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Abstract. Let R be a ring with identity, M be a right R-module and F be a fully invariant submodule of M.
The concept of an F-inverse split module M has been investigated recently. In this paper, we approach to
this concept with a different perspective, that is, we deal with a notion of an F-image split module M, and
study various properties and obtain some characterizations of this kind of modules. By means of F-image
split modules M, we focus on modules M in which fully invariant submodules F are dual Rickart direct
summands. In this way, we contribute to the notion of a T-dual Rickart module M by considering z (M) as
the fully invariant submodule F of M. We also deal with a notion of relatively image splitness to investigate
direct sums of image split modules. Some applications of image split modules to rings are given.

1. Introduction

Throughout this paper R denotes an associative ring with identity and modules are unitary right
R-modules unless otherwise stated. For a module M, S = Endr(M) is the ring of all right R-module
endomorphisms of M and F stands for a fully invariant submodule of M (i.e., f(F) C F for every f € S).
Maeda [8] and Hattori [5] studied Rickart rings (or principally projective rings), independently. A ring is
called right Rickart if every principal right ideal is projective, equivalently, the right annihilator of any single
element is generated by an idempotent as a right ideal. A left Rickart ring is defined similarly. Recently,
the notion of Rickart rings was generalized to the module theoretic version and investigated in [1] and
[6]. A module M is said to be Rickart if the right annihilator in M of any single element of S is generated
by an idempotent of S, that is, for any f € S, ry(f) = Kerf = eM for some ¢ = e € S. In [2], a concept
of T-Rickart modules was defined by considering the second singular (or Goldie torsion) submodule of a
module, namely, a module M is called T-Rickart if tp(f) = {m € M | f(m) € Z,(M)} is a direct summand of
M for every f € S. On the other hand, in [15], a module M is said to be F-inverse split if f~1(F) is a direct
summand of M for every f € S. There are some interesting connections between these classes of modules.
For example, in [15], it is proved that M is F-inverse split if and only if M has a decomposition M = F® N
where N is a Rickart module. Since the second singular submodule Z,(M) of M is fully invariant in M,
being a T-Rickart module and being a Z,(M)-inverse split module are the same. Some applications of the
notion of an F-inverse split module M are presented in [4], [14], [15] and [16] by considering certain fully
invariant submodules aside from the second singular submodule.
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As a dual version of Rickart property for modules, in [7], a module M is called dual Rickart if Im f
is a direct summand of M for every endomorphism f of M. Motivated by the concepts of dual Rickart
modules and T-Rickart modules, T-dual Rickart modules were introduced in [3], that is, a module M is
called T-dual Rickart if f (ZZ(M)) is a direct summand of M for every f € S where ZZ(M) = Z(Z(M)) and
Z(M) = n{Kerf : f € Homg(M, N) where N is small in its injective hull} which was defined in [13]. With
the inspiration of these works, it is of interest to present the notion of F-image split modules in a sense of a
dual version of F-inverse split modules. We say that a module M is F-image split if f(F) is a direct summand
of M for every f € S.

In the light of aforementioned concepts, it is a reasonable question that what kind of properties does F
gain when a module M is splitted by the images of F? This question is one of the motivations to deal with
the notion of an F-image split module M. We answer this question in Theorem 2.2, that is, F becomes a dual
Rickart module in addition to be a direct summand of M. The concept of T-dual Rickart modules produces

dual Rickart modules by employing the submodule z (M) of M. By using the fully invariant submodule
F of a module M, we produce much more dual Rickart modules for this general setting. Therefore, the
concept of F-image splitness is more general than that of T-dual Rickart modules. These connections make
the concept of an F-image split module M more attractive to study.

In Section 2, we give some properties and characterizations of F-image split modules. We get some
results by considering the singular submodule as a fully invariant submodule. We also deal with an F-
image split module concept for rings and we present some applications about these rings. In Section 3, we
focus on when the direct sums of F-image split modules M satisfy the same property. In this direction, we
study relatively F-image splitness. Lastly, in Section 4, we introduce strongly F-image split modules and
observe a main characterization of these modules.

