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Abstract. In this paper we have constructed a non-interpolatory spline on the unit circle. The rate

of convergence and the error in approximation corresponding to the complex valued function has been
considered.

1. INTRODUCTION

Let K denote the unit circle |z| = 1 of the complex plane and let m and n be integers, m > 1,n > 2.
Furthermore, let A = {z1, 23, - -, z,} be a mesh of n distinct points of K arranged in cyclic counter-clockwise
order. A complex valued function 5,(z) defined on K is called a polynomial spline function of degree m —1,
if it satisfies the conditions:

1. $a(z) € C"%(K),

2. 55(z) agrees in values with a polynomial of degree at most m — 1, on each arc in which the points z;
divide the circle K.
If $1(z), 52(z) - - , Sn(z) denote the polynomial components of Sa(z) on the arcs K= {(zj, z j+1), ji=12,---,n}

respectively, where z,,1 = z;, then the condition (1) or more explicitly SA(€"%) € C"2(K), is equivalent to the
conditions:

S;V)(Zj+1) = S?‘?l(zj‘i'l)/ V= 0/ 1/2/' e, m _2’ ] = 1’2’. n

1)
where S,,11(z) = 51(2).

In 1971, the problem of complex spline interpolation was initiated by Schoenberg [10] and Ahlberg, Nil-
son and Walsh in a sequence of papers [1-3]. The solutions were completely different. A related problem
on the trigonometric spline interpolation was beautifully studied by Schoenberg [11], connecting the study
to the differential operators A,, = D(D* +1%) - - - (D? + m?), (D = d/dx). Micchelli [7] exploiting Schoenberg’s
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idea and using the cardinal L-splines related to the differential operator £ = []7_o(D - y;) with y; as real
numbers, gave a complete and systematic treatment to the interpolation problem. The works of Shevaldin
[14], [15], Subbotin and Chernykh [24] also deserve a mention.

Schoenberg [12] revisited Micchelli’s theory and extended it to the operator .# with imaginary y,’s.
Sharma and Tzimbalario [13] and Tzimbalario [25] further extended the study for cardinal splines related
to the operators A,, and £ = H?:o (D —i(j + £)n) for some 1 > 0 and ¢ real, respectively.

Kvasov [6], Subbotin [23] (with different conditions) and Shevaldin [17] (in a more general statement)
constructed local parabolic splines for functions defined on the axis or on the segment of the axis that
preserve linear functions with an arbitrary distinct setting of nodes with good approximative property
and their own local preservation of the sign, monotonicity and convexity of approximate functions [16].
Recently in a joint paper, Subbotin and Shevaldin [20] developed a general scheme of constructing such
structures, special cases of which are the splines of [17, 23]. These splines and their generalizations are
widely used in computational mathematics. In other papers, Kostosov and Shevaldin [5], Shevaldin [18]
and Strelkova [19] have extended the study to trigonometric, exponential and average interpolation splines
respectively. Article [23] gave rise to a whole series of works by Subbotin and Telyakovskii [21, 22] on
estimates of Lebesgue constants of interpolatory splines and trigonometric polynomials and Konovalov’s
diameters of differentiable classes of functions.

The aim of this paper is to construct a non - interpolatory complex parabolic spline Sx(z) on a unit
circle K, study its rate of convergence and error in approximation corresponding to an analytic function
f(z) € W2 = {f : max|f”(z)] < 1} on K.

2. CONSTRUCTION OF COMPLEX PARABOLIC SPLINE

We are interested to construct a non-interpolatory spline 55(z) for the subdivision A, on the unit circle K,
composed of complex quadratics §;(z) on the arc K; from z; to zj;1, where z; = exp (#) For this purpose,
we follow the scheme of works [17, 23]. Obviously,

2(j + D
n

Zjy1 = €Xp = exp (lh) Zj,

where i = 2%, Let f : C > C and y;j = f(z;). Associate operator A on the space of sequences {y;}, as

A(Yj-1) = Yjr1 — "+ Dy, + eihyj_l.
Forz € Kj, the spline Sj(z), can be represented in the form

$i(z) = C(()j) + C(lj) (z - zj) + Céj) (z - z]-)2 + ng) (z - Zf+%)i , 2)

where

{z —Zj1 , argz>argz;.

