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Abstract. The concept of ¢-enlargement defined on metric spaces is generalized to the concept of U-
enlargement by using neighborhoods U of the zero of the space on topological vector spaces. By using
U-enlargement, we define the bornological convergence for nets of sets in topological vector spaces and we
examine some of their properties. By using filters defined on natural numbers, we define the concept of
filter bornological convergence on sequences of sets, which is a more general concept than the bornolog-

ical convergence defined on topological vector spaces. We give similar results for the filter bornological
convergence.

1. Introduction

Let X be a vector space on the real numbers field R and let T be a topology on X. The topology 7 is
said to be a linear topology on the vector space X if the operations addition and scalar multiplication are
t-continuous. Then (X, 7) is called a topological vector space (see [15, 16, 23]). In this study, we briefly
denote the topological vector space as TVS and indicate the zero of the space by 6. Each linear topologies
on a vector space X has a base NV of neighbourhoods of zero, providing the following properties:

(a) Each V € N is a balanced set (i.e., Ax € V for each x € V and each A € R with [A] < 1).
(b) Each V € N is an absorbing set (i.e., for each x € X thereisa A > 0 such that Ax e V).

(c) For each V € N there is a set W € N such that W + W C V. Here, the operation W + W is defined as
W+ W:={x+y:x,ye W} (see[15, 16, 23]).

Asan alternative to the ordinary convergence of sequences, anumber of convergence methods, primarily
statistical convergence, have been defined since 1951 and still continue to defined new convergence methods.

The most common ones of these types of convergence are the ideal convergence and the filter convergence
which are dual to each other.

Definition 1.1. Let # be a family of subsets of IN and let # # 0. The family ¥ is said to be a filter on IN, if
it provides the following conditions (see [10, 25]):

oe¢F,
ii)IfA,BEF thenANBeF,
iii)fAe¥F and ACBthenBe¥.
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Definition 1.2. Let (x,),cy be a sequence in a topological space X, let xo € X and let ¥ be a filter on IN. The
sequence (x,) is said to be filter convergent (or ¥ -convergent) to the point xy, if for every neighborhood U
of xop we have

meN:x,elUleF 1)

([1, 2, 14]). In this case, we write ¥ — lim x,, = x¢ or briefly x, N Xo.

In the following, we give some examples of filters and filter convergence. |A| denotes the cardinality of
the set A.

1. Fréchet Filter: The family , = {A € IN : |IN \ A| < oo} is called the Fréchet filter. F,-convergence coincides
with the ordinary convergence.

2. Statistical Convergence Filter: Let A € IN. Let A(n) = |{1, ..., n} N A| indicate the number of elements in
the set A from 1 to n. The functions

5(A) = 1iminff$ and 5(A) = lim sup 2

00 oo M

are called the lower asymptotic density and upper asymptotic density of the set A, respectively. If 5(A) = 5(A),
that is, the limit

lim Aw)

n—c 1
exists, then the value of this limit is called the asymptotic density of the set A, it is denoted by 6(A) ([5, 12, 18]).
The family F; = {A € IN : 6 (A) = 1} is called the statistical convergence filter. F4-convergence coincides with
the statistical convergence ([9, 11, 22]).

In 1964, Wijsman ([24]) defined a new convergence on sequences of sets and later this convergence was
called Wijsman convergence. Nuray and Rhoades ([19]) introduced Kuratowski, Wijsman and Hausdorff
statistical convergences of sequences of sets. Sagiroglu and Unver ([20]) gave some results about the
statistical convergence of sequences of sets in Wijsman topology. Savas ([21]) gave some results about
J-lacunary statistical convergence of order « for sequences of sets.

In recent years, there has been an increasing interest on bornological spaces, bornological convergence
and different types of convergence on bornologies. In [4], Beer and Levi introduced the concept of strong
uniform convergence on a bornology (see also [3, 6, 7]). In [3], Beer defined the bornological Alexandroff
property for function nets and gave the relationship between the bornological Alexandroff property and
strong uniform convergence on bornology. In [6], Caserta et al. gave the relationship between Alexandroff
convergence and strong uniform convergence on a bornology.