In what follows, Soc(M) and Z(M) stand for the socle and the singular submodule of a module M, also,
J(R) denotes the Jacobson radical of a ring R, respectively. For a positive integer 1, M, (R) denotes the ring
of n X n matrices over a ring R.

2. F-image split modules

Throughout this paper, F denotes a fully invariant submodule of a module M under consideration.
In this section we study the concept of an F-image split module M and get properties about this class of
modules. We investigate useful characterizations for this notion. Also, we obtain some results about the
ring cases of F-image split modules as an application to the ring theory.

Definition 2.1. A module M is called F-image split if f(F) is a direct summand of M for every f € S.

It is clear that every semisimple module M is F-image split and so every module M over a semisimple ring
is F-image split. Obviously, every module M is 0-image split. It can be obtained from the definition, a
module M is dual Rickart if and only if it is M-image split.

We now give an efficient characterization for an F-image split module M. Thanks to this characterization
we can get dual Rickart modules by means of fully invariant submodules.

Theorem 2.2. The following are equivalent for a module M.

1. M is an F-image split module.
2. Fisadual Rickart direct summand of M.

Proof. (2) = (1) Let f € S. As F is a direct summand of M, there exists an idempotent e € S such that F = eM.
Then, Endr(F) = eSe. Since F is dual Rickart, efe(F) is a direct summand of F. We claim that efe(F) = f(F).
For any x € F, efe(x) = ef(x) = f(x). Therefore, efe(F) = f(F). The rest is clear.

(1) = (2) Let M be F-image split. Then, for 1p; € S, 1m(F) = F is a direct summand of M. Hence, F = eM
for some ¢2 = e € S. To see that F is a dual Rickart module, let f € Endgr(F) = eSe. Thus, there exists
g € S such that f = ege. Since M is F-image split, g(F) is a direct summand of M. As F is fully invariant,
f(F) = ege(F) = g(F). So f(F) is a direct summand of M. By modularity condition, f(F) is a direct summand
of F and so F is a dual Rickart module. O
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Corollary 2.3. Let M be an F-image split module and N a fully invariant submodule which contains F. If every
endomorphism of N can be extended to an endomorphism of M, then N is F-image split.

Corollary 2.4. Every indecomposable F-image split module M is either dual Rickart or F = 0.

The following corollary is a direct consequence of Corollary 2.4 if we consider the singular submodule
as a fully invariant submodule.

Corollary 2.5. Every indecomposable Z(M)-image split module M is either nonsingular or singular dual Rickart.

Proof. Let M be an indecomposable Z(M)-image split module. By Corollary 2.4, Z(M) = 0, ie., M is
nonsingular or M is dual Rickart. In the latter case, Z(M) = M. O

Example 2.6. LetR = [ F where F is a field. Then, Z(Rg) = 0. Thus, Rg is Z(Rgr)-image split.

0
F F
We approach to Theorem 2.2 in terms of singular submodules.

Theorem 2.7. Let M be a module. Then, the following are equivalent.

1. Mis Z(M)-image split.
2. M = Z(M) & N where Z(M) is dual Rickart and N is nonsingular.
3. Z(M) is a dual Rickart direct summand of M.

Proof. (1) = (2) By hypothesis and Theorem 2.2, M has a decomposition M = Z(M) & N where Z(M) is a
dual Rickart module. Since Z(M) is an essential submodule of Z,(M) and Z,(M) = Z(M) & (Z>(M) N N), we
have Z(M) = Z,(M). Hence, N is nonsingular since N = M/Z,(M).

(2) = (3) It is clear.

(3) = (1) M is Z(M)-image split by Theorem 2.2. [

In the next result we investigate that F-image split property for a module M is transferred to direct
summands of M.

Proposition 2.8. If M is an F-image split module and N is a direct summand of M, then N is an (F N N)-image split
module.