0 , argz < argz; i

and C(()j ), C(lj ), C;j ), C(3j ) are complex constants, given by

ih ih

G _ ez(e2 —1)A(yj-1)
CO] =y + 2@ 1) , 4)
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C(j) _ eih(yj+1 - ]/j—l)
1 (€2 — 1)z; !

W = A(yj—l)

(ezh _ 1)(62111 _ 1)Zj
and

O = A(y)) = Ayj-1)

ih

5 e (e — 1)(e2h — 1)2]2..

7)

Theorem 2.1. For z € K;, the spline 5;(z), satisfies the following properties:
1. 8i(zj+1) = Yjm1 + b A(y;), where
3 e2(e? —1)
- 2(e2h — 1) :
2. 5/(z) has a continuous derivative on K;, such that
e"(yjv1 — yj-1)
(eZih _ 1)21

3. Forargz < argz;,:

S;(Zj) =

2A(yj-1)
(e = 1)(e2" = 1)z3

S;-’(Zj) =

and for argz > argz;, 1

) 2% + DAY = 2Ay-1)

S] (Zj+1) = ih . . .

ez (el — 1)(e2h — 1)z]2.

Proof. 1. Letz € Kj, then putting z = z; in (2), we have

e (e? — DA(y;1)
2(e2ih — 1)

Si(z)) = Cy = yi+

and
Sj(zj+1)

Cg) + ng)(Zj+1 —-zj)+ C(zj)(zm - zj)2 + C;j)(zjﬂ - z].+%)i
= ng) + ng)(eih -1z + C(zj) (eih - 1)22]2. + C;j)eih(e% - 1)22?,
which due to (4), (5), (6) and (7) implies
et (e — DA()
2(e2ih — 1)
2. The continuity of S}(z) is obvious on K except at the points z; of the spline. On differentiating (2) w.r.t
z, we get

$(2) = CV +2CP (2 - 2)) + 2CP(z = 2j,1)- (8)

Sj(zj+1) =Yt

which on substituting z = zj,1, due to (5), (6) and (7), gives
§/(zj11)

Y +2C0 (" — 1)z + 20 e e ~ 1)z

e"(yjs2 — y))
(e2ih - 1)Zj+1 ’
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Also for z € Kj;1, due to (5), we have

ih
b G _ € (Yjr2 = y))
S]'Jrl (Z]+1) - Cl — (EZih _ 1)Zj+1 7
which implies the continuity of S;(z) at the grid points zj1.
3. Lastly on differentiating (8) w.r.t z and putting z = z;, due to (6), we get

2A(yj-1)
(el — 1)(e2h — 1)212'

1 )
$7(zj) =2C) =

Similarly, differentiating (8) w.r.t z and putting z = z;,1, due to (6) and (7), we have

2 + 20!
2e7 A(y)) + 2(A(y;) — A1)

e (e — 1)(e2h — 1)2]2.

5(zjx1)

which proves the theorem.
|

3. RATE OF CONVERGENCE

Convergence on the boundary. To study the convergence properties of the complex spline $,(z), we
follow the ideas of Ahlberg, Nilson and Walsh [2]. We consider the convergence of {54, ()} for the sequence
of meshes Ay = {zx1,zr2, "+ , Zkn} With [|Ag|| = max; |zx j+1 — 2z ;| — 0,ask — oco. Let {Sk,]-(z)};?:1 be the complex

quadratic splines on the arcs Kj,; from z ; to zi,j+1”. Then, we shall prove the following:

Theorem 3.1. Let f(z) be continuous on K. Let {Ax} be a sequence of subdivisions of K with limy_,c ||Agl| = 0. Let
Sa, (z) be the complex quadratic spline on Ay, then {SAk(z)} — f(z) uniformly as ||Axl| — 0. Further, if f(z) satisfies a
Holder’s condition of order a (0 < a < 1) on K, then

| 5,(2) = f(2) I= OUIAIY).

Proof. Let f(z) be continuous on K. Then on K}, by setting z = (z; +z;41)/2 + € , where € is a complex number
such that 0 < |e/h| < 1/2, we have

Zjn +Z]' + 2¢
arg(z) — arg(z;,1) = arg — - arg(z;,1) <0

and

Zj+zju zj(e" - 1)
rez)=(HED

(Z—Zj)=( > 5 +e).

