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Abstract. The concept of ε-enlargement defined on metric spaces is generalized to the concept of U-
enlargement by using neighborhoods U of the zero of the space on topological vector spaces. By using
U-enlargement, we define the bornological convergence for nets of sets in topological vector spaces and we
examine some of their properties. By using filters defined on natural numbers, we define the concept of
filter bornological convergence on sequences of sets, which is a more general concept than the bornolog-
ical convergence defined on topological vector spaces. We give similar results for the filter bornological
convergence.

1. Introduction

Let X be a vector space on the real numbers field R and let τ be a topology on X. The topology τ is
said to be a linear topology on the vector space X if the operations addition and scalar multiplication are
τ-continuous. Then (X, τ) is called a topological vector space (see [15, 16, 23]). In this study, we briefly
denote the topological vector space as TVS and indicate the zero of the space by θ. Each linear topologies
on a vector space X has a baseN of neighbourhoods of zero, providing the following properties:

(a) Each V ∈ N is a balanced set (i.e., λx ∈ V for each x ∈ V and each λ ∈ R with |λ| ≤ 1).
(b) Each V ∈ N is an absorbing set (i.e., for each x ∈ X there is a λ > 0 such that λx ∈ V ).
(c) For each V ∈ N there is a set W ∈ N such that W + W ⊆ V. Here, the operation W + W is defined as

W + W :=
{
x + y : x, y ∈W

}
(see [15, 16, 23]).

As an alternative to the ordinary convergence of sequences, a number of convergence methods, primarily
statistical convergence, have been defined since 1951 and still continue to defined new convergence methods.
The most common ones of these types of convergence are the ideal convergence and the filter convergence
which are dual to each other.

Definition 1.1. Let F be a family of subsets ofN and let F , ∅. The family F is said to be a filter onN, if
it provides the following conditions (see [10, 25]):

i) ∅ < F ,
ii) If A,B ∈ F then A ∩ B ∈ F ,
iii) If A ∈ F and A ⊆ B then B ∈ F .
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Definition 1.2. Let (xn)n∈N be a sequence in a topological space X, let x0 ∈ X and let F be a filter onN. The
sequence (xn) is said to be filter convergent (or F -convergent) to the point x0, if for every neighborhood U
of x0 we have

{n ∈N : xn ∈ U} ∈ F (1)

([1, 2, 14]). In this case, we write F − lim xn = x0 or briefly xn
F
−→ x0.

In the following, we give some examples of filters and filter convergence. |A| denotes the cardinality of
the set A.
1. Fréchet Filter: The family Fr = {A ⊆N : |N \ A| < ∞} is called the Fréchet filter. Fr-convergence coincides
with the ordinary convergence.
2. Statistical Convergence Filter: Let A ⊆ N. Let A(n) = |{1, ...,n} ∩ A| indicate the number of elements in
the set A from 1 to n. The functions

δ(A) = lim inf
n→∞

A(n)
n

and δ(A) = lim sup
n→∞

A(n)
n

are called the lower asymptotic density and upper asymptotic density of the set A, respectively. If δ(A) = δ(A),
that is, the limit

lim
n→∞

A(n)
n

exists, then the value of this limit is called the asymptotic density of the set A, it is denoted by δ(A) ([5, 12, 18]).
The family Fst = {A ⊆N : δ (A) = 1} is called the statistical convergence filter. Fst-convergence coincides with
the statistical convergence ([9, 11, 22]).

In 1964, Wijsman ([24]) defined a new convergence on sequences of sets and later this convergence was
called Wijsman convergence. Nuray and Rhoades ([19]) introduced Kuratowski, Wijsman and Hausdorff
statistical convergences of sequences of sets. Sağıroğlu and Ünver ([20]) gave some results about the
statistical convergence of sequences of sets in Wijsman topology. Savaş ([21]) gave some results about
I-lacunary statistical convergence of order α for sequences of sets.