Proof. Assume that M = N®K for some submodule K of M and M is F-image split. By [12], F = (FNN)&(FNK).
Lete : M — N be the canonical homomorphism and g € Endgr(N). Since M is an F-image split module, ge(F)
is a direct summand of M. Also, ge(F) = ge(F N N) + ge(F N K) = ge(F N N). As g(F N N) = ge(F N N) = ge(F),
g(F N N) is a direct summand of M. Hence, g(F N N) is a direct summand of N, as asserted. [J

Corollary 2.9. If M is a Z(M)-image split module, then any direct summand N of M is Z(N)-image split.

Proof. Let M be a Z(M)-image split module and N a direct summand of M. Then, N is (N N Z(M))-image
split by Proposition 2.8. Hence, N is Z(N)-image split since N N Z(M) = Z(N). O

Proposition 2.10. Let M be a quasi-projective module. Then, M is F-image split if and only if for every submodule
K of M with K C g(F) for each 0 # g € Endr(M), M/K is F/K-image split.

Proof. Let M be F-image split and f € Endr(M/K). Since M is a quasi-projective module, there exists g €
Endr(M) such that the following diagram commutes. The module M being F-image split implies that
M = g(F) & L for some submodule L of M. Then, M/K = (g(F)/K) + ((L + K)/K) and this sum is direct since



T. Pekacar Calci et al. / Filomat 35:11 (2021), 3679-3687 3682

(9(F)/K) N ((L + K)/K) = {0 + K}. Also, it can be shown that f(F/K) = g(F)/K. Hence, f(F/K) is a direct
summand of M/K, and so M/K is F/K-image split.

P' Y

M — M/K —— 0
The converse is obvious. []

Recall that M has the summand sum property (SSP) if the sum of two direct summands is a direct summand
of M. Also, M has the strong summand sum property (SSSP) if the sum of any number of direct summands is
again a direct summand of M.

Proposition 2.11. For an F-image split module M, the following statements hold.

1. Let K, L be direct summands of M and K C F. Then, K + L is a direct summand of M.
2. M has SSP for direct summands which are contained in F.

Proof. 1t is clear from the proof of [3, Proposition 3.14]. [

Theorem 2.12. The following are equivalent for a module M.

1. M is F-image split.

2. Y. f(F) is a direct summand of M for every finitely generated right ideal I of S.
fel

3. Y. f(F) is a direct summand of M for every finite subset I of S.
fel

Proof. (1) = (2) Letl =< fi,..., fu > be a finitely generated right ideal of S. Since M is F-image split, fi(F) is
a direct summand of M for each 1 < i < n. Hence, } f(F) is a direct summand of M by Proposition 2.11(2).
fel
(2) > (1) Forevery f €S, Y, g(F) = f(F) for which I = fS. Hence, the proof is clear.
gel

(1) © (3) Itis obvious. [

Now we consider the concept of F-image splitness for rings. Note that I is an ideal of a ring R if and
only if it is a fully invariant submodule of Rg.

Definition 2.13. Let I be an ideal of a ring R. Then, R is called right I-image split if for every f € Endr(RR),
f(D) is a direct summand of Rg, i.e., R is I-image split as a right R-module.

The left [-image splitness for a ring R can be defined similarly where I is an ideal of R. The right I-image
split rings need not be left I-image split as the following example shows, therefore being an I-image split
ring is not left-right symmetric.

Example 2.14. Let R = [ 1(; § ] where F is a field. Consider the ideal I = [ f) l(;

]ofR. Then, R =1&]

0

0 F
essential in R as a left ideal, it is not a direct summand of R as a left ideal. Therefore, R is not left I-image
split.

where | = 0 ] is a right ideal of R and I is dual Rickart. Hence, R is a right I-image split. Since I is
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In the next theorem, we characterize a right I-image split ring R.

Theorem 2.15. Let R be a ring and I be an ideal of R. Then, the following are equivalent.

1. For every positive integer n, M,(R) is right M, (I)-image split.

R is right I-image split.

I'is a direct summand of R as a right ideal and Endg(I) is a von Neumann reqular ring.
For every e* = e € R, eRe is right ele-image split.

For every finitely generated free R-module M, M is I-image split.

SN

Proof. (1) = (2), (4) = (2) and (5) = (2) are clear.

