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Abstract. In this paper, some systems of tensor equations under t-product are considered. Some practical
necessary and sufficient conditions for the existence of a solution to two systems of tensor equations in
terms of the Moore-Penrose inverses are given. The general solutions to the systems of tensor equations
are presented when they are solvable. An application of the tensor equations in the solvability conditions
and general symmetric solution to a system of tensor equations. Some algorithms and numerical examples
are provided to illustrate the main results.

1. Introduction

Tensors arise in a wide variety of application areas, including, but not limited to, biology [16], signal
processing ([2], [6]), numerical linear algebra [3], image processing [9], data analysis [1], graph theory [18],
and elsewhere. For more results and applications of tensor theory, we refer the reader to the recent book
[17] and the survey paper [12]. The most common types of tensor multiplications are n-mode, Kronecker,
Khatri-Rao, Hadamard, outer, Einstein products and so on.

Among the available tensor multiplications, it is worth to mention the t-product (Definition 2.1) of two
tensors. Since Kilmer et al. [11] introduced the concept of t-product in 2011, there have been many papers
to discuss the decompositions, generalized inverses and applications of tensors under t-product (e.g., [5],
[7], [11], [15]-[20]). For example, Kilmer et al. [10] investigated the necessary theoretical framework for
third order tensor computation under t-product. Martin et al. [13] extended the third order tensor SVD
and tensor operations to order-p tensors. Jin et al. [8] defined the generalized inverse of order-p tensor
under t-product. Miao et al. [14] derived the T-Jordan canonical form and T-Drazin inverse based on the
t-product. Zhang and Aeron [21] used t-SVD to consider the problem of recovering third order tensors
under random sampling. Nowadays tensor equations and tensor SVD under t-product are widely and
heavily used in imaging processing [13], video data completion [21], linear models [8], and so on.
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However, the literature on tensor equations under t-product is limited. Jin et al. [8] gave a solvability
condition and general solution to the tensor equation under t-product

A+X+B=C. (1)

To the best of our knowledge, there has been little information about the generalization of the tensor
equation (1), i.e., the system of tensor equation

A»X=Cy,
X*B1=D1, (2)
A+ X* By =Cy,

where Ay, By, C1, D1, Az, By, and C; are given tensors, X is unknown. Motivated by the wide application of
tensor equation and t-product and in order to improve the theoretical development of the general solutions
to tensor equations, we consider the system of tensor equations (2) under t-product.

The remainder of the paper is organized as follows. In Section 2, we review the definitions of t-product
of two tensors, tensor operations, identity tensor, symmetric tensor, Moore-Penrose inverse of tensor under
t-product. In Section 3, we derive some necessary and sufficient conditions for the existence of a solution
to the system of tensor equations under t-product

ﬂl*chll
{X*81=D1. (3)

In Section 4, we present some necessary and sufficient conditions for the existence of a solution to the
system of tensor equations (2). The general solutions to the systems (3) and (2) are provided in Sections 3
and 4. In Section 5, we derive some solvability conditions and general symmetric solution to the system of
tensor equations

{ ﬂ1*X=Cl,

_ T
e X AL =0y XX (4)

Some algorithms and numerical examples are provided in Sections 4 and 5.

2. Preliminaries

An order N tensor A = (ﬂi]...iN)lgijsjj (j=1,...,N)is amultidimensional array with I; I - - - Iy entries. Let
RI>*Iv stands for the set of the order N dimension I; X - - - X Iy tensors over the real number field R.

For a tensor A = (a;,,-,) € R™**" the notation A; € R™* -1 denotes the order p — 1 tensor created
by holding the pth index of A fixed at i. Define unfold(:) to take an n; X --- X n, tensor and return an
nin, X -+ - X 1,1 block tensor in the following way:

NV
unfold(A) = :
A,
The operation fold(-) takes an ny1, X 12 X - - - ,_1 block tensor and returns an 17 X - - - X 11, tensor. That means
fold(unfold(A)) = A.
Now we create a tensor in a block circulant pattern, where each block is a tensor whose order is (p — 1):

A A, Ay - Sz

A A Ay, 0 Az
circ(unfold(A)) = | . . . . .y

ﬂnp ﬂnp—l ﬂn,,—Z ﬂl
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which is an 111, X - - X n,_1 tensor. For example, let A be a n1 X ny X n3 tensor. Fixing the third index of A,
one can get n13 matrices A; € R"*" matrices, i =1, ...,n3, and

Aq At Ay, A o A

Aj ) Ay A An, 0 Az
unfold(A)=| . |, circ(unfold(A)) = . . . .