In recent years, there has been an increasing interest on bornological spaces, bornological convergence
and different types of convergence on bornologies. In [4], Beer and Levi introduced the concept of strong
uniform convergence on a bornology (see also [3, 6, 7]). In [3], Beer defined the bornological Alexandroff
property for function nets and gave the relationship between the bornological Alexandroff property and
strong uniform convergence on bornology. In [6], Caserta et al. gave the relationship between Alexandroff
convergence and strong uniform convergence on a bornology.

Now, we recall the concept of bornological convergence on metric spaces.

Definition 1.3. Let X = (X, d) be a metric space. Let d (x,A) denote the distance from the set A to a point
x ∈ X, where A is a non-empty subset of X. Also, let B (x, ε) indicate the open ball centered at x of radius ε.
The set

Aε = {x : d (x,A) < ε} =
⋃
x∈A

B (x, ε)

is called the ε-enlargement of the set A (see [8, 17]).

Definition 1.4. A family B of subsets of a set X is said to be a bornology, if it provides the following
conditions ([4, 13]):

i) B is a cover of X, i.e. X =
⋃

B̌∈B B̌,
ii) B is closed under subsets, i.e. B̌ ∈ B and Ǎ ⊆ B̌ =⇒ Ǎ ∈ B,
iii) B is closed under finite unions, i.e. Ǎ, B̌ ∈ B =⇒(Ǎ ∪ B̌) ∈ B.
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Definition 1.5. Let X be a real vector space and let B be a bornology on X. B is called a vector bornology,
if it provides the following conditions ([13]):

i) If B̌1, B̌2 ∈ B then B̌1 + B̌2 ∈ Bwhere B̌1 + B̌2 =
{
x1 + x2 : x1 ∈ B̌1, x2 ∈ B̌2

}
ii) If B̌ ∈ B then λB̌ ∈ B for every λ ∈ R and

⋃
|λ|�1

λB̌ ∈ Bwhere λB̌ =
{
λx : x ∈ B̌

}
.

Example 1.6. The following families are bornologies on X.
1) The power set P(X).
2) B f =

{
B̌ ⊆ X : B̌ is finite

}
.

3) Bb =
{
B̌ ⊆ X : B̌ is bounded

}
.

Definition 1.7. Let (X, d) be a metric space and let the family B be a bornology on X. Take a net (Aλ)λ∈Λ of
non-empty subsets of X and a set A ⊆ X.

i) The net (Aλ)λ∈Λ is said to be lower bornological convergent to the set A, if for each ε > 0 and each
B̌ ∈ B there is a λ0 ∈ Λ such that we have

A ∩ B̌ ⊆ Aε
λ for every λ � λ0.

Then we write B− − lim Aλ = A.
ii) The net (Aλ)λ∈Λ is said to be upper bornological convergent to the set A, if for each ε > 0 and each

B̌ ∈ B there is a λ0 ∈ Λ such that we have

Aλ ∩ B̌ ⊆ Aε for every λ � λ0.

Then we write B+
− lim Aλ = A.

iii) If the net (Aλ)λ∈Λ is both lower bornological convergent and upper bornological convergent to the
set A then the net (Aλ)λ∈Λ is called bornological convergent to the set A. In this case, it is denoted by
B − lim Aλ = A (see [8, 17]).

2. Bornological Convergence in Topological Vector Spaces

In this section, we extend the concept of ε-enlargement for sets in metric spaces to the U-enlargement
concept in topological vector spaces and thus we define the concept of bornological convergence in topo-
logical vector spaces. We give some basic results about bornological convergence on topological vector
spaces.

Definition 2.1. Let (X, τ) be a TVS and let U be a neighborhood of θ. For A ⊆ X, the set

AU =
{
x ∈ X : x − y ∈ U for some y ∈ A

}
is called U-enlargement of the set A.

