ci ∈ C

B.
(LC3) Suppose {C j | j ∈ J} ⊆dir

C
B. If F �

∨
↑

j∈J C j, then there exists k ∈ J such that F � Ck. Note that

Ck ∈ C
B, we have (F, xλ) ∈ B implies xλ 6 Ck 6

∨
↑

j∈J C j. This shows
∨
↑

j∈J C j ∈ C
B.
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Lemma 4.10. If f : (X,BX) −→ (Y,BY) is L-BP, then f : (X,CBX ) −→ (Y,CBY ) is L-CP.

Proof. Since f : (X,BX) −→ (Y,BY) is L-BP, it follows that for each F ∈ L(X) and xλ ∈ J(LX), (F, xλ) ∈ BX
implies ( f→L (F), f (x)λ) ∈ BY. Then for each B ∈ CBY , we have

F� f←L (B) and (F, xλ) ∈ BX
=⇒ f→L (F)� B and ( f→L (F), f (x)λ) ∈ BY
=⇒ f (x)λ 6 B
⇐⇒ xλ 6 f←L (B).

This means that for each F� f←L (B), (F, xλ) ∈ BX implies xλ 6 f←L (B). Thus we obtain f←L (B) ∈ CBX .

Now, we show how to generate an L-remotehood system via an L-betweenness relation.

Proposition 4.11. Let (X,B) be an L-betweenness space and define RB = {RBxλ | xλ ∈ J(LX)} as follows:

∀xλ ∈ J(LX), RBxλ = RC
B

xλ .

Then RB is an L-remotehood system on X.

Proof. By Lemma 4.9, it is straightforward.

Proposition 4.12. If f : (X,BX) −→ (Y,BY) is L-BP, then f : (X,RBX ) −→ (Y,RBY ) is L-CP.

Proof. Since f : (X,BX) −→ (Y,BY) is L-BP, it follows that for each F ∈ L(X) and xλ ∈ J(LX), (F, xλ) ∈
BX implies ( f→L (F), f (x)λ) ∈ BY. Then for each B ∈ LY and xλ ∈ J(LX), we have

B ∈ RBY
f (x)λ

= RC
BY

f (x)λ
⇐⇒ ∃C ∈ CBY s.t. f (x)λ 
 C > B
=⇒ ∃C ∈ CBY s.t. xλ 
 f←L (C) > f←L (B)
=⇒ ∃ f←L (C) ∈ CBX s.t. xλ 
 f←L (C) > f←L (B) (by L−CP)
=⇒ f←L (B) ∈ RC

BX
xλ = RBX

xλ .

This shows that B ∈ RBY
f (x)λ

implies f←L (B) ∈ RBX
xλ , as desired.

By Propositions 4.11 and 4.12, we obtain a functor K : L-Bet−→L-REH defined by

K(X,B) = (X,RB) and K( f ) = f .

Theorem 4.13. L-Bet and L-REH are isomorphic.

Proof. It suffices to verify (1) RB
R

= R and (2) BR
B

= B for any L-betweenness space (X,B) and any
L-remotehood space (X,R).

For (1), we first show CB
R

= CR. Take each B ∈ CBR . Then for each F � B, (F, zν) ∈ BR implies zν 6 B.
In order to show B ∈ CR, take each yµ ∈ J(LX) such that yµ 
 B. Then there exists ν � µ such that yν 
 B.
Thus, for each F� B, it follows that yν 
 B. This implies (F, yν) < BR. That is, F ∈ Ryν . Then we obtain that
there exists ν � µ such that F ∈ Ryν for all F � B. By (LR4), we have B =

∨
↑

F�B F ∈ Ryµ . Thus, B ∈ Ryµ for
all yµ 
 B, whence B ∈ CR. By the arbitrariness of B, we have CB

R

⊆ C
R.

