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Abstract. The upcoming article aims to investigate almost Riemann solitons and gradient almost Riemann
solitons in a LP-Sasakian manifold M?. At first, it is proved that if (g, Z, A) be an almost Riemann soliton on
a LP-Sasakian manifold M?, then it reduces to a Riemann soliton, provided the soliton vector Z has constant
divergence. Also, we show that if Z is pointwise collinear with the characteristic vector field &, then Z is
a constant multiple of &, and the ARS reduces to a Riemann soliton. Furthermore, it is proved that if a
LP-Sasakian manifold M? admits gradient almost Riemann soliton, then the manifold is a space form. Also,
we consider a non-trivial example and validate a result of our paper.

1. Introduction

The idea of Ricci flow was introduced by Hamilton [5] and defined by a% g(t) = =25(t), where S denotes
the Ricci tensor.

As a natural generalization, the concept of Riemann flow ([14],[15]) is defined by %G(t) = —2Rg(t),

G = 1g ® g, where R is the Riemann curvature tensor and ® is Kulkarni-Nomizu product (executed as (see
Besse [2], p. 47),

(P@Q)X, Y, Z,W) = P(X, W)Q(Y,U) + P(Y, LNQAX, W)
—P(X, )Q(Y, W) = P(Y, W)Q(X, ).

Similar to Ricci soliton, the interesting idea of Riemann soliton was introduced by Hirica and Udriste [6].
Analogous to Hirica and Udriste [6], a Lorentzian metric g on a Lorentzian manifold M is called a Riemann
solitons if there exists a C* vector field Z and a real scalar A such that

2R+ Ag®g+g®£79=0. 1)

On this occasion, we should mention that the space of constant sectional curvature is generalized by the

Riemann soliton. If the vector field Z is the gradient of the potential function y, then the manifold is called
gradient Riemann soliton. Then the foregoing equation can be written as

2R+ Ag®g+g®V?y =0, 2)
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where V2f denotes the Hessian of y. If we modified the equation (1) and (2) by fixing the condition on
the parameter A to be a variable function, then it reduces to ARS and gradient ARS respectively. Here the
terminology “almost Riemann solitons” is written as ARS which will be applied throughout the article.

A general idea of Lorentzian para-Sasakian (briefly LP-Sasakian) manifold has been introduced by K.
Matsumoto [7],in 1989 and several geometers in different context ([1], [8], [9], [10]) have studied LP-Sasakian
manifolds. Riemann solitons and gradient Riemann solitons on Sasakian manifolds have been discussed
in detail by Hirica and Udriste (see, [6]). Moreover, Riemann’s soliton concerning infinitesimal harmonic
transformation was investigated in [13]. Here it is appropriate to notice that Sharma in [11] investigated
almost Ricci soliton in K-contact geometry and in [12], with divergence-free soliton vector field. Very
recently in [4], the authors studied Riemann soliton within the framework of a contact manifold and proved
various fascinating results.

The above studies motivate us to investigate an ARS and the gradient ARS in a 3-dimensional LP-Sasakian
manifold.

The upcoming article is structured as follows: In section 2, we recall some fundamental facts and
formulas of LP-Sasakian manifolds, which will be needed in later sections. Beginning from Section 3, after
providing the proof, we will write our prime theorems. This article terminates with a concise bibliography
which has been used during the formulation of the upcoming article.

2. LP-Sasakian manifolds

Let 1, &, ¢ are tensor fields on a smooth manifold M” of types (0,1), (1,0) and (1,1) respectively, such that

&) =-1,  ¢*E=E+nE)]. 3)
The foregoing equations imply that

=0, no¢p=0. (4)
Then M" admits a Lorentzian metric g of type (0,2) such that

g(E, &) =n(E),  g(@E,F) = g(E, F) + n(E)(F) )

for any vector fields E, F. Then the structure (1, &, ¢, g) is called Lorentzian almost para-contact structure.
The manifold M" equipped with a Lorentzian almost para-contact structure (1, &, ¢, g) is called a Lorentzian
almost para-contact manifold(briefly LAP-manifold).