Some Properties of U-enlargement

Let (X, τ) be a TVS. Let U be a neighborhood of θ and let A,B ⊆ X.
1) If A ⊆ B then AU

⊆ BU.
2) (A ∪ B)U = AU

∪ BU.
3) (A ∩ B)U

⊆ AU
∩ BU.

4) Let U1 and U2 be two neighborhoods of θ. The following implication is provided:

U1 ⊆ U2 =⇒ AU1 ⊆ AU2 .
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Definition 2.2. Let (X, τ) be a TVS and let B be a bornology on X. Take a net (Aλ)λ∈Λ of non-empty subsets
of X and a set A ⊆ X.

i) The net (Aλ)λ∈Λ is said to be lower bornological convergent to the set A, if for each neighborhood U of
θ and each B̌ ∈ B there is a λ0 ∈ Λ such that we have

A ∩ B̌ ⊆ AU
λ for every λ ∈ Λ with λ � λ0

and then we write B− − lim Aλ = A.
ii) The net (Aλ)λ∈Λ is said to be upper bornological convergent to the set A, if for each neighborhood U

of θ and each B̌ ∈ B there is a λ0 ∈ Λ such that we have

Aλ ∩ B̌ ⊆ AU for every λ ∈ Λ with λ � λ0

and then we write B+
− lim Aλ = A.

iii) If the net (Aλ)λ∈Λ is both lower bornological convergent and upper bornological convergent to the
set A then the net (Aλ)λ∈Λ is called bornological convergent to the set A. In this case, it is denoted by
B − lim Aλ = A.

Example 2.3. Let (R, τ) be a TVS endowed with Euclidean topology τ and letB f be a bornology of all finite
subsets of R. The sequence (An)n∈N with An =

[
1
n , 1 + 1

n

]
is bornological convergent to the set A = [0, 1].

Indeed, let us take the neighborhoods U = (−ε, ε) ∈ N where ε > 0 and let B̌ ∈ B f .
Firstly, we will show that A ∩ B̌ ⊆ AU

n . The U-enlargement of An is AU
n = ( 1

n − ε, 1 + 1
n + ε). If x ∈ A ∩ B̌

then 0 ≤ x ≤ 1. The right side of the inequality

1
n
− ε < x < 1 +

1
n

+ ε

is provided for all n ∈N. For the left side, it must be

x >
1
n
− ε =⇒ n >

1
x + ε

.

Take N(x, ε) =
[[

1
x+ε

]]
+ 1 ∈N. A ∩ B̌ is finite set and so let us take

N = max
x∈A∩B̌

N(x, ε).

In this case, we get

1
n
− ε < x < 1 +

1
n

+ ε

for every n ≥ N and so x ∈ AU
n . Thus we have B−f − lim An = A.

Now, we will show that An ∩ B̌ ⊆ AU. The U-enlargement of A is AU = (−ε, 1 + ε). Let x ∈ An ∩ B̌. For
the inequality

−ε <
1
n
≤ x ≤ 1 +

1
n
< 1 + ε,

it must be provided

1
n
< ε =⇒ n >

1
ε

.

Hence, we get

An ∩ B̌ ⊆ AU

for every n ≥ N(ε) where N(ε) =
[[

1
ε

]]
+ 1 ∈N. Thus we have B+

f − lim An = A.
Consequently, we have B f − lim An = A.
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Example 2.4. Take
(
R2, τ

)
, where τ is the Euclidean topology . Let the sequence (An)n∈N be defined as

An =
{(

x, y
)

: y =
x
n

}
for each n ∈N. We get

B f − lim An = A and Bb − lim An = A

where A =
{(

x, y
)

: y = 0 and x ∈ R
}
.

In the following, we give an example of bornological convergence on a non-metrizable topological
vector space.