Al’l3 Al’l3 An3—1 An3—2 e Al

The definition of the t-product of two tensors is given as follows.

Definition 2.1 (t-product of two tensors). [13] Let A € R"*"="*"% gnd B € R pe ajven. Then the
t-product A = B is the order-p (p > 3) tensor defined recursively as

A x B = fold(circ(unfold(A)) = unfold(B)) (5)
of sizeny X I Xn3 X -+ X1,

Martin et al., [13] presented an algorithm to compute the t-product of two tensors by using the Fourier
transform. Some basic properties of the t-product are given.

Proposition 2.2. [8] If A, B, C are tensors of adequate size, then
@A*(B+C)=A+B+A=C;
b)(A+B)xC=A=*C+B=C;

() (A*B)+C =Ax*(B=C).

For more properties of t-product, we refer the reader to the recent papers [11] and [13]. The definition
of identity tensor is given as follows.

Definition 2.3 (Identity tensor). [13] The n X n X n3 X - - X n, order-p (p > 3) identity tensor I is the tensor such
that I is the n X n X nz X - - - X n,_1 order-(p — 1) identity tensorand I;, j =2,3,...,n,isthen X nXnz X -+ X 1,1
order-(p — 1) zero tensot.

We can also give the definition of the transpose of tensors.

Definition 2.4 (Transpose). [13] Let A € R™¥"*" then the transpose of A, which is denoted by A", is the
13 X 1y -+ - X 1y, tensor obtained by tensor transposing each A;, fori =1,2,...,n, and then reversing the order of the
A; from 2 through ny, i.e.,

ﬂT
Al
p
T
AT = fold | [ F-1] . 6)
A
It is easy to check that (A * B)T = BT + A”. The definition of symmetric tensor now follows.
Definition 2.5 (Symmetric tensor). [13] Let A € R™"*" . We say that A is symmetric if AT = A.

The definition of the Moore-Penrose inverse of the tensor under t-product was first given in [8].

Definition 2.6 (Moore-Penrose inverse). [8] Let A € R The tensor X € R"">X"sX% satisfying the
following four tensor equations

DA+ X+ A=A,

RQX+AxX=X;

(3) (A X) = A= X;

@) (XA = XA,

is called the Moore-Penrose inverse of the tensor A, and is denoted by A"
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The Moore-Penrose inverse of an arbitrary tensor A exists and is unique [8]. The algorithm for finding
the Moore-Penrose inverse of a tensor A was presented in [8]. For more properties of Moore-Penrose
inverse of tensor under t-product, we refer the reader to the recent paper [8].

It is easy to obtain the following results.

Proposition 2.7. For the tensor A € R"™*">"  the symbols La and R stand for

La=I-A+A, Ra=1-A+A" )
Then

Ll =La RL=Ra (8)

3. The general solution to the system (3)

In this section, we consider the system of tensor equations under t-product

A+ X =Cy,
{X*31=Dl, ©)

where
ﬂl e Rtlxlxmxmxnp, Cl e ]Rtlxmxnaxmxnp’ 81 e ]Rﬂlquxng,)("')(?lp, Dl e Rlquxn3x~~xnp,

and X € Ry i ynknown. The following theorem gives some solvability conditions and general
solution to the system (9).

Theorem 3.1. Let Ay, By, Cq, and D be given tensors. The system of tensor equations (9) is consistent if and only
if

Ra, *C1 =0, D1+ Ly, =0, A1+ Dy =C1* By. (10)
In this case, the general solution to (9) can be expressed as

X=A+C1+ La,*D1+B + La, +Y *Rg,, (11)
where M is an arbitrary tensor with suitable order, Lz, and Rg, are defined as (7).