(2) = (3) Let R be a right I-image split ring. By Theorem 2.2, I is a direct summand of R as a right ideal and
it is also a dual Rickart module. Then, for every f € Endr(l), Imf is a direct summand of I. Since I/Kerf =
Imf and I is projective, Kerf is a direct summand of I. Thus, Endg(!) is a von Neumann regular ring by [17,
Corollary 3.2].

(2) = (1) Let n be a positive integer. Since [ is a direct summand of R as a right ideal, there exists a right
ideal J of R such that R = [ ® J. Hence, M,,(]) is a right ideal of M,(R) such that M,(R) = M,(I) & M,(]).
Note that End s, r)(M,(I)) = M,(Endgr(l)) is a von Neumann regular ring because Endg(I) is a von Neumann
regular ring as in the proof of (2) = (3). Thus, M, (R) is right M,,(I)-image split by [7, Theorem 3.8].

(2) = (4) Let R be right I-image split and ¢*> = ¢ € R. Then, ¢R is el-image split. We claim that for every f €
End.r.(eRe), f(ele) is a direct summand of eRe as a right ideal. Since End,g.(eRe) = eRe = Endr(eR), f(el) is a
direct summand of eR. Hence, there exists a right ideal | of eR such thateR = f(el)®]. Thus, eRe = f(ele)+ Je.
Since f(ele)NJe C f(e)N] = 0,eRe = f(ele) ® Je. Therefore, f(ele) is a direct summand of eRe as a right ideal.
(8) = (5) Let K be a finitely generated free R-module. By (3), I is a direct summand of R as a right ideal,
and so [ is also a direct summand of K. Since Endg(I) is von Neumann regular, Imf is a direct summand of
I for every f € Endgr(l) by [17, Corollary 3.2]. Hence, I is dual Rickart. Thus, K is I-image split by Theorem
22. 0O

Theorem 2.16. Let R be a ring and I be an ideal of R. Then, the following are equivalent.

1. @ R, is (P I)-image split where R, = R and I, = I for all n.
n=1 n=1
2. lis adirect summand of R as a right ideal and Endg(l) is a semisimple ring.

Proof. (1) = (2) Suppose that P R, is (P I,)-image split where R, = R and I, = I for all n. By Proposition
n=1 n=1
2.8, R is right I-image split. In particular, I is a direct summand of R as a right ideal. As in the proof of (2)

= (3) in Theorem 2.15, one can see that Endgr(€P I,,) is a von Neumann regular ring. Let K = Endg(I). Note
n=1

that EndR(@ In) = EndK(EB K,), where K,, = K for all n. By [17, Theorem 3.5], K is a semisimple ring.
=1 n=1
(2) = (1) Suppose that[is a dlrect summand of R as a right ideal and Endg(I) is a semisimple rmg Then,

EB I, is a direct summand of @ R, where I, = I and R,, = R for all n. Let K = Endg(I). Since EndR(EB I,) =
n=1 n=1 n=1

EndK(@ K,) where K, = K for all n, and K is a semisimple ring, we have that EndR(EB I,) is a von Neumann
n=1 n=1

regular ring. Hence, Imf is a direct summand of @5 I,, for every f € Endgr(EP I,) by [17, Corollary 3,2].
n=1 n=1

Thus, P I, is a dual Rickart module. Consequently, P R, is (6P I,)-image split by Theorem 2.2. [J
n=1 n=1 n=1

We close this section by giving some applications about I-image split rings R.
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Proposition 2.17. If R is a right Z(Rg)-image split ring, then it is right nonsingular.

Proof. Let Rbe aright Z(Rg)-image splitring and x € Z(Rg). Assume thatx # 0 and we reach a contradiction.
By definition, xZ(RR) is a direct summand of R. It entails that xZ(Rgr) has an idempotent e. Hence there
exists t € Z(RR) such that e = xt. Since x,t € Z(Rg), we have e € Z(Rg). This is the required contradiction
since rr(e) = (1 — )R is not essential in R. It follows Z(Rg) = 0. Therefore, R is right nonsingular. [

Recall that in [10], a right module M is called mininjective if for every simple right ideal K of R, each
homomorphism K — M extends to a homomorphism R — M. The next result shows that every module
over Soc(-)-image split ring is mininjective.