If we denote @(E, F) = g(E, ¢F), then we obtain [7]
O(E, F) = g(E, ¢F) = g(E, F) = O(F, E), (6)

where E, F are any vector fields.
An LAP-manifold M" equipped with the structure (1, &, ¢, g) is said to be a Lorentzian para-contact mani-
fold(briefly LP-manifold) if

OE, ) = S((Ven)F + (Ve ”)

where @ is defined by (6) and V indicates the covariant differentiation operator with respect to the Lorentzian
metric g. A Lorentzian almost para-contact manifold M” is said to be a LP-Sasakian manifold if it satisfies

(VEQ)F = n(F)E + g(E, F)£ + 2n(E)n(F)<. (8)
Also since the vector field, 7 is closed in an LP-Sasakian manifold we have
(VenF = O(E, F) = g(E, ¢F), P(E,&) =0, Veé=¢E. ©)

Furthermore, we find that the eigen values of ¢ are -1, 0 and 1. Here the multiplicity of 0 is one. Let us
assume that the multiplicities of -1 and 1 are k and [ respectively. Then we get, trace(¢) = | — k. Hence, if
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(trace())* = (n — 1), then either /= 0 or k =0. Then the structure is called a trivial LP-Sasakian structure.
Throughout this article we presume that trace(¢) # 0, i.e., £ is not harmonic.

Let us presume that {¢;} be an orthonormal basis such that e; = . Then the well-known Ricci tensor S
and the scalar curvature r are defined by

n

S(E,F) =) eig(Re;, E)E,e:)

i=1

and

n

r= Z €iS(ei, e),

i=1

where we pute; = g(e¢;, ¢;), thatis,e; =-l,ep=-- -=¢, =1.
Also in an LP-Sasakian manifold M", the subsequent relations hold ([1], [7], [10]):
N(R(E, F)Z) = g(F, Z)n(E) — g(E, Z)n(F), (10)
R(E,F)¢ = n(F)E — n(E)F, (11)
R(&, E)F = g(E, F) — n(F)E, (12)
S(E/ E) = (7’1 - 1)7](E), (13)
Ven =0, (14)

for any vector fields E, F, Z where R is the Riemannian curvature tensor, S is the Ricci tensor and V is the
Levi-Civita connection associated to the metric g.
It is well-known that a 3-dimensional Riemannian manifold M assumes the following curvature form

R(E,F)Z = ¢(FZ)QE - g(E, Z)QF + S(E, Z)E — S(E, Z)F
—ngDE—mEZWL (15)

for any vector fields E, F, Z where Q is the Ricci operator, i.e., g(QE, F) = S(E, F) and r is the scalar curvature
of the manifold. Replacing F=Z=¢ in the previous equation and utilizing (11) and (13) we get (see [10])

QF = 31(r 2 + (- 6)(B)E] (16)
In view of (16) the Ricci tensor is written as
S(E,F) = 310~ 209(E, ) + (= 6yn(En(P)]. 17)
Using (17) and (16) in (15), we deduce
RERZ = g6 2)E - 90,2
~6
ok (e - o(E, 2P
+n(EM)E = n(ENZ)F) (18)

We first prove the following Lemma:
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Lemma 2.1. Let M3 be a LP-Sasakian manifold. Then we have

&r = =2(r — 6)trace(¢). (19)
Proof. The equation (16) can be rewritten as:
1
QF = 5[(r —2)F + (r — 6)n(F)E]. (20)
Taking covariant derivative along E and recall'mg (9) we write
E E
(V:QF = %P B pe + 2k ppre
e @1
Taking inner product operatlon with respect to Z in the foregoing equation, we obtain
E E
e E2) = o2+ ez + L2 0m2)
=9 g0k, 2). @)

Putting E = Z = ¢; (Where {e,-} is an orthonormal basis for the tangent space of M> and taking Y 7,1 <i < 3)
in the above equation and utilizing the formula of Riemannian manifolds divQ = 1grad r, we obtain

(ENn(F) = =2(r — 6)n(F)trace(). (23)
Substituting F = £ in the above equation we get the desired result. This finishes the proof. [
If an LP-Sasakian manifold M? is a space of constant curvature, then the manifold is said to be a space form.

Lemma 2.2. (Lemma. 1.1 of [10]) A 3-dimensional LP-Sasakian manifold is a space form if and only if the scalar
curvature r = 6.

Lemma 2.3. (Lemma. 3.8 of [4]) For any vector fields E, F on M®, for a gradient ARS (M, g,,m, A), we have

R(E,F)Dy = (VFQ)E - (VEQ)F
+{F(QA + AY)E — EQA + Ay)F), (24)

where Ay = div Dy, A is the Laplacian operator.