Now, we recall the concept of bornological convergence on metric spaces.

Definition 1.3. Let X = (X, d) be a metric space. Let d(x, A) denote the distance from the set A to a point
x € X, where A is a non-empty subset of X. Also, let B (x, ¢) indicate the open ball centered at x of radius .
The set

A ={x:d(x,A) < e} = UB(x,e)

xeA

is called the e-enlargement of the set A (see [8, 17]).

Definition 1.4. A family 8 of subsets of a set X is said to be a bornology, if it provides the following
conditions ([4, 13]):

i) Bisacover of X,i.e. X = Up4B,

ii) B is closed under subsets, i.e. BeBandACB= A€ 8,

iii) B is closed under finite unions, i.e. A BeB :(A UB)eB.
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Definition 1.5. Let X be a real vector space and let 8 be a bornology on X. 8 is called a vector bornology,
if it provides the following conditions ([13]):

i) Ifél,Bz € BthenB1 +Bz € B where B1 +Bz = {Xl +Xxp:Xx1 € B1,XZ S Bz}

ii) If B € B then AB € Bforevery A € Rand |J AB € 8 where AB = {/\x tX € B’}.
[A1=1

Example 1.6. The following families are bornologies on X.
1) The power set P(X).
2) B = {BC X : Bis finite}.
3) By, = {B CX:Bis bounded}.

Definition 1.7. Let (X, d) be a metric space and let the family 8 be a bornology on X. Take a net (A;)ea of
non-empty subsets of X and a set A C X.

i) The net (A)).ea is said to be lower bornological convergent to the set A, if for each ¢ > 0 and each
B € B there is a A € A such that we have

ANB C Af for every A > Ag.

Then we write 8~ —lim A, = A.
ii) The net (A))aen is said to be upper bornological convergent to the set A, if for each ¢ > 0 and each
B € B there is a A € A such that we have

A, NBC A? for every A = Ay.

Then we write 8t —lim A, = A.

iii) If the net (A))ea is both lower bornological convergent and upper bornological convergent to the
set A then the net (Aj)aea is called bornological convergent to the set A. In this case, it is denoted by
B-limA, = A (see [8,17]).

2. Bornological Convergence in Topological Vector Spaces

In this section, we extend the concept of e-enlargement for sets in metric spaces to the U-enlargement
concept in topological vector spaces and thus we define the concept of bornological convergence in topo-
logical vector spaces. We give some basic results about bornological convergence on topological vector
spaces.

Definition 2.1. Let (X, 7) be a TVS and let U be a neighborhood of 0. For A C X, the set
AY = {x e X :x—y e U for some y € A}
is called U-enlargement of the set A.

Some Properties of U-enlargement

Let (X, 7) be a TVS. Let U be a neighborhood of 6 and let A, B C X.
1) If A C B then AY C BY.
2) (AUBY = AU U BY,
3) (ANBY c AYnBY,
4) Let U; and U, be two neighborhoods of 6. The following implication is provided:

U, C U, = A% c A2,
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Definition 2.2. Let (X, 7) be a TVS and let 8 be a bornology on X. Take a net (A;)1ea of non-empty subsets
of Xand aset A C X.

i) The net (A))ea is said to be lower bornological convergent to the set A, if for each neighborhood U of
0 and each B € B there is a Ay € A such that we have

ANBcAY forevery A € Awith A > A

and then we write 8~ —lim A, = A.
ii) The net (Ax)aea is said to be upper bornological convergent to the set A, if for each neighborhood U
of 6 and each B € B there is a Ay € A such that we have

AynBc AY forevery A € Awith A > Ao

and then we write 8" —lim A, = A.

iii) If the net (A1)aea is both lower bornological convergent and upper bornological convergent to the
set A then the net (A))aea is called bornological convergent to the set A. In this case, it is denoted by
B-limA, = A.