Example 2.5. Let X be the set of all functions defined from R to R, that is X = RR, and τpw be the topology
of pointwise convergence on X. It is known that

(
X, τpw

)
is a non-metrizable TVS. The zero element of this

space is the zero function defined as θ (x) = 0 for every x ∈ R. The family of sets of the form

W (θ, F, ε) =
{
1 ∈ X :

∣∣∣1 (x)
∣∣∣ < ε,∀x ∈ F

}
for ε > 0 and a finite subset F of R, forms a base at θ. Let B be any bornology on X. Let us take the net
(Aλ)λ∈R defined as Aλ = {χλ} for each λ ∈ R where

χλ (x) =

{
1 if x = λ
0 if x , λ

• Let A = {θ}. For every B̌ ∈ B, we have either A∩ B̌ = ∅ or A∩ B̌ = {θ}. Let U be an arbitrary neighborhood
of zero. Then there is an ε > 0 and a finite set F such that U ⊇W (θ, F, ε) =

{
1 ∈ X :

∣∣∣1 (x)
∣∣∣ < ε,∀x ∈ F

}
. Let us

take λ0 := max F. For every λ > λ0,

|θ (x) − χλ (x)| = |0 − 0| = 0 < ε for every x ∈ F

θ − χλ ∈W (θ, F, ε) ⊆ U

θ ∈ AU
λ =

{
f ∈ X : f − χλ ∈ U

}
Thus, we get A ∩ B̌ ⊆ AU

λ for every λ > λ0.
Similarly, we have either Aλ ∩ B̌ = ∅ or Aλ ∩ B̌ = {χλ} for every B̌ ∈ B and every λ ∈ R. Let U be

an arbitrary neighborhood of zero. Then there is an ε > 0 and a finite set F such that U ⊇ W (θ, F, ε) ={
1 ∈ X :

∣∣∣1 (x)
∣∣∣ < ε,∀x ∈ F

}
. Take λ0 := max F. For every λ > λ0,

|χλ (x) − θ (x)| = |0 − 0| = 0 < ε for every x ∈ F

χλ − θ ∈W (θ, F, ε) ⊆ U

χλ ∈ AU =
{
f ∈ X : f − θ ∈ U

}
Thus, we get Aλ ∩ B̌ ⊆ AU for every λ > λ0. Consequently, we have B − lim Aλ = A.
• Now, let’s examine the bornological convergence to the set Aλ∗ =

{
χλ∗

}
for a λ∗ ∈ R. For every

B̌ ∈ B, we have either Aλ∗ ∩ B̌ = ∅ or Aλ∗ ∩ B̌ =
{
χλ∗

}
. Let’s choose a set B̌0 ∈ B and a neighborhood

U0 = W (θ, F, ε0) =
{
1 ∈ X :

∣∣∣1 (x)
∣∣∣ < ε0,∀x ∈ F

}
of zero such that χλ∗ ∈ B̌0, λ∗ ∈ F (finite) and ε0 =

1
2

. For
every λ ∈ R with λ , λ∗,∣∣∣χλ∗ (λ∗) − χλ (λ∗)

∣∣∣ = |1 − 0| = 1 > ε0 for λ∗ ∈ F

χλ∗ − χλ < U0

χλ∗ < AU0
λ =

{
f ∈ X : f − χλ ∈ U0 for χλ ∈ Aλ

}
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Hence, we get Aλ∗ ∩ B̌0 * AU0
λ for every λ ∈ Rwith λ , λ∗, and soB−− lim Aλ , Aλ∗ . From this, we conclude

that B− − lim Aλ , Aλ∗ for every λ∗ ∈ R.
• Let us consider the bornology B f on X. Take the set Aλ∗ =

{
χλ∗

}
for a λ∗ ∈ R again. Let B̌ ∈ B f and

U be an arbitrary neighborhood of zero. Since B̌ is finite, the number of Aλ’s with Aλ ∩ B̌ , ∅ is zero or
finite. If it is zero then Aλ ∩ B̌ ⊆ AU

λ∗
is provided for all λ ∈ R. In other case, let λ0 be the largest of the λ’s

that satisfy Aλ ∩ B̌ , ∅. Hence, for every λ > λ0 we get Aλ ∩ B̌ = ∅ and so Aλ ∩ B̌ ⊆ AU
λ∗

. Therefore, we get
B

+
f − lim Aλ = Aλ∗ . Consequently, we have B+

f − lim Aλ = Aλ∗ for each λ∗ ∈ R.