Proposition 2.18. If R is a right Soc(Rr)-image split ring, then every right R-module is mininjective.

Proof. Let R be a right Soc(Rg)-image split ring. Then, R = Soc(Rg) ® K for some right ideal K of R. Hence,
J(R) = Rad(Soc(Rg)) ® Rad(K). This yields J(R) = Rad(K) since Rad(Soc(Rg)) = 0. Thus, Soc(Rg) N J(R) =0
and so every right R-module is mininjective by [11, Theorem 2.36]. [

3. Direct sums of F-image split modules

A direct sum of F;-image split modules M; where i € I for some index set 7 need not satisfy image
splitness as shown in [3, Example 4.1]. In this section, we investigate under which conditions direct sums
of Fi-image split modules M; have the same property.

Proposition 3.1. Let {M;}icsr be a class of R-modules for an arbitrary index set 1. If for every i € I, M; is a fully
invariant submodule of € M, then M; is F;-image split for every i € I if and only if @ M; is €D F-image split.
iel iel iel

Proof. Let ) M; be P Fi-image split. Then, by Proposition 2.8, M; is F;-image split for every i € 7. For the
necessity, lzeet]M = @E&i, F= @ Fiand f = (fij) € S where f;; € Homgr(M;, M;). Since for every i € I, M;is a
fully invariant subl:r{odule of ?é M;, Homg(M;, M;) = 0 for every i, j € I withi # j. By hypothesis, f;(F;) is
a direct summand of M; for eal::fl i € I. On the other hand, we have f(F) = €P fi(F;). Hence, f(F) is a direct
summand of M, as asserted. [ “

Recall that a module is said to be abelian if every idempotent element of its endomorphism ring is central.
By the fact that a module M is abelian if and only if every direct summand of M is fully invariant in M, the
following result is an immediate consequence of Proposition 3.1.

Corollary 3.2. Let {M;}icr be a class of R-modules for an arbitrary index set I and @Mi be an abelian module.
iel
Then, M; is Fi-image split for all i € T if and only if @ M, is & F;-image split.
iel iel

In the following, we introduce relatively F-image splitness in order to a more comprehensively study
on direct sums of F;-image split modules M; where i € I for some index set 1.

Definition 3.3. A module M is called F-image split module relative to N (or shortly, N-F-image split) if for each
f € Homgr(M, N), f(F) is a direct summand of N.

Theorem 3.4. Let M and N be R-modules. Then, M is an F-image split module relative to N if and only if for every
direct summand L of M and every submodule K of N, L is (L N F)-image split relative to K.
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Proof. Let L be a direct summand of M, K a submodule of N and f € Homg(L, K). Then, L = eM for some
¢> =e € Sand fe € Homg(M, N). Since M is N-F-image split, fe(F) is a direct summand of N. As fe(F) C K,
fe(F) is a direct summand of K. We claim that fe(F) = f(LNF). To see thatlet x € f(L N F). Then, there exists
y € LN Fsuch that f(y) = x. Since y € L = eM, x = f(y) = fe(y) € fe(F). Hence, f(LNF) C fe(F). Itis clear
that fe(F) € f(LNF). Thus, f(L N F) is a direct summand of K, as asserted. The converse is clear. [

The next result is obtained as an immediate consequence of Theorem 3.4 if we take into account of the

fully invariant submodule ZZ(M) of a module M.

Corollary 3.5. [3, Corollary 3.13] Let M be an R-module. Then, the following are equivalent.