Example 2.3. Let (IR, 7) be a TVS endowed with Euclidean topology 7 and let 8¢ be a bornology of all finite
subsets of R. The sequence (A,),cn With A, = %, 1+ %] is bornological convergent to the set A = [0, 1].
Indeed, let us take the neighborhoods U = (—¢, ¢) € N where ¢ > 0 and let BeB .

Firstly, we will show that A N B € AY. The U-enlargement of A, is AY = (1 —¢,1+ 1 +¢). Ifxc ANB
then 0 < x < 1. The right side of the inequality

1 1
——e<x<l+-—+¢
n n

is provided for all n € IN. For the left side, it must be

1
X>—-——&e=>n> .
n x+e¢

Take N(x, ¢) = [[ﬁ]] +1 € N. AN Bis finite set and so let us take

N = max N(x, ¢).
x€ANB

In this case, we get
1 1
——e<x<l+—+¢
n n

for every n > N and so x € AY. Thus we have B}j -limA, = A.

Now, we will show that A, N B € AY. The U-enlargement of A is AU = (—¢,1 + ¢). Letx € A, N B. For
the inequality

1 1
—e<—<x<1+-<1+g¢,
n n
it must be provided

1 1
—<e=>n>-.
n €

Hence, we get
A, NBcAY

for every n > N(¢) where N(¢) = [[%]] + 1 € IN. Thus we have B}t —-limA, = A.
Consequently, we have 8y —lim A, = A.
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Example 2.4. Take (]RZ, T), where 7 is the Euclidean topology . Let the sequence (A,),cn be defined as
A, = {(x, y):y= %} for each n € IN. We get

B —limA, = Aand B, —limA, = A
where A = {(x,y) : y =0and x € R}.

In the following, we give an example of bornological convergence on a non-metrizable topological
vector space.

Example 2.5. Let X be the set of all functions defined from R to R, that is X = R®, and 7, be the topology

of pointwise convergence on X. It is known that (X, pr) is a non-metrizable TVS. The zero element of this
space is the zero function defined as 0 (x) = 0 for every x € R. The family of sets of the form

W(6,F,¢) = {geX:|g(x)| <egVxe F}

for € > 0 and a finite subset F of R, forms a base at 6. Let 8 be any bornology on X. Let us take the net
(Ap)er defined as Ay = {x,} for each A € R where

w={1 ifx=A
=10 ifxzA

e Let A = {0}. For every B € B, we have either ANB =0 or ANB = {6}. Let Ube an arbitrary neighborhood
of zero. Then there is an ¢ > 0 and a finite set F such that U 2 W (6, F, ¢) = {g €X: (g (x)| <egVxe F} Let us
take Ag := maxF. For every A > A,

|0 (x) = x1(x)] =10-0] =0 < ¢ for every x € F

O—x1€W(O,Fe)cU
0cAl={feX: f-xreU}

Thus, we get AN B € A for every A > Ao.

Similarly, we have either A, N B=0orA,NnB = {x,} for every B € B and every A € R. Let U be
an arbitrary neighborhood of zero. Then there is an ¢ > 0 and a finite set F such that U 2 W (0,F,¢) =

{g eX: |g (x)| <egVxe F}. Take Ay := maxF. For every A > A,
lxr(x) —6(x)|=10-0]=0< ¢ forevery x € F
xXA—0eW(,Fe)cU

€AY ={feX: f-0el)

Thus, we get Ay N B € AY for every A > Ag. Consequently, we have 8 —lim A, = A.
* Now, let’s examine the bornological convergence to the set A), = {)(A } for a A, € R. For every
B € B, we have either Ay N B=0or Ap N B = {x1.}. Let’s choose a set By € Band a neighborhood