Theorem 2.6. Let (X, τ) be a TVS and let B be a bornology on X. Let (Aλ)λ∈Λ be a net on X and let A,B ⊆ X.
i) If B− − lim Aλ = A and B ⊆ A then B− − lim Aλ = B.
ii) If B+

− lim Aλ = A and A ⊆ B then B+
− lim Aλ = B.

Proof. i) Since B− lim Aλ = A, for each B̌ ∈ B and each U ∈ N there is a λ0 ∈ Λ such that

A ∩ B̌ ⊆ AU
λ

for every λ � λ0. From B ⊆ A, we get B ∩ B̌ ⊆ A ∩ B̌ and so

B ∩ B̌ ⊆ AU
λ .

Thus we have B− lim Aλ = B.
ii) Since B+ lim Aλ = A, for each B̌ ∈ B and each U ∈ N there is a λ0 ∈ Λ such that

Aλ ∩ B̌ ⊆ AU

for every λ � λ0. From A ⊆ B, we get AU
⊆ BU and so

Aλ ∩ B̌ ⊆ BU.

Thus we have B+ lim Aλ = B.

Theorem 2.7. Let (X, τ) be a TVS and let B be a bornology on X. Let (Aλ)λ∈Λ and (Bλ)λ∈Λ be two nets of sets on X
and let A,B ⊆ X. If B − lim Aλ = A and B − lim Bλ = B then we have

B − lim(Aλ ∪ Bλ) = A ∪ B.

Proof. Take U ∈ N and B̌ ∈ B. From B − lim Aλ = A, there is a λ1 ∈ Λ such that

A ∩ B̌ ⊆ AU
λ and Aλ ∩ B̌ ⊆ AU (2)

for every λ � λ1. Similarly, from B − lim Aλ = B, there is a λ2 ∈ Λ such that

B ∩ B̌ ⊆ BU
λ and Bλ ∩ B̌ ⊆ BU (3)

for every λ � λ2. Take λ0 = sup {λ1, λ2}. From (2) and (3), for every λ � λ0 we get

(A ∩ B̌) ∪ (B ∩ B̌) ⊆ AU
λ ∪ BU

λ

(A ∪ B) ∩ B̌ ⊆ (Aλ ∪ Bλ)U

and

(Aλ ∩ B̌) ∪ (Bλ ∩ B̌) ⊆ AU
∪ BU

(Aλ ∪ Bλ) ∩ B̌ ⊆ (A ∪ B)U

From these two results, we have B − lim(Aλ ∪ Bλ) = A ∪ B.
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Theorem 2.8. Let (X, τ) be a TVS and let B1,B2 be two bornologies on X where B1 ⊆ B2. If B2 − lim Aλ = A then
B1 − lim Aλ = A.

Proof. Take U ∈ N and B̌ ∈ B1. From B1 ⊆ B2, we have B̌ ∈ B2. If B2 − lim Aλ = A then for U ∈ N and
B̌ ∈ B2 there is a λ0 ∈ Λ such that

A ∩ B̌ ⊆ AU
λ and Aλ ∩ B̌ ⊆ AU

for every λ � λ0. Since U ∈ N and B̌ ∈ B1 are arbitrary sets, we also get B1 − lim Aλ = A.

Theorem 2.9. Let (X, τ) be a TVS and let B be a bornology on X. Let (Aλ)λ∈Λ, (Bλ)λ∈Λ and (Cλ)λ∈Λ be three nets of
sets on X where

Aλ ⊆ Bλ ⊆ Cλ

for every λ ∈ Λ. If

B − lim Aλ = B − lim Cλ = A

then we have

B − lim Bλ = A.