Conversely, take each B ∈ CR. Then for each F � B and yµ 
 B, it follows that F � B and B ∈ Ryµ . By
Proposition 4.2, we have F ∈ Ryµ , i.e., (F, yµ) < BR. This shows that for each F � B, (F, yµ) ∈ BR implies
yµ 6 B. That is, B ∈ CBR . Hence, CR ⊆ CB

R

.
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Now we show RB
R

= R. Take each xλ ∈ J(LX). Then

R
BR

xλ = RC
BR

xλ = RC
R

xλ = Rxλ ,

which implies RB
R

= R.
For (2), we first show B ⊆ BR

B

. Take each F ∈ L(X) and xλ ∈ J(LX) such that (F, xλ) < BR
B

. It follows
that F ∈ RBxλ = RC

B

xλ . Then there exists A ∈ LX such that xλ 
 A > F and for each G � A, (G, yµ) ∈ B implies
yµ 6 A. Since xλ 
 A > F, there exists µ� λ such that xµ 
 A > F. This implies that there exists µ� λ and
for each G� F, (G, xµ) < B. By (LB4), we have (F, xλ) < B. Hence B ⊆ BR

B

.
Conversely, take each F ∈ L(X) and xλ ∈ J(LX) such that (F, xλ) < B. Let A =

∨
{zν ∈ J(LX) | (F, zν) ∈ B}.

By (LB2), we have zν 6 F implies (F, zν) ∈ B. This means F 6 A. Further, xλ 
 A. Otherwise, λ 6 A(x) =∨
{µ ∈ L | (F, xµ) ∈ B}. Denote U = {ν ∈ L | (F, xν) ∈ B}. Then it follows from (LB5) that (F, x∨U) ∈ B. By

Lemma 3.6 (1), we have (F, xλ) ∈ B, which is a contradiction. This shows xλ 
 A. Then we show A ∈ CB.
For each G� A and (G, yµ) ∈ B, take each zν 6 G. Then ν 6 G(z) 6 A(z) =

∨
{ω ∈ L | (F, zω) ∈ B}. It follows

that (F, zν) ∈ B. This shows that zν 6 G implies (F, zν) ∈ B. Since (G, yµ) ∈ B, it follows from (LB3) that
(F, yµ) ∈ B. By the construction of A, we have yµ 6 A. Thus, for each G � A, (G, yµ) ∈ B implies yµ 6 A.
This shows that A ∈ CB. Now we have shown that A ∈ CB and xλ 
 A > F, which means F ∈ RC

B

xλ = RBxλ ,
i.e., (F, xλ) < BR

B

. By the arbitrariness of (F, xλ), we have BR
B

⊆ B.
As a consequence, we obtain BR

B

= B.

5. Unities of L-Betweenness Relations from two Perspectives

In this section, we will study the relationship between L-betweenness relations from two perspectives.
Moreover, we will propose a new type of restricted L-hull operators from the aspect of L-betweenness
relations.

Given an L-convex structure, we can construct L-betweenness relation via its restricted L-hull operator
and L-remotehood system, respectively. We will show L-betweenness relations induced by these two
perspectives are unified.

Theorem 5.1. Let (X,C) be an L-convex space. Then BhC = BR
C

.

Proof. Take each F ∈ L(X) and xλ ∈ J(LX). Then

(F, xλ) < Bh
C

⇐⇒ xλ 
 hC(F) =
∧
{A ∈ C | F 6 A}

⇐⇒ ∃A ∈ C s.t. xλ 
 A > F
⇐⇒ F ∈ RCxλ
⇐⇒ (F, xλ) < BR

C

.

This shows Bh
C

= BR
C

.

As mentioned at the beginning of Section 3, there exists a natural way to induce a betweenness relation
by a restricted hull operator, and vice versa. That is,

(F, x) ∈ B ⇐⇒ x ∈ h(F).

In the fuzzy case, it should be
(F, xλ) ∈ B⇐⇒ “xλ ∈ h(F)”.