Uy = W(O,F, &) = {g eX: |g (x)) < é&,Vx e F} of zero such that x;. € By, A. € F (finite) and ¢y = % For
every A € Rwith A # A,,

ler. (A =|1-0/=1>¢ofor A, € F

Xa —xa ¢ Uo

XA ¢Akl[) Z{fGXIf—XAEUOfOI')(/\ EAA}
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Hence, we get A N By ¢ Aklo forevery A € Rwith A # A,, and so 8~ —lim A, # A,.. From this, we conclude
that 8~ —lim A, # A,, forevery A, € R.

e Let us consider the bornology B on X. Take the set Ay, = {x,.} for a A, € R again. Let BesB ¢ and
U be an arbitrary neighborhood of zero. Since B is finite, the number of A,’s with A, N B # 0 is zero or
finite. If it is zero then A, N B C Ai is provided for all A € R. In other case, let A be the largest of the A’s

that satisfy Ay N B # 0. Hence, for every A > \p we get AyNB=0andso Ay NBC A}li. Therefore, we get

B}f —lim A, = A,,. Consequently, we have 8;; —limA, = A, foreach A. € R.

Theorem 2.6. Let (X, ) be a TVS and let B be a bornology on X. Let (Ax)rea be a net on X and let A,B C X.
DIfB —limA), =Aand BC A then B~ —lim A, = B.
i) If B* —limA) = Aand A C B then 8% —limA) = B.
Proof. i) Since 8~ lim A, = A, for each B e Band each U € N there is a Ay € A such that
AnBcAY
for every A > Ag. From BC A, we get BN B C AN B and so
BnBcAY.

Thus we have 8~ lim A, = B.
ii) Since B*lim A, = A, for each B € B and each U € N thereis a A € A such that

AynBcAY
for every A > Ag. From A C B, we get AY € B! and so
AN B c BY.

Thus we have 8*lim A, = B. O

Theorem 2.7. Let (X, ) bea TVS and let B be a bornology on X. Let (A))rea and (Ba)aea be two nets of sets on X
andlet A,BC X. If B—limA) = Aand B —1lim B, = B then we have

B —lim(A) UB,) =AUB.
Proof. Take U € N and Be B. From B-1limA, = A, there is a A; € A such that

AnBcAVand AynBcAY )
for every A > A;. Similarly, from B - lim A, = B, there is a A, € A such that

BNnBcBandBynBcBY (3)
for every A > A,. Take Ag = sup {11, A2}. From (2) and (3), for every A > Ay we get

AnByuBnB) ¢ AlUBY

(AUB)NB C (A UB)Y

and

(AxNB)U(B,NB) AYuBY
(AJUB)NB (AuB)Y
From these two results, we have 8 — lim(A, UB,) =AUB. O

C
-
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Theorem 2.8. Let (X, T) be a TVS and let B1, B, be two bornologies on X where B1 C B,. If B, —lim A, = A then
.'Bl — lim A)\ =A.

Proof. Take U € N and B e By. From B; C B,, we have B € B,. If B, —limA, = A then for U € N and
B € B, thereis a Ay € A such that

AnBcAYand AynBcAY
for every A > Ap. Since U € N and B e B, are arbitrary sets, we also get 81 —limA, = A. O

Theorem 2.9. Let (X, t) be a TVS and let B be a bornology on X. Let (Ax)ren, (Ba)aea and (Cy)aen be three nets of
sets on X where

Ay CSBycCy
forevery A € A. If

B-limA, =8B-1imC; = A
then we have

B-1limB, = A.

Proof. Take U € N and B € 8.
From 8~ —lim A, = A, thereis a A1 € A such that

AnBcAY cBY (4)
for every A = Aq. From 8% —lim C, = A, there is a A; € A such that

C,nBcAY
for every A > A,, and from B, € C, we get

BynBcAY ()
for every A > A,. From (4) and (5), we have 8 -1imB), = A. O

Theorem 2.10. Let (X, 71) and (X, 72) be two TVS where 11 C T, and let B be a bornology on X. Let (A))iea be a
neton Xandlet ACX. If B-limA, = Ain (X, 12) then B -lim A, = A in (X, 71).