Proof. Take U ∈ N and B̌ ∈ B.
From B− − lim Aλ = A, there is a λ1 ∈ Λ such that

A ∩ B̌ ⊆ AU
λ ⊆ BU

λ (4)

for every λ � λ1. From B+
− lim Cλ = A, there is a λ2 ∈ Λ such that

Cλ ∩ B̌ ⊆ AU

for every λ � λ2, and from Bλ ⊆ Cλ we get

Bλ ∩ B̌ ⊆ AU (5)

for every λ � λ2. From (4) and (5), we have B − lim Bλ = A.

Theorem 2.10. Let (X, τ1) and (X, τ2) be two TVS where τ1 ⊆ τ2 and let B be a bornology on X. Let (Aλ)λ∈Λ be a
net on X and let A ⊆ X. If B − lim Aλ = A in (X, τ2) then B − lim Aλ = A in (X, τ1).

Proof. Let θ1 and θ2 be the zero of (X, τ1) and (X, τ2), respectively. LetN1 andN2 be a base of neighborhoods
of θ1 and θ2, respectively. Let B − lim Aλ = A in (X, τ2). Take B̌ ∈ B and U1 ∈ N1. From τ1 ⊆ τ2, there is an
U2 ∈ N2 such that U2 ⊆ U1. From B − lim Aλ = A in (X, τ2), there is a λ0 ∈ Λ such that

A ∩ B̌ ⊆ AU2
λ and Aλ ∩ B̌ ⊆ AU2

for every λ � λ0. From U2 ⊆ U1, we have AU2
λ ⊆ AU1

λ and AU2 ⊆ AU1 . Then we get

A ∩ B̌ ⊆ AU1
λ and Aλ ∩ B̌ ⊆ AU1

for every λ � λ0. Consequently, we have B − lim Aλ = A in (X, τ1).

Theorem 2.11. Let (X, τ) be a TVS and let B be a bornology on X. Let (Λ,�) and (M,4) be two directed sets. Let
(Aλ)λ∈Λ be a net on X, let

(
Aλµ

)
µ∈M

be a subnet of (Aλ) and let A ⊆ X. If B − lim Aλ = A then B − lim Aλµ = A.

Proof. Take B̌ ∈ B and U ∈ N . If B − lim Aλ = A then there is a λ0 ∈ Λ such that

A ∩ B̌ ⊆ AU
λ and Aλ ∩ B̌ ⊆ AU

for every λ � λ0. There is a λµ0 ∈ Λ such that λ0 � λµ0 and µ0 ∈ M. Then for every µ < µ0 we have
λµ � λµ0 � λ0 and so

A ∩ B̌ ⊆ AU
λµ

and Aλµ ∩ B̌ ⊆ AU.

Consequently, we have B − lim Aλµ = A.
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3. Filter Bornological Convergence

The concept of bornological convergence in the previous section is generalized to the concept of filter
bornological convergence by means of filters defined on natural numbers in this section. Some results are
given on the filter bornological convergence.

Definition 3.1. Let (X, τ) be a TVS, let B be a bornology on X and let F be a filter on N. Let (An)n∈N be a
sequence of non-empty subsets of X and let A ⊆ X.

i) The sequence (An)n∈N is said to be filter lower bornological convergent to the set A, if for each
neighborhood U of θ and each B̌ ∈ Bwe have{

n ∈N : A ∩ B̌ ⊆ AU
n

}
∈ F

and then we write FB−-lim An = A.
ii) The sequence (An)n∈N is said to be filter upper bornological convergent to the set A, if for each

neighborhood U of θ and each B̌ ∈ Bwe have{
n ∈N : An ∩ B̌ ⊆ AU

}
∈ F

and then we write FB+-lim An = A.
iii) If the sequence (An)n∈N is both filter lower bornological convergent and filter upper bornological

convergent to the set A, that is, for each neighborhood U of θ and each B̌ ∈ Bwe have{
n ∈N : A ∩ B̌ ⊆ AU

n and An ∩ B̌ ⊆ AU
}
∈ F

then the sequence (An)n∈N is called filter bornological convergent to the set A. In this case, it is denoted by
FB − lim An = A.