3. ARS on 3-dimensional LP-Sasakian manifolds

We consider a 3-dimensional para-Sasakian manifold M admitting an ARS defined by(1). Using Kulkarni-
Nomizu product in (1) we write

2R(E,E W, X) + 2Mg(E, X)g(F, W) — g(E, W)g(F, X)}
+ {g(E, X)(£z9)(F, W) + g(F, W)(Ez9)(E, X)
—  g(E, W)(Ez9)(E, X) — g(F, X)(£zg)(E, W)} = 0. (25)

Contracting (25) over E and X, we get

(E£zg)(F, W) + 25(E, W) + (4A + 2divZ)g(F, W) = 0. (26)
Utilizing (17) in the above equation we obtain

(Ezg)EW) = —(r—2+4A +2divZ)g(F, W)
- (r=6nE)NW) =0. (27)
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Applying Z has constant divergence and executing covariant derivative along E, we lead

(VeEzg)(EW) = —[(Er) + 4EN)]g(E W)
= (EnnFE)n(W)
= (r=6)[g(¢pE, F)n(W) + g(¢pE, W)n(F)] = 0.

Now we recall the formula by Yano (see, [16]):
(E2VEg = Ve£zg = Vizeg)(E W) = —g((EzV)(E, F), W) = g((£2V)(E, W), F).
Hence by a straightforward calculation, we infer
(Ve£zg)(E, W) = g((£2V)(E, F), W) + g((EzV)(E, W), F).
Using symmetric property of ££V , it reveals from (29) that
9((EzV)(E, F), W)
= S(TEEL9)E W) + 3 (ViE2g)(E, W) = 2 (Vwzg)(E, F).
Utilizing (28) in (30) we obtain
29((EzV)(E, F), W)

—[(Er) + 4EM)]g(E, W) = (Er)n(F)n(W)
= (r=6)[g(pE, F)n(W) + g(¢E, W)n(F)]
- [(Fr) + 4(FM)]g(E, W) — (Fr)n(E)n(W)
= (r=6)[g(¢F, E)n(W) + g(¢F, W)n(E)]
+  [(Wr) + 4WA)Ig(E, F) + (Wr)n(E)n(F)
= (r=6)[g(eW, E)n(F) + g(¢W, F)n(E)].

3763

(28)

(29)

(30)

(B1)

After substituting E = F = ¢; in the foregoing equation and removing Z from both sides, where {e;} is an
orthonormal basis of the tangent space at each point of the manifold and taking )" i, 1 <i < 3, we have

(£2V)(ei,e) = 2DA — (EnE = 2(r — 6)trace(P)E,

where Ea = g(Da, E), D denotes the gradient operator with respect to g.
Now differentiating(1) and utilizing it in (29) we can easily determine

9((EzV)(E, F), W) = (VwS)(E, F) = (VES)(E, W) = (VES)(E, W).

Taking E = F = ¢; (where {¢;} is an orthonormal frame) in (33) and summing over i we obtain

(EzV)(ei,ei) = O,

for all vector fields Z. Combining (32) and (34) gives
—2DA + (&r)& + 2(r — 6)trace(p)E = 0.

Utilizing (19) in the previous equation, we get
DA =0.

This implies that A is constant. This leads to the following theorem:

(32)

(33)

(34)

(35)

(36)

Theorem 3.1. If the soliton vector Z has constant divergence in a LP-Sasakian manifold M>, then an ARS reduces

to a Riemann soliton.



K. De / Filomat 35:11 (2021), 3759-3766 3764

Now let the potential vector field Z be point-wise collinear with the characteristic vector field & (i.e.,
Z = b, where b is a function on M?)and has constant divergence. Therefore from (26) we lead

g(Vebé, F) + g(Vebé, E) + 2S(E, F) + 4Ag(E, F) = 0. (37)
Using (9) in (37), we get
(Eb)n(F) + (Eb)n(E) + 2S(E, F) + (4A + 2divZ)g(E, F) = 0. (38)

Putting F = £ in (38) yields

—(Eb) + (Eb)n(E) + 4n(E) + (4A + 2divZ)n(E) = 0. (39)
Putting E = £ in (39) we have

(&b) = 2A + divZ - 2). (40)
Putting the value of &b in (39) gives

db = —(6A + 3divZ + 2)n. (41)
Operating (41) by d and utilizing Poincare lemma d?> =0, we infer

0 = d’b = —(6A + 3divZ + 2)dn — 6dAn. (42)
Executing wedge product of (42) with 77, we have

—(6A + 3divZ +2)n Adn = 0. (43)

Since 17 A dny # 0 in a LP-Sasakian manifold M?, therefore
1
A= —(%din + 5). (44)
Using (44) in (41) gives db = O i.e., b =constant. Also from (32) we obtain

A= —(%din + %) = constant. (45)

Hence we write the following:

Theorem 3.2. If the metric of a LP-Sasakian manifold M® is ARS and Z is pointwise collinear with & and has
constant divergence, then Z is a constant multiple of &£ and the ARS reduces to a Riemann soliton.