Proof. Let 61 and 0, be the zero of (X, 71) and (X, 1,), respectively. Let N1 and N, be a base of neighborhoods
of 01 and 0,, respectively. Let B —lim A, = Ain (X, 75). Take B e Band U; € N;. From 11 C 15, there is an
U, € N; such that U, C U;. From 8- 1lim A, = A in (X, 1), there is a Ay € A such that

AnBc A and AynBc A
for every A > Ag. From U, € Uy, we have Aklz Cc Ak’l and A% € AU Then we get
AnBc Al and Ay nB c A"
for every A > Ap. Consequently, we have 8 —-lim A, = Ain (X, 71). O
Theorem 2.11. Let (X, T) be a TVS and let B be a bornology on X. Let (A, <) and (M, <) be two directed sets. Let
(A aea be a net on X, let (AA“)yEM be a subnet of (Ay) and let AC X. If B—1im A, = A then 8 — limA;\H =A.

Proof. Take BeBand U e N.If B-1lim A, = A then there is a A¢ € A such that
AnBcAl'and Ay nBcAY

for every A > Ag. There is a A, € A such that Ag < A, and yo € M. Then for every u > uy we have
Ay = Ay, = Ag and so

ANBcAf and A), NBcAY.

Consequently, we have 8 -1limA,, = A. O
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3. Filter Bornological Convergence

The concept of bornological convergence in the previous section is generalized to the concept of filter
bornological convergence by means of filters defined on natural numbers in this section. Some results are
given on the filter bornological convergence.

Definition 3.1. Let (X, 7) be a TVS, let 8 be a bornology on X and let ¥ be a filter on IN. Let (A,)nen be a
sequence of non-empty subsets of X and let A C X.

i) The sequence (A,)qen is said to be filter lower bornological convergent to the set A, if for each
neighborhood U of 6 and each B € 8 we have

fneN:AnBcaAlleF

and then we write ¥ 8 -im A, = A.
ii) The sequence (A;)en is said to be filter upper bornological convergent to the set A, if for each
neighborhood U of 6 and each b € 8 we have

{ne]I\I:AnmE?QAu}e?~

and then we write 7 8*-lim A,, = A.
iii) If the sequence (A;)qen is both filter lower bornological convergent and filter upper bornological
convergent to the set A, that is, for each neighborhood U of 6 and each B € 8 we have

[neN:AnBcAYandA,nBcAeF

then the sequence (A,)qen is called filter bornological convergent to the set A. In this case, it is denoted by
FB-lmA, = A.

When the Fréchet filter ¥, is considered, ¥,8—convergence is equivalent to bornological convergence
on the sequence of sets.

Example 3.2. Take a sequence (A,),n defined as

A{

and take A = {(x, YeER?: y= O}.

(x,y)e]R2:|x|+)y):1} ,nepP
(x,y)e]RZ:|x|+)ny—n2)=nz} ne¢P

Figure 1:
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The sequence (A;),cn is not Bs-convergent and B,-convergent to A, but we have ;8¢ —lim A, = A and
FotBy —lim A, = A.
Theorem 3.3. Let (X, ) bea TVS, let B be a bornology on X and let F1 and F be two filter on IN, where 1 C F».
IfFAB -limA, = A then 7,8 -lim A, = A.
Proof. Take BeBand U e N. From FiB8-1lim A, = A, we have
[neN:AnBcAYandA,NnBCcAY)eF.
From #1 C %>, we get
[neN:AnBcAYandA,NnBcAYleF
Thus we get 7,8 - limA, = A. O
Theorem 3.4. Let (X, 7) bea TVS, let B be a bornology on X and let ¥ be a filter on IN. Let A C B.
DIFFB” —limA, = Bthen FB~ —lim A, = A.
i) f FB* —1lim A, = A then FB8* —1lim A, = B.
Proof. i) Let us assume that FB~ — lim A, = B. Take B € 8and U € N. Then we have
{neN:BntA}f}ef
From A C B, we get
fneN:BnBcAlc{neN:ANBCcAYY
and so

[neN:AnBcalle¥F.