DFor the sake of convenience we shall drop the index “k” from the subscript
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Due to (3), for z € K;, it follows that

etet - 1)

15i(2) — f(@) < |f(z)) — f@)I+ (e = ‘[|f(Z]+1 — f@) +1e™1fz)) = fz1-1) )
[|€Zh| (f(zjs1) = fEPI +1f(z)) = f(z)- 1)|)]|Z] (" 1) €|
|(e2" = 1)1z 2
[If(zm) FE)I+1e™(f(z) - f(zj- 1))|]|Z] e’ 1) €|2
(e = D)l|(e2h — 1)||Z2| 2
er(e? — 1) zj(e™ - 1)
< wqmmmp+2“m ‘ |@h1J]z +e
2 Z](Elh _ 1) 2
+|e’h —1|le2h — 1] +€' ]
where w(f,||All) is the modulus of continuity of f on K. Further, we need l¢"| = 1 and |e" — 1] =

\/(cosh —1)2 + sin® h = 2sin(h/2). From [9], we have for 0 < |1 < /2

le" — 1| > 2|h|/n (10)
and forh >0
e — 1] < h. (11)

Using (10) and (11) in the last inequality of (9), we get

5,6~ f@ < wlfIad[1+ 2+ |5+ 7

Since 0 < |e/h| < 1/2, therefore
|5(z) — f(2) = Ca(f, l|1AD), (12)
where C is a constant, from which the Theorem follows. [

In order to obtain the convergence properties of the complex spline 54(z), it is necessary to show that
Sa(f) — f(t) or its derivatives satisfy suitable Holder’s conditions.

We shall prove the following:

Corollary 3.2. Under the conditions of Theorem 3.1 with f(z) satisfying a Holder condition of order (0 < a < 1),
the function [Sa,(z) — f(2)1/IIAI%° satisfies a Holder’s condition of order 5, 0 < & < a, uniformly with respect to k.

Proof. For z and 7 on Kj, we have

eMf(zjw1) — f(z)) + f(z) — fzj-1)]

$(z) — $;(1) :[ ]@—a—@—m)

(eZih—l)Z'
[fz1) = f(z)) = €"(f(z)) = f(z
|

+1[[f(2j+2) = f(zj+1) — €"(f(zj+1) = f(z))]
2 e?(e? — 1)(e2h — 1)22.
[f(Z]+1) - f(z)) = €"(f(z)) = f(zj-2))]

e (1—e?)(e2h - 1)212.

][(z —zi 2 = (=23
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Let us consider two cases-:
Case(i) If arg(z) < arg(zj +%) and arg(t) < arg(zj +%),
Case(ii) If arg(z) > arg(zj+%) and arg(t) > arg(zj+%).

Case (i) implies that (z — z]-Jr%)_zF =(t- Z]-Jr%)_zF =0, then

B N £ N
$i(z) -Sj(1) = (z- T){ [6 Lf(zj1) (J;i"zhj)jl{f]) f(ZJ—l)]]
j

+[[f(7~j+1) — fz) —e"(fz) - f(zj_l))]](z +7- 22;‘)}.

(e — 1)(e2h — 1)212.

If f(z) satisties Holder’s condition of order a and if 3 a ¢ such that 0 < 6 < a, then

{[|f(zj+1) ~ fEI+1f(z) — f(Zjl)|]

|5/(z) = 8;(0) + f(7) - f(@)| < Iz —

fzi1) = DI+ 1f(z) = fzi)]
+[ j+1 (el _jl)(ezih _] D] -1 ](Iz— 7| + 2|z; —T|)} +1f(7) = f(2)|

lZj = zl" +lzj = zjal" | [Izja — 2" +1zj — 2jal®
k- TI{ [ le2ih — 1] + (e — 1)(e2h — 1)) (IZ -1+ 2z - T')

le2it — 1]

+|T—z|*

2|eih _ 1|a Zleih _ 1|a—1
<lz-1 - + - z—1|+2z; —1|) } + |t — 2|
| |{[|€M_1l @y | (el 2 ) p ez

Since z, T € Kj, therefore, owing to (10) and (11), we have |z—1| < |zj11—zj| < le"~1| < hand |zj—7]| < |e"-1],
which leads to

— 7]*70 ( 8]z — 1|l — 1|*
$i(z) — $;(7) + f(1) — < - pliadeo BT : +1
[$(2) = Si(0) + f(0) ~ f@)| < |z~ 7llAl 1A= | ]2 — 1|z — 7|
a—0
< @r+Diz—-1P|A H(lz_ﬂ)
( )l A A
< @+ Dz = TPlA.