1. Mis T-dual Rickart.
2. For any submodule N of M, each direct summand L of M is T-dual Rickart relative to N.

3. IfL and N are direct summands of M, then for any ¢ € Homg(L,N), ¢(22(L)) is a direct summand of N.

Proposition 3.6. Let {M;}icr be a class of R-modules for an index set I and N an R-module with a fully invariant
submodule F of € M;. Then, the following hold.
iel
1. Let N have SSP and I be finite. Then, € M; is N-F-image split if and only if M; is N-(F N M;)-image split for
iel
alliel
2. Let N have SSSP and I be arbitrary. Then,
(@) €Pp M; is N-F-image split if and only if M; is N-(F 0 M,)-image split for all i € I.
iel
(b) I M; is N-F-image split if and only if M; is N-(F N M;)-image split for all i € I.
iel
Proof. (1) Let € M; is N-F-image split, then M; is N-(F N M;)-image split for all i € I by Theorem 3.4. To see
iel
the converse statement let f : @Mi — Nand: M, —» EBMi be a inclusion. Then, f; = fi; € Hom(M;, N).
iel iel
It can be seen that f(F) = }, fi(F N M;). By hypothesis, fi(F N M;) is a direct summand of N for all i € I. Since
iel

N has SSP, ), fi(F N M;) is a direct summand of N. Hence, f(F) is a direct summand of N as asserted.
iel
The proof of (2) is similar to that of (1). O

Corollary 3.7. Let {M;}icr be R-modules where I = {1,2,...,n}and F a fully invariant submodule of @ M,;. Then,
iel
for each j € I, @ M; is Mj-F-image split if and only if M; is Mj~(F N M;)-image split for all i € I.
iel

Proof. If for each j € T, @ M; is Mj-F-image split, then M; is M;-(F N M;)-image split for all i € 7 by Theorem
iel

3.4. To see the converse statement, let M; be M;-(F N M;)-image split for all i € 7. Then, M; is F N M;-image

split. Hence, M; has SSP for direct summands which are contained in F N M; by Proposition 2.11. Thus, the

rest can be proved similar to the proof of Proposition 3.6(1). O

Theorem 3.8. Let {M;}icr be a class of R-modules, N an R-module where I = {1,2,...,n} and assume that M; is
Mj-projective for all i > j € I. Then, an R-module N is @ M;-F-image split if and only if N is M;-F-image split for

iel
alljeT.

Proof. The sulfficiency is clear by Theorem 3.4. Let N be an M;-F-image split for all j € 7. We use induction
onn. Letn = 2, f be a homomorphism from N to M; & M, and 7; : My & M, — M; be a natural projection
wherei = 1,2. Since N is M,-F-image split, 7, f(F) is a direct summand of M,. Hence, M; @7, f(F) is a direct
summand of M; & M,. To see M; + f(F) = My @ 2 f(F), let z + y € My + f(F). Then, y = m1y + mpy. Hence,
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z+y = z+my+my € My + 1y f(F). For the reverse inclusion, let x + y € M; @ m, f(F). Then, there exists z € F
such that y = my f(z). Hence, x + vy = x + o f(2) + 111 f(2) — 11 f(2) = x — 11 f(2) + f(2) € M1 + f(F), as asserted.
By hypothesis, M, is M;-projective and so 71, f(F) is Mi-projective. Then, there exists a submodule K of f(F)
such that M; + f(F) = M; @ Kby [9, Lemma 4.47]. Hence, f(F) = K& (M1 N f(F)). Thus, 71 f(F) = M1 N f(F)
since KNM; = 0. Hence, f(F) = K& f(F) which is a direct summand of K&M;. Since K&M; = My &, f(F),
f(F) is a direct summand of M; ® M. Thus, N is (M; & M,)-F-image split. Consequently, we complete the
rest of the proof by inductiononn. [

Corollary 3.9. Let {Mi}icr be a class of R-modules where I = {1,2,...,n} and assume that M; is M-projective for
alli > j e I. Then, @ M; is F-image split if and only if M; is M;-(F N M;)-image split for all i, j € 1.
iel

Proof. The sufficiency is clear by Theorem 3.4. For the necessity, let M; be M;-(F N M;)-image split for all

i,j € I. Then, @ M, is Mj-F-image split by Corollary 3.7. Hence, @ M; is F-image split by Theorem 3.8. [J
iel iel

4. Strongly F-image split modules

In this section, we deal with a module M for which f(F) is not only a direct summand but also a fully
invariant submodule for every f € S.