When the Fréchet filter Fr is considered, FrB−convergence is equivalent to bornological convergence
on the sequence of sets.

Example 3.2. Take a sequence (An)n∈N defined as

An =


{(

x, y
)
∈ R2 : |x| +

∣∣∣y∣∣∣ = 1
}

,n ∈ P{(
x, y

)
∈ R2 : |x| +

∣∣∣ny − n2
∣∣∣ = n2

}
,n < P

and take A =
{(

x, y
)
∈ R2 : y = 0

}
.

Figure 1:
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The sequence (An)n∈N is not B f -convergent and Bb-convergent to A, but we have FstB f − lim An = A and
FstBb − lim An = A.

Theorem 3.3. Let (X, τ) be a TVS, let B be a bornology on X and let F1 and F2 be two filter onN, where F1 ⊆ F2.
If F1B − lim An = A then F2B − lim An = A.

Proof. Take B̌ ∈ B and U ∈ N . From F1B − lim An = A, we have{
n ∈N : A ∩ B̌ ⊆ AU

n and An ∩ B̌ ⊆ AU
}
∈ F1.

From F1 ⊆ F2, we get{
n ∈N : A ∩ B̌ ⊆ AU

n and An ∩ B̌ ⊆ AU
}
∈ F2.

Thus we get F2B − lim An = A.

Theorem 3.4. Let (X, τ) be a TVS, let B be a bornology on X and let F be a filter onN. Let A ⊆ B.
i) If FB− − lim An = B then FB− − lim An = A.
ii) If FB+

− lim An = A then FB+
− lim An = B.

Proof. i) Let us assume that FB− − lim An = B. Take B̌ ∈ B and U ∈ N . Then we have{
n ∈N : B ∩ B̌ ⊆ AU

n

}
∈ F .

From A ⊆ B, we get{
n ∈N : B ∩ B̌ ⊆ AU

n

}
⊆

{
n ∈N : A ∩ B̌ ⊆ AU

n

}
and so{

n ∈N : A ∩ B̌ ⊆ AU
n

}
∈ F .

Thus we get FB− − lim An = A.
ii) Let us assume that FB+

− lim An = A. Take B̌ ∈ B and U ∈ N . Then we have{
n ∈N : An ∩ B̌ ⊆ AU

}
∈ F .

From A ⊆ B, we get{
n ∈N : An ∩ B̌ ⊆ AU

}
⊆

{
n ∈N : An ∩ B̌ ⊆ BU

}
and so{

n ∈N : An ∩ B̌ ⊆ BU
}
∈ F

Thus we get FB+
− lim An = B.

Theorem 3.5. Let (X, τ) be a TVS, let B1 and B2 be two bornologies on X where B1 ⊆ B2, and let F be a filter on
N. If FB2 − lim An = A then FB1 − lim An = A.

Proof. Take B̌ ∈ B1 and U ∈ N . If B1 ⊆ B2 then B̌ ∈ B2. From FB2 − lim An = A, we have{
n ∈N : A ∩ B̌ ⊆ AU

n and An ∩ B̌ ⊆ AU
}
∈ F .

Then for each B̌ ∈ B1 and each U ∈ N , the above set is an element of the filterF . We getFB1−lim An = A.
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Theorem 3.6. Let (X, τ1) and (X, τ2) be two TVS where τ1 ⊆ τ2, let B be a bornology on X and let F be a filter on
N. If FB − lim An = A in (X, τ2) then FB − lim An = A in (X, τ1).