Proof. “only if”-part. Assume that the system of tensor equations (9) has a solution Xj. Since Rz, * Ay = 0
and B, * Lg, =0, we have

Ra, »C1=Ra, +* A1 »Xo=0 (12)
and

Dy*Lg =Xo*B1+Lg =0. (13)
It is easy to verify that

Ar* Dy = Ay »Xo* B =Cp + By (14)

“if”-part. We prove that X having the form of (11) is a solution to the system (9) under the hypotheses
(10). Substituting (11) into the system (9) yields
A+ [A+Cr+ La, * D1+ B + L, » Y + Ry, |
=A A+ Cy
=C;



S.W. Yu et al. / Filomat 35:11 (2021), 3663-3677 3667

and
[A} *C1+ L, + D1 B + L, Y + Ry, ]+ By

:ﬂ{*cl*zgﬁgﬂl*z)ﬁgi*zgl
AN C1 B+ D+ B By — A« Ay Dy« B+ By
AN C1 B+ D+ B B — A« Cr By« B+ By
=A+Cr* B+ D+ BB - A+ C1+ By
=D+ B+ B,
=D. 1

Now we show that if the system (9) is consistent, i.e. (10) holds, then an arbitrary solution X can be
expressed by (11). Let

Y = Xo. (15)
Then by

X=A+C1+ La, + D1+ B} + L, » Xo*Rg,
=AT+C1+ D1+ BT — A+ Ay » Dy » BY + Xo» Rg, — AL+ Ay + Xo * R,
=A}+C1+ Dy » B} — AL C1 % By + B + Xo — Xo + By * B — AL+ C1 * R,
=AACL+ D1+ B - A+ C1+ B+ Bl + Xg— Dy Bl — AT+ C1 + Al + C1 + By » BY
=Xo.

U

4. The general solution to the system (2)
In this section, we consider the following system of tensor equations

A= X=C,
X*B1=D1, (16)
ﬂz*X*Bz :Cz,

where

ﬂl e Rtlxlxn3x~~xnp, Cl e ]Rtlxmxmxmxnp’ 81 e ]RHqulxng,X"'Xﬂp, Dl e ]Rl><q1><n3><~~xnpl

ﬂ2 c thXan:;X'“XVIVI BZ c RquinﬁX'“Xﬂpl CZ c szXl]zX]’ng'"an,

and X € RPmmX-xm jg ynknown. In the following theorem, we give some necessary and sufficient
conditions for the solvability of system (16), and present the general solution to (16) if it is solvable.

Theorem 4.1. Let Ay, By, C1, D1, Az, By and C; be given tensors. Denote

.?[3 =ﬂ2*.£ﬂl, 83 = Rgl *82, C3 =Cz —ﬂz*ﬂ{*(ﬁ *Bz _ﬂZ*Lﬂl *1)1 *BJ{*BQ. (17)
The system of tensor equations (16) is consistent if and only if
R:}[l *C1 = 0, Z)l *.[:31 = 0, .7(1 *Dl = Cl *81, Ry{s *C3 = 0, C3 *.533 =0. (18)

In this case, the general solution to (16) can be expressed as
XZﬂI*C1 +.£y[1 *D1 *BJ{ +.£j(1 *ﬂ;*C;‘g*Bg*Rgl
+ La, * La, * Z1*Rg, + La, * Zo*Ra, * Ry, (19)

where Z1 and Z, are arbitrary tensors with suitable order, La,, La,, Rs, and Ra, are defined as (7).
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Proof. “only if”-part. We separate the system (16) into two parts

A+ X =Cy,
X*+8B =Dy,
and
ﬂz*X*Bz=Cz.

It follows from Theorem 3.1 that the system (20) is consistent if and only if
Ra, #C1 =0, D1+ Lg =0, A1+ Dy =Cq + By.
In this case, the general solution X has the form of (11). Substituting (11) into
A+ X+ By =C,
yields
A+ AT C1# By + Ap# L, » D1 » BT 2 By + Ay Ly + Y + Rg, » By = Co,
ie.,
A3+ Y + B3 =C3,
where A3z, B3, and C3 are given by (17). Thus by Ra, * A3 = 0and B3 + Lg, =0,

Rﬂ3*C3:Rﬂ3*ﬂ3*y*B3 =0,

C3*.£83 :ﬂ3*y*83*.£33 =0.