Definition 4.1. An R-module M is called strongly F-image split if for every f € S, f(F) is a fully invariant
direct summand of M.

It is obvious that M being a strongly F-image split module implies that it is F-image split. We now
investigate when the converse holds.

Theorem 4.2. The following are equivalent for a module M.

1. M is strongly F-image split.
2. M is F-image split and each direct summand of M which is contained in F is fully invariant.
3. Fisadual Rickart and abelian direct summand of M.

Proof. (1) = (2) Let N be a direct summand of M with N C F. Then, there exists ¢ = e € S such that N = eM.
It can be shown that e(F) = N. By hypothesis, e(F) is fully invariant in M. Thus, N is fully invariant in M.
(2) = (3) By Theorem 2.2 and (2), F is a dual Rickart direct summand of M. To see that F is an abelian module,
let L be a direct summand of F. Then, L is a direct summand of M. Hence, L is a fully invariant submodule
of M by hypothesis. We show that L is fully invariant in F. We have F = eM for some ¢? = ¢ € S, and so
Endg(F) = eSe. Let f € Endg(F). Then, there exists g € Endr(M) such that f = ege. Hence, f(L) = ege(L) C L
since L is fully invariant in M. Thus, we have every direct summand of F is fully invariant in F. So, F is
abelian.

(3) = (1) Let f € S. By Theorem 2.2, M is F-image split. Hence, f(F) is a direct summand of M. We need to
show that f(F) is fully invariant in M. We have F = eM for some ¢> = e € S, and so Endg(F) = eSe. Thus,
efe(F) is a fully invariant direct summand of F by hypothesis. Since F is fully invariant in M, efe(F) = f(F).
Therefore, f(F) is a fully invariant submodule of M because F and f(F) is fully invariant in M and F,
respectively. So, M is strongly F-image split, as claimed. [J

The following example shows that an F-image split module M need not be strongly F-image split in
general.

Example 4.3. Let n be a positive integer with n > 2 and M a vector space over a field K of dimension 7.
Then, M is semisimple and so it is dual Rickart. Hence, M is M-image split. But it is not abelian. Thus, M
is not strongly M-image split.
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We end the paper by observing some basic results concerning direct summands and direct sums of
strongly F-image split modules.

Proposition 4.4. Let M be a strongly F-image split module. Then, every direct summand N of M is strongly
(N N F)-image split.

Proof. Let K € N N F be a direct summand of N. Since N is a direct summand of M, M = N & T for some
submodule T of M. By Proposition 2.8, T is (T N F)-image split. Then, there exists a submodule T’ of T such
that T=(TNF)®T. Hence, M = K@K ® (T NF)® T’ for some submodule K’ of N. Also, K& (T NF) is
contained in F since K € N N F. Thus, K& (T N F) is fully invariant in M by hypothesis and Theorem 4.2. To
see K is fully invariant in N, let f € Endr(N). Then, (f @ 17)(K® (I N F)) C K& (T N F). Hence, f(K) C K, as
asserted. [

Theorem 4.5. Let {M;}icr be a class of R-modules for an arbitrary index set I and M = @ M;. Then, M is strongly

i€l
F-image split if and only if for each i € I, M; is strongly (F N M;)-image split and Homg(F N M;, F N M;) = 0 for
every i, j€ 1 withi # j.

Proof. Let M be a strongly F-image split module. Then, for every i € I, M; is strongly (F N M;)-image

split by Proposition 4.4. Since F is fully invariant in M, F = @(F N M;). Also, F is a dual Rickart and
iel

abelian module by hypothesis and Theorem 4.2. Hence, for every i € I, F N M, is fully invariant in F.

Thus, Homg(F N M;, F N M;) = 0 for every i,j € 7 with i # j. To see the converse statement, let f = [f;;] €

Endgr(6P M;) where fij € Homg(M;, M;). Then, f(F) = P fi(F N M;) by hypothesis, and so f(F) is a direct
i€l i

el
summand of M. Since for each i € 7, f;;(F N M;) is fully invariant in M;, f(F) is fully invariant in M. [
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