Corollary 3.3. If a LP-Sasakian manifold M® admits an ARS of type (g, &), then the ARS reduces to a Riemann
soliton.

4. Gradient Almost Riemann soliton

This section is devoted to investigate a LP-Sasakian manifold M> admitting gradient ARS. Now before
producing the detailed proof of our main theorems, we first write the following results without proof (Since
the result can be obtained directly from (21)):

Lemma 4.1. For a LP-Sasakian manifold M3, we have

(VEQ)E = ~(5 = )YE, (VeQIE = ~2(r = O)trace@[E + (E)E] (46)
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Replacing F by & in (24) and utilizing the foregoing Lemma, we obtain
REEDy = (5= 20— 6)traced[E + n(E)E]
+EQA + AY)E — EQA + A)E). (47)

Then using (8), we infer

g(E,Dy + DQA + Ay))E = (% — 3)QE — 2(r — 6)tracep[E + n(E)E]

H(EY) + EQ2A + AY)IE. (48)
Executing the inner product of the previous equation with & gives
E(y + 2A +27)) = {(&y) + E2A + Ay)in(E), (49)
from which easily we obtain
d(y + @A+ ay)) = {(E)) + E2A+ 27)n, (50)

where d indicates the exterior derivative. From the previous equation we see that y + (24 + Ay) is invariant
along the distribution O . In other terms, E(y + (2A + Ay)) = 0 for any E € D. Using (49) in (48), we lead

{(&y) + E2A + ap)lIn(E)é - E] (51)
- (g — 3)OE — 2(r — 6)traced[E + n(E)E].

Contracting the above equation yields

(&) +E2A+ap)} = 0. (52)
Utilizing (52) in (51), we get
(r — 6){E — 4tracep[E + n(E)E]} = 0. (53)

If {¢E — 4trace[E + n(E)E]} = 0, operating ¢ we can easily obtain ¢p?E = 4trace¢p (¢E), which is obviously a
contradiction. Thus we have r = 6. Hence by Lemma 2.2, the manifold is a space form.
Hence we write the following;:

Theorem 4.2. If a LP-Sasakian manifold M> admits a gradient ARS, then the manifold is a space form.

5. Example

Here we consider a known example of our paper [3]. In this article, we considers a 3-dimensional
manifold M = {(, v, w) € R®,w # 0} and The vector fields

w w, d 0 d
ep=e'—, ea=e (@"‘%)I =5

Jvu

are linearly independent at each point of M and shows that the manifold is a LP-Sasakian manifold. Further,
the well-known Koszul’s formula gives

th161 = _63’ V6162 = O/ V(5163 = _51/
Vs,00 =0, Vs,00 = =03, Vo,03 = —02,
V5361 = 0/ V6362 = 0/ V6363 = 0. (54)

Also, we have obtained the expressions of the curvature tensor and the Ricci tensor, respectively, as follows:
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R(61,62)03 =0, R(02,03)03 = =02, R(61,03)03 = —01,
R(01,02)00 = 61, R(02,03)02 = =03, R(61,03)02 =0,
R(61,62)01 = =02, R(02,03)01 =0, R(61,03)01 = =03,

and

5(61,01) g(R(61,62)02,61) — g(R(51,63)03,01)

= 2

Similarly we have
5(02,02) = 2,5(83,03) = =2

and
5(6i,06;) = 0( # ).

Therefore,
7= 5(01,01) + S(62,62) — 5(63, 03) = 6.

From the expressions of the Ricci tensor, we find that M is an Einstein manifold.
Suppose f : M® = R be a smooth function such that f = w. Then we can obtain

d
Df:%:da,.

Using (54) we get
Hessf(63,03) = 0.

Thus from (2) we can easily see that g is a gradient Riemann soliton with f = w and A = —1. Hence the
Theorem 4.2. is verified.
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