3668

(20)

(1)

(22)

(23)

(24)

(25)

(26)

(27)

“if”-part. Suppose that the equations in (18) hold. By virtue of R,#C1 = 0, D1*Lg, =0, A1xD; = C1+By,

we have

Ay # [AL+C1+ L, + Dy + B} + Lig, » AL+ Cy + B+ Ry,
+ L * La,*» Z1+Ra, + La, + o+ Rs, * Ry, ]
=A; + A+ Cy
=C1,

[AL+C1 + La, * D1+ BT + L, + AL+ Cy » B + Ry,
+ La, * La, + Zi1*Rp, + La, * Lo+ Ry, * Ry, | * By
=AL«C1+ By + La, » Dy + Bl + By
=ACr* B+ D+ Bl By — A+ A+ Dy + B+ By
=AT«C1+ B+ Dy - AL+ Cy + By
=D;.

Now we prove that the X that has the form of (19) is also a solution of A, * X * B, = C,. It follows from
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Ra, *C3 = 0and Cs * Lg, = 0 that

Ao # [AT+C1 + L, * D1+ Bl + Lag, » AL+ Cs+ B+ R,
+ L, * La,*Z1*Re, + La, * Lo+ Ra, *Ra, ]+ B

=Ap+ AL+ C1 2By + Ay # L, * D1+ B+ By + A+ Lg, + AL+ C3 » B + Ry, + By
+ A L, * La,* L1+ Rg, *Bo+ Ap+ L, * Zo*Rp, *Rg, * B

=Ay+ AT+ C1# By + Az » D1+ B+ By + Az + AL+ C3 + B+ By
+ Az La,+ L1+ Ry, *Bo+ A+ Lo, + Lo+ R, + Bs

=Ap+ AL+ C1* By + Ay +» Dy » BT+ By + Cs

=C;.

Hence, the tensor X has the form of (19) is a solution to the system (16).
Now we prove that for an arbitrary solution X of the system (16) can be expressed as the form of (19).
Let

Zi=Xo*B3+ 8!, Z=X,.
Using the fact that A3 * X * B3 = C3 and (18), we obtain
X=A+C1+ L, *D1* B + Lg, + AL+ C3+ Bl + Ry,
+ L, * La, * Xo* B3 B+ Rg, + Laa, * Xo * Rg, * Ra,
=A% C1 + L, * D1+ Bl + L, #[AL+ C3+ BL + L, » Xo + Bs » B + Xo » Rg, ] + Ry,
=A 5 Cr+ L * D1 # BY + Lg, « [AL+Cs# BY + X+ B3+ B
— AL Az = Xo* B3 BY + Xo — Xo+ B3+ Bi]+ Ry,
=AL«C1 + L, * D1 # BT+ L+ [AL+C3 B — AL+ C3+ BY + Xo] * Rg,
=A +C1+ L, * D1+ BY + L, + Xo * Rg,
=A Cr+ Dy BN — AT+ Ay« Dy B+ Xo* Rg, — AL+ Ay Xo * Rg,
=ACL+ D1+ B - A C1 B+ BT+ Xg— Xo» By + B — AL+ Cp + Ry,
=A A CI+ D B A C B+ B+ XD+ Bl - AN CL+ AT Cr By + B
=Xo.
|

Now we give the algorithm for finding the general solution to (16).

Algorithm 4.2. The solution to the system (16).
Input: A1, B1,C1, D1, Az, By and Co.
(1) : Compute A3, B3, C3 by (17).
(2) : If any of equations in (18) fails, return “No solution”.
(3) : Else compute the Moore-Penrose inverses A', B, AL, and B,
(4) : Compute La,, La,, Rg, and Rg, by (7).
Output: X in the form (19).

We give two examples to illustrate Theorem 4.1.

Example 4.3. For the system (16), let Ay, By, C1, D1, Ay, Ba and Cy be given tensors, where Ay € R4, B; €
]R4X3X4, Cl c ]R4X4X4, Dl c 1R5><3><4, ﬂZ c 1R3><5X4, BZ c ]R4X2X4, CZ c ]R3X2X4, and

8 2 7 5 2 54 2 9 5

7 8 8 2 7 9 3 5 6 6
ﬂl('/ o 1) - 8 5 8 5 8|’ ﬂl('/ /2) = 6 4 2 4 8|’

2 2 8 8 5 8 7 2 7 6



A,

B,

Bl(l,l

Ci(,:

Ci(,:

Dl(:/

Dl(:,

A,

A,

Bo(:,:
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549 7 9 6 4 4
5437 2 56 5
/3)_ 1 1 7 5 1 /ﬂl('/~/4)_ 6 4 2
95 2 2 6 7 2 1
13 18 91 10 18 131
19 10 11 19 13 5
D=y 5 1| BGD=lg 15 7
12 9 15 16 5 11
'8 13 7] 6 9 7]
13 8 12 9 14 6
13) - 9 5 14 7 Bl('/‘r4) - 6 8 18
15 5 6 11 14 13
588 662 697 822] 697
664 718 703 871 630
D =l571 600 632 749| €162 =13
640 676 646 847] 659
682 681 602 857) 666
708 721 679 791 674
3 =1580 634 633 785" 1) =g19
560 660 642 762] 583
1324 1139 1105] 1374
1054 989 907 1030
1) = (1300 1232 1177|, Dy(,:,2) = |1383
1552 1358 1278 1494
1328 1139 1114] 1375
11350 1236 1180] 1451
1114 935 936 1091
.3)= (1282 1245 1120{, Dy(:, -, 4) = |1324
1553 1309 1300 1528
1302 1168 1173] 1326
'8 8 8 6 4] 4 45
D=7 6 4 4 4, A2 =|7 6 4
6 53 3 3 8 8 6
7 8 4 8 3] 5 7 3
=7 8 8 4 6|, A, 4)=|7 8 8
6 55 3 5 5 7 8
3 2 6 3
11 6 3
4 1) = 4 2 7 Bz(:/ :/ 2) = 5 3 7 Bz(:/ :/ 3) =
13 1 6

~

= U1 = N

Q1 U1
N QNN

741
744
696
643

711
707
620
747

1160
994

1243
1428
1074

1058
965

1200
1322
1140

(o)}

LW
Q1 O1

Q1 o U1 O

w
ot

684
686
601
655

715
714
656
649

1092
953

1193
1382

1225

11777

940
1225
1220

1176

745]
760
673
767

730]
835
738

715

7 Bz(:/ :/4) =

W = O\

g wnNnN

3670
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3.9798  4.4064] 3.9418  4.4213]
Co(:,:,1) = 10*+[3.9508 43906, Ca(:,:,2) = 10%+|3.9445 4.3952],
3.9236  4.4248] 3.9778  4.4052]
3.9845 4.4132] [3.9469  4.4419]
Ca(:,:,3) = 10* + [3.9483 4.3851|, Cy(;,:,4) = 10* +|3.9435 4.3791|,
3.9210  4.4102] 3.9829  4.3823]

where A(:, :, k) means the kth frontal slice of the tensor A. We consider the system (16). By using the Algorithm 4.2,

we have

'Rg}[l*cl :O, Z)l *-581 =0, fﬂ1 *Dl :Cl *31, Ry{3*C3=O, C3*.£B3 =0.

Hence, the system (16) has a solution. The general solution to the system (16) is given as follows

X=X0+.£y(1*.£y{3*zl *R31+£ﬂ1*Z2*R33*R81, (28)
where
[0.2088 —0.1410 0.0615 -0.1326 —0.0905
-0.1410 0.2956 -0.0514 0.1678  0.0337
La(:,1)=00615 -0.0514 0.0360 0.0246 —0.0356],
-0.1326 0.1678 0.0246  0.3796 —0.0035
1—0.0905 0.0337 -0.0356 —-0.0035 0.0799
[0.0656 —0.0929 0.0270 —0.0651 0.0487
0.0559 -0.0020 0.0606  0.1795 —0.1250
La(,:,2)=(0.0272 -0.0868 0.0071 -0.0659 0.0159 |,
0.0259 -0.2031 0.0236 —-0.0357 —-0.0689
10.0135 0.0696 —0.0187 —0.0405 -0.0349
[0.1502 -0.0713 0.0035 —0.2407 —0.0303]
-0.0713 -0.1648 0.0169 0.0656  0.0515
La(,:,3)=0003 00169 -0.0213 -0.0827 0.0241 |,
—0.2407 0.0656 —0.0827 0.0390 0.1622
|—-0.0303 0.0515  0.0241 0.1622  —0.0030]
[ 0.0656  0.0559  0.0272  0.0259  0.0135 ]
-0.0929 -0.0020 -0.0868 —-0.2031 0.0696
La:,4)=|00270 0.0606 0.0071 0.0236 -0.0187],
-0.0651 0.1795 -0.0659 -0.0357 —0.0405
| 0.0487 —-0.1250 0.0159 —0.0689 —0.0349]
0.7912  0.1410 -0.0615 0.1326  0.0905
0.1410 0.7044 0.0514 -0.1678 -0.0337
La,(,:,1)=(-0.0615 0.0514 09640 -0.0246 0.0356 |,
0.1326 -0.1678 -0.0246 0.6204 0.0035
0.0905 -0.0337 0.0356 0.0035 0.9201