Proof. Let θ1 and θ2 be the zero of (X, τ1) and (X, τ2), respectively. LetN1 andN2 be a base of neighborhoods
of θ1 and θ2, respectively. Let FB − lim An = A in (X, τ2). Take B̌ ∈ B and U1 ∈ N1. From τ1 ⊆ τ2, there is
an U2 ∈ N2 such that U2 ⊆ U1. From FB − lim An = A in (X, τ2), we have

F2 =
{
n ∈N : A ∩ B̌ ⊆ AU2

n and An ∩ B̌ ⊆ AU2
}
∈ F .

From U2 ⊆ U1, we have AU2
n ⊆ AU1

n for every n ∈N and AU2 ⊆ AU1 . We get F2 ⊆ F1 where

F1 =
{
n ∈N : A ∩ B̌ ⊆ AU1

n and An ∩ B̌ ⊆ AU1
}

.

From F2 ∈ F , it must be F1 ∈ F . Consequently, we have FB − lim An = A in (X, τ1).

Theorem 3.7. Let (X, τ) be a TVS, let B be a bornology on X and let F be a filter onN. Let (An)n∈N,(Bn)n∈N and
(Cn)n∈N be three sequences of sets on X where

An ⊆ Bn ⊆ Cn

for every n ∈N. If

FB − lim An = FB − lim Cn = A

then we have

FB − lim Bn = A.

Proof. Take U ∈ N and B̌ ∈ B. From FB − lim An = A, we have

F1 =
{
n ∈N : A ∩ B̌ ⊆ AU

n and An ∩ B̌ ⊆ AU
}
∈ F .

Similarly, from FB − lim Cn = A, we have

F2 =
{
n ∈N : A ∩ B̌ ⊆ CU

n and Cn ∩ B̌ ⊆ AU
}
∈ F .

Let F3 = F1 ∩ F2 ∈ F . We get

A ∩ B̌ ⊆ AU
n ⊆ BU

n and Bn ∩ B̌ ⊆ Cn ∩ B̌ ⊆ AU

for each n ∈ F3. Then we get{
n ∈N : A ∩ B̌ ⊆ BU

n and Bn ∩ B̌ ⊆ AU
}
⊇ F3 ∈ F

and so{
n ∈N : A ∩ B̌ ⊆ BU

n and Bn ∩ B̌ ⊆ AU
}
∈ F .

Consequently, we have FB − lim Bn = A.

Theorem 3.8. Let (X, τ) be a TVS, let B be a bornology on X and let F be a filter onN. Let (An)n∈N and (Bn)n∈N be
two sequences of non-empty subsets of X and let A,B ⊆ X. If FB− lim An = A and FB− lim Bn = B then we have

FB − lim(An ∪ Bn) = A ∪ B.
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Proof. Take U ∈ N and B̌ ∈ B. From FB − lim An = A, we have

F1 =
{
n ∈N : A ∩ B̌ ⊆ AU

n and An ∩ B̌ ⊆ AU
}
∈ F .

Similarly, from FB − lim Bn = B, we have

F2 =
{
n ∈N : B ∩ B̌ ⊆ BU

n ve Bn ∩ B̌ ⊆ BU
}
∈ F .

Let F = F1 ∩ F2. For each n ∈ F we get

(A ∩ B̌) ∪ (B ∩ B̌) ⊆ AU
n ∪ BU

n

(A ∪ B) ∩ B̌ ⊆ (An ∪ Bn)U

and

(An ∩ B̌) ∪ (Bn ∩ B̌) ⊆ AU
∪ BU

(An ∪ Bn) ∩ B̌ ⊆ (A ∪ B)U.

Then we get{
n ∈N : (A ∪ B) ∩ B̌ ⊆ (An ∪ Bn)U and (An ∪ Bn) ∩ B̌ ⊆ (A ∪ B)U

}
⊇ F ∈ F

and so{
n ∈N : (A ∪ B) ∩ B̌ ⊆ (An ∪ Bn)U and (An ∪ Bn) ∩ B̌ ⊆ (A ∪ B)U

}
∈ F .

Thus we have FB − lim(An ∪ Bn) = A ∪ B.
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