Thus, we deduce that (5;(z) — f(z))/ IAL]|%0 satisfies uniformly Holder’s condition of order 6. Working
corresponding to Case (ii) has been omitted as a mutatis-mutandis approach leads to the above conclu-
sion. [

For the proof of the following theorem, we adopt the scheme of works [17, 23].

Theorem 3.3. Let f € C be analyticon Kand f € W12<. Let Ay be a sequence of subdivisions of K with limy_,« ||Axl] =
0. Let Sj(z) be the complex quadratic spline on K;, then

sup £(2) ~ §,(2)k = O ). (13)

2
fewy

Proof. Without violating generality, taking a periodic case, we can accept that z € K;, where K; is the arc
joining the points z; and z,. Moreover, we can accept that z lies in the arc joining z; and z3), that is
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where arg(z) — arg(zz;2) < 0. Otherwise we can make a change in variable z = z; — v. Also, we can take
z1 = e, 23, = e¥"/2, where h = 2. Consider z = z1¢", where 0 < 6 < I1, hence

ih ih

e2(ez = 1)A(yo)

f(Z) _ Sl(Z) _ {Zlf,(zl)(eig _ 1) + L (Zleie _ T) f//(ZlT) ZldT} 2( 2ih _ 1)
ey = yo)| . A(yo) i0 2
{TEZn]@'J”Lw—Mﬁunhe_”
==%J@mﬁ—nﬂfwﬁ—ﬂﬂ%ﬂﬁ}
efef —1) e’ -1 (e - 1)
+(f(z2) - f(Zl))[ 2@h—1) (@ —1) (el —1)(edh — 1)}

el —1) el -1) el — 12
+(f(zl) - f(ZO)) [ 2(ezih _ 1) - (€2ih _ 1) (Eih _ 1)(6’2171 _ 1)] .

As [|Agll = 0, we can use Taylor’s theorem with integral form of the remainder, to get

f0 =510 = [ e -+ [ @ -0 @]
e —1) Me0-1) (@ -1) : = ”
+[ 2@ 1) (@ =1) (@ D)= 1)] {(Zz —z1)f'(z1) + L (z2—-1)f (T)dT}

erele? —1) oM -1) oM -1 , “ y
[ 22 —1) (@ 1) (@ 1) - 1)] {(Zl = 20)f"(z0) +fzo (@ - 1)f (T)d’[}

Yo% _1 ih(pi6 _ 1 el (10 —
f@)-Si1(2) = [EZiez(ii—l) ) e(e(;h _1)) tas ¢ (ezm ] f (zo =) f" ()t

_j“e?@?—D@z—ﬂ4y%@”—1x@—f)+cz—w@ -1y
-, 2(e2h — 1) (e — 1) (e — 1)(e2h — 1)

e (e? —1) éM(E? -1) (€0 - 1) ;
[2(62”’ 1) i (e —1) " (e — 1)(e2h — ] f (z2 — 1) f"()dt

— (2169 — 1)} f"(t)dt

Since f € W12<, thus due to (10) and (11), we have

e%eih(e% -1 _ e (e — 1) .\ el (eif — 1) 21 — zo[?

22— 1) @"_1) (@ — 1)@ 1) )

efef — D@ -1 e’ -DE@-1° (-1’ -1? (e’ - 1P|
4(e?h — 1) 2(e?h — 1) 2(e" — 1)(e?" — 1) 2

ei(e? —1) el(el® —1) (€% —1)?

2(821}1 _ 1) (EZih _ 1) (eih _ 1)(62ih _ 1)

5007 + 1372 1
< pRl/— T -
< h ( 256 2)’

f@)-$i12)| <

Z1
|z — z?
2

from which the theorem follows. [
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