Lﬂg(:/ :

l:ﬂg(:/ :

Lﬂg(:/ :

Ra, (2 :

Ra, (2, :

Ra, (3, :

Rg, (2, :

R, (::

Ra,(:,:

[—0.0656
—0.0559
-0.0272
—-0.0259
1—0.0135

[—0.1502
0.0713
—-0.0035
0.2407
| 0.0303

'—0.0656
0.0929
~0.0270
0.0651
|-0.0487

1 0.2192
—0.0988
~0.1146
| 0.1827

'—0.0309
-0.1302
0.0703
| 0.1300

'—0.0901
0.1202
-0.0226
| 0.0724

[—0.0309
—-0.0064
—-0.0633

|-0.2045

[ 0.7808
0.0988
0.1146

—0.1827

[ 0.0309
0.1302
-0.0703

-0.1300
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0.0929
0.0020
0.0868
0.2031
—-0.0696

0.0713
0.1648
-0.0169
—-0.0656
-0.0515

—0.0559
0.0020
-0.0606
-0.1795
0.1250

—0.0988
0.1843
0.0316

-0.1150

—0.0064
0.0165
0.0198

—-0.2418

0.1202
—-0.0204
0.0199
0.0970

-0.1302
0.0165
0.1512

—-0.0491

0.0988
0.8157
—-0.0316
0.1150

0.0064
—-0.0165
—-0.0198

0.2418

-0.0270
—-0.0606
-0.0071
—-0.0236
0.0187

—-0.0035
-0.0169
0.0213
0.0827
-0.0241

-0.0272
0.0868
-0.0071
0.0659
-0.0159

-0.1146
0.0316
0.1326

-0.0937

—-0.0633
0.1512
0.0356

-0.0985

-0.0226
0.0199
0.0476

-0.2053

0.0703
0.0198
0.0356
0.0486

0.1146
—-0.0316
0.8674
0.0937

0.0633
-0.1512
—-0.0356

0.0985

0.0651
-0.1795
0.0659
0.0357
0.0405

0.2407
—-0.0656
0.0827
—-0.0390

-0.1622  0.0030 |

-0.0259
0.2031
-0.0236
0.0357
0.0689

0.1827 1
-0.1150
-0.0937
0.4639 |

—0.2045]
—0.0491

0.0486
~0.0213]

0.0724 ]
0.0970
—-0.2053

0.0630 |

0.1300
—-0.2418
—-0.0985("
-0.0213

~0.1827]
0.1150
0.0937
0.5361 |

0.2045 ]
0.0491
—0.0486

0.0213 |

~

~

~

~

—0.0487]
0.1250
-0.0159
0.0689
0.0349 |

0.0303 T
-0.0515
-0.0241
-0.1622

—-0.0135]
—-0.0696
0.0187
0.0405

0.0349 |

3672
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[ 0.0901 -0.1202 0.0226 -0.0724
. [70.1202  0.0204 -0.0199 -0.0970
Re,(:,2,3) = 0.0226 -0.0199 -0.0476 0.2053 |’
|—-0.0724 -0.0970 0.2053 —0.0630

[0.0309 0.1302 -0.0703 -0.1300

R, (2, 4) = 0.0064 -0.0165 -0.0198 0.2418
sy 0.0633 -0.1512 -0.0356 0.0985 |’