Thus we get ¥ 8 —limA, = A.
ii) Let us assume that # 8" —lim A, = A. Take B € 8and U € N. Then we have

{ne]N:AntQAu}eT.
From A C B, we get

fneN:A,nBcAY clneN:A,nBcBY
and so

[neN:A,nBcBeF
Thus we get F 8" —limA, =B. [

Theorem 3.5. Let (X, T) be a TVS, let By and B, be two bornologies on X where B C By, and let F be a filter on
N. If ¥ B, —lim A, = A then ¥ 8, —lim A, = A.

Proof. Take Be By and U € N. If B; C B, then B € B,. From F B, — lim A, = A, we have
{ne]N:AﬁBQA,L,IandA,,DBQAU}GT.

Then for each B € B; and each U € N, the above set is an element of the filter . We getF B -limA, =A. O
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Theorem 3.6. Let (X, t1) and (X, t2) be two TVS where 1 C 15, let B be a bornology on X and let F be a filter on
N. IfFB8-1imA, =Ain (X, 1) then FB —-lim A, = A in (X, 11).

Proof. Let 61 and 0; be the zero of (X, 71) and (X, 12), respectively. Let N7 and N, be a base of neighborhoods

of 01 and 0, respectively. Let B —lim A, = A in (X, 12). Take B € 8 and U; € N;. From 11 C 1, there is

an U, € N, such that U, C U;. From £8 - lim A,, = A in (X, 7,), we have
Fp={neN:ANBCAandA,nBc A"} eF.

From U, C U7, we have Afz - Ayl for every n € IN and AW ¢ AU We get F> C F; where
Fi={neN:ANBCA'and A,nBC A"}

From F, € ¥, it must be F; € . Consequently, we have # 8 —limA, = Ain (X, 71). O

Theorem 3.7. Let (X, T) be a TVS, let B be a bornology on X and let F be a filter on IN. Let (Ay)nen,(Bn)nen and
(Cn)nen be three sequences of sets on X where

A, CB,CCy
for every n € N. If
FB-lmA, =FB-limC,=A
then we have
FB-1lmB, = A.
Proof. Take U € N and BeB. FromFB-1limA, = A, we have
Fi={neN:AnBcAland A,nBc A} e F.
Similarly, from #8 —lim C,, = A, we have
F,={neN:AnBcClandC,nBcA}eF.
Let F3 =F1 NF, € F. We get
AnNnBcAYcBYandB,NnBcC,nBcAY
for each n € 3. Then we get
[neN:ANBCcBYandB,NBCAY|2FseF
and so
{ne]N:AﬂBQBffandBnnBQAu}67:.
Consequently, we have ¥ 8 - limB, = A. O

Theorem 3.8. Let (X, 1) bea TVS, let B be a bornology on X and let ¥ be a filter on IN. Let (A,)new and (By)nen be
two sequences of non-empty subsets of X and let A,B C X. f ¥ B-1lim A, = A and ¥ B —1lim B,, = B then we have

FB—1lim(A, UB,) = AUB.
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Proof. Take U € N and B e B. From 8 - lim A, = A, we have

Fi={neN:AnBcAland A,nBc A} e F.

Similarly, from 8 — lim B, = B, we have

Fp={neN:BNBCBYveB,nBCcB}eF.

Let F = F; N F,. For each n € F we get

and

(AnByuBnB) c AYuUBY
(AUB)NB < (A, UB)Y

(A,NnB)uUB,NnB) c AYuUBY
(A,UB,)NB < (AuB)4.

Then we get

and

[neN:(AUBNBCc(A,UB,)" and (A, UB)NBC(AUBY|2FeF
SO

[neN:(AUB)NBC(A,UB,)" and (4, UB,)NBC(AUB)Y| e F.

Thus we have ¥ B8 — lim(A, UB,) =AUB. O
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