But the restricted L-hull operator h is a mapping from L(X) to LX. This means that h(F) is an L-subset of
X. As we all know, xλ is also an L-subset of X. So there is no “ ∈ ” relation between xλ and h(F). Then
we characterize “xλ ∈ h(F)” by “xλ 6 h(F)” and fortunately, L-betweenness relations and restricted L-hull
operators are coincident by means of this transformation formula. However, there is still a question:
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Is there a kind of restricted L-hull operator h which can characterize “xλ ∈ h(F)”?
In order to answer this question, we propose a new type of restricted L-hull operators which can be

connected with L-betweenness relations in a natural way.
For convenience, we denote ↓ F = {xλ ∈ J(LX) | xλ 6 F} for any F ∈ L(X) and P(J(LX)) for the powerset of

J(LX). Then we propose a new type of restricted L-hull operators.

Definition 5.2. A restricted L-hull operator on X is a mapping h : L(X)
−→ P(J(LX)) which satisfies:

(LRH1) h(⊥) = ∅;
(LRH2) ↓ F ⊆ h(F);
(LRH3) ↓ G ⊆ h(F) implies h(G) ⊆ h(F);
(LRH4) xλ ∈ h(F) if and only if ∀µ� λ, xµ ∈

⋃
G�F h(G);

(LRH5) x∨
i∈I λi ∈ h(F) if and only if ∀i ∈ I, xλi ∈ h(F).

For a restricted L-hull operator h on X, the pair (X,h) is called a restricted L-hull space.

Definition 5.3. A mapping f : (X,hX) −→ (Y,hY) between restricted L-hull spaces is called L-hull-preserving
provided that

∀F ∈ L(X),∀xλ ∈ J(LX), xλ ∈ h(F) implies f (x)λ ∈ hY( f→L (F)).

It is easy to check that all restricted L-hull spaces as objects and all L-hull-preserving mappings as
morphisms form a category, denoted by L-RHSS.

As mentioned in the motivation of this concept, we can show that this kind of restricted L-hull operators
and L-betweenness relations can be induced by each other in a natural way, which is presented as follows:

(F, xλ) ∈ B⇐⇒ xλ ∈ h(F).

Concretely, we can obtain the following result.

Theorem 5.4. L-RHSS and L-Bet are isomorphic.

Proof. It is straightforward and is omitted.

By Theorems 5.4 and 3.9, L-RHSS and L-RHS are isomorphic, in a theoretical sense. Here we only
provide the transformation formulas between these two kinds of restricted L-hull operators.

(X, h) 7−→ (X,hh) : hh(F) = {xλ ∈ J(LX) | xλ 6 h(F)}.

(X,h) 7−→ (X, hh) : hh(F) =
∨
{xλ ∈ J(LX) | xλ ∈ h(F)}.

6. Conclusions

In this paper, we proposed the definition of L-betweenness relations by means of restricted L-hull
operators, and showed its equivalence to restricted L-hull operators and L-remotehood systems, respec-
tively. Further, we proved that both of the approach of restricted L-hull operators and the approach of
L-remotehood systems to L-betweenness relations were unified. Finally, we gave a new type of restricted
L-hull operators and established the relationship between these two kinds of restricted L-hull operators.
As the future work, we will consider the following problems:
• As a generalization of L-convex structures and M-fuzzifying convex structures, the notion of (L,M)-

fuzzy convex structures was introduced in [18]. Also, some further research has been done to (L,M)-fuzzy
convex structures [6, 8, 26]. Thus, it will be interesting to consider fuzzy counterpart of betweenness
relations in the framework of (L,M)-fuzzy convex structures.
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• In the theory of convex structures, there is a result that convex systems are correspondent to partial
restricted hull operators, where the difference between convex systems and convex structures is that the
universal set does not need to be convex in convex systems (see [19], 2.21]). Shen and Shi [14] have already
given the definition of L-convex systems. This motivates us to consider how to generalize partial restricted
hull operators to fuzzy case and subsequently construct the relationship among L-betweenness relations,
L-convex systems and generalized fuzzy partial restricted hull operators.
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