10.2045 0.0491 -0.0486 0.0213

2 5 6 2 5 12 10 57
5 3 7 6 5 7 3 9
XoG,, 1)=|7 3 9 13|, Xo(;,;,2) =12 7 10 4/,
13 5 7 8 11 7 3 13
18 7 2 12 6 7 7 2
4 13 2 12 7 6 9 10]
9 5 5 8 6 4 5 3
Xo(;,;,3)=|5 4 4 8], Xo(;,;;4H=19 9 7 2|.
3 9 10 8 5 11 5 8
4 2 10 12 3 7 11 10|

Example 4.4. For the system (16), let Ay, B1,C1, D1, Ay, Bo and Cy be given tensors, where Ay € R¥*3, B; €
]R3X2X3, Cl c ]R2X3X3, -Z)l c 1R3><2><3, ﬂZ c 1R3><3X3, BZ c ]R3X2><3, CZ c ]R3X2X3, Lli’ld

8 8 9 8 6 7 8 5 6
\7{1(-/ . 1) - [8 5 9] ’ ﬂl(-/ 12) - [6 5 8] ’ ﬂl(-/ 13) - [5 7 9]/
(4 5 7 8 7 8
Bl(:/ :/ 1) = 6 4 7 Bl(:/ :/2) = 5 7 7 Bl(:/ :/3) = 5 6 4
9 9 6 6 8§ 8
(77 94 73 68 77 84 91 52 63
Gis D) = 66 77 90]' G 2) = [98 68 60]' (53 = |93 80 87]’
(74 79 64 81 82 74
Di(;,:, 1) =189 61|, Di(:,:,2) =192 94|, Di(:,:,3) =|89 53],
|76 68 98 99 70 90
8 3 7 5 6 7 8§ 8 5
A, D) =18 6 4|, A(;,:,2)=13 4 6|, A(;,:,3) =[5 8 4],
4 6 5 3 8 7 8§ 3 6
[3 4 1 5 2 6
B, 1) =15 5], B(,:,2) =13 1], B:(,:3)=1|3 2],
1 1 3 6 3 6
[170 197 283 294 203 194
Co(:,;, 1) =270 171}, Ca(;,:,2) =241 245], Cy(;,:,3) =276 162{.
1299 110 188 232 112 139

Note that Ay + Dy # C1 + By. Hence, the system (16) has no solution.
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5. Symmetric solution to the system (4)

Based on Theorem 4.1, we in this section consider the solvability conditions and general symmetric
solution to the system

{ A X=C — x_xT (29)

ﬂz * X * ﬂg = Cz,

where

A € ]Rt1><l><n3><~--><np Cl e Rtlxlxmxmxn,, A, € ]Rt2><l><n3><---><np Cz e ]Rt2><t2><n3><~--><np
and X € RXXxmx-x1, ig ynknown.
Theorem 5.1. Let Aq,Cq, Ar and C, = Cg be given tensors. Denote

Az =Ap* L, C3=Co = Ay + A+ C1 # (Ao)T = A # Lig, +CT + (AN = AL (30)
The system of tensor equations (29) has a symmetric solution if and only if

Ra, #*C1 =0, Ay +C] =C1+A], Ra, *C3 = 0. (31)

In this case, the general symmetric solution to (29) can be expressed as

1
X :E[ﬂ{ #C1+Cl+ (AN + Laa, +CT+ (AN + AL+ C1 + L, +
Lo, » AL+ (Cs +C3) (A" % L1+ Laa, W L, Ly + Ly * Lag W'+ Ly, (32)
where W is an arbitrary tensor with suitable order.

Proof. The system (29) has a symmetric solution if and only if the system of tensor equations has a solution

A=Y =Cy,
YAl =l (33)
ﬂz*y*ﬂg =(C».

The general symmetric solution to the system (29) can be expressed as £ +2y _. We obtain the solvability
conditions and the expression of general symmetric solution by Theorem 4.1. O

We present the algorithm for finding the general symmetric solution to the system (29).

Algorithm 5.2. The general symmetric solution to the system (29).
Input: Ay, Cy, A, and Cs.
(1) : Compute Az and C3 by (30).
(2) : If any of equations in (31) fails, return “No solution”.
(3) : Else compute the Moore-Penrose inverses ﬂ{ and :ﬂ;.
(4) : Compute La, and L, by (7).
Output: X in the form (32).

We provide two examples to illustrate Theorem 5.1.

Example 5.3. For the system (29), let Ay, C1, Ay and C, be given tensors, where Ay € R3S, C € R¥*3, A, €
]R2X4X3, Cz c ]R2><2><3,
and

2 3 7 2 3 555 8 9 5 8
A, D)=12 7 1 9|, A¢,,2)=14 1 2 1|, A(,:,3)=|1 4 5 9|,

8 2 7 6
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[419 538 495 384] 384 471 441 417
Ci(;,:,1) =302 325 359 234, Ci(;,:,2) =320 401 396 331{,
1485 598 511 452] 476 537 499 387

[428 451 480 327]

Ci(,53) = (270 311 281 239,97{2(;,;,1):[8 18 ﬂ
464 568 591 449
29 2 6 6 2 7 3
Fo(:,,2) [2 S 3],912(.,.,3)_[2 ’ 5],

Co(:,:;, 1) = [

22923 18820 Col:
18820 15721(’ 20

We get La,, La, and the special solution

2

:,2):[

1
Xo =z[AT+C1 + C] + (AN + Lg, »CL + (AN + AL+ C1 + L+

La + AL+ (C3+CH+ (AN + La],

by Algorithm 5.2. The results are as follows,

23465 19221
19258 15638

]/ CZ(:/ :/3) = [

100404 —00136 —0.0610 0.0249 ]
. |-00136 04721 00874 -0.2675
LaGuD=1_00610 00874 03224 —-0.1116
00249 -02675 —0.1116  0.1651 |

'~0.0090 —0.0123 —0.0801 0.0183 ]
Loy | 01349 00295 02387 00493
A 0.0486 —02989 00297  0.1624
00813 00323 0.1068 —0.0500]

~0.0090 01349  0.0486 —0.0813]

. |-00123 00203 -02080 00323
LG8 =]_00801 -02387 00297 0.1068
100183 00493  0.1624 —0.0500]

109596 00136 0.0610 —0.0249]

. |oo0136 05279 -00874 02675
LaGuD) =1 00610 —00874 06776 01116
00249 02675 01116  0.8349 |

100090 00123 00801 —0.0183]

. |-01349 00293 02387 00493
LaGu2) =1_00486 02989 —00297 —0.1624
00813 —-0.0323 —0.1068 0.0500 |

19258
15638

|

3675

(34)
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0.0090 -0.1349 -0.0486 0.0813
0.0123 -0.0293 0.2989 -0.0323

LG8 =] 00801 02387 -0.0297 —0.1068|’
—0.0183 -0.0493 —-0.1624 0.0500
10 7 7 5 5 9 6 3 5 10 4 8
7 7 9 1 10 12 8 5 9 12 3 11
XO(:r:/1)= 7 9 6 ZIXO(:I:/2)= 4 3 12 9//\’0(:/:/3): 6 8 12 121°
5 120 8 11 12 8 3 5 9 8

Example 5.4. For the system (29), let Ay, C1, Ay and C, be given tensors, where Ay € RS, 0 € R¥¥S, A, €
]R2X4X3, CZ c ]R2X2X3, and

8 55 1 6 4 2 1 56 3 7
A1) =12 4 3 6|, A(,2)=1{3 5 3 2|, AG:3)=|5 7 9 1|,

316 4 3217 9 4 89
539 9 57 31 4 4 6 3
G, )=(2 4 8 7|,Ci(552)=(1 1 9 8, Ci(553)={1 9 9 1,
35338 9 9 28 6 8 2 1
6 5 1 4 9 4 4 1 2 9 33
?Iz(.,.,l):[g 3 1 8],ﬂ2(.,.,2)=[1 9 4 6],ﬂz(.,.,3)=[4 7 7 4]’

Ca(c, ;1) = [g Z], Ca(s,5,2) = [é 2], Co(;,:,3) = E é]

Since Ay * ClT +Cq# ﬂlT, the system has no solution.

6. Conclusion

We have established some practical necessary and sufficient conditions for the existence of a solution to
the system of tensor equations (2) under t-product. We have presented the general solution to the system
(2) in terms of Moore-Penrose inverses. As an application of the system (2), we have given some necessary
and sufficient conditions for the existence of a symmetric solution to the system of tensor equations (4).
We have also provided the general symmetric solution to the system (4) when its solvability conditions are
satisfied. Moreover, we have given some algorithms and numerical examples.
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