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Abstract. The upcoming article aims to investigate almost Riemann solitons and gradient almost Riemann
solitons in a LP-Sasakian manifold M3. At first, it is proved that if (1,Z, λ) be an almost Riemann soliton on
a LP-Sasakian manifold M3, then it reduces to a Riemann soliton, provided the soliton vector Z has constant
divergence. Also, we show that if Z is pointwise collinear with the characteristic vector field ξ, then Z is
a constant multiple of ξ, and the ARS reduces to a Riemann soliton. Furthermore, it is proved that if a
LP-Sasakian manifold M3 admits gradient almost Riemann soliton, then the manifold is a space form. Also,
we consider a non-trivial example and validate a result of our paper.

1. Introduction

The idea of Ricci flow was introduced by Hamilton [5] and defined by ∂
∂t
1(t) = −2S(t), where S denotes

the Ricci tensor.
As a natural generalization, the concept of Riemann flow ([14],[15]) is defined by ∂

∂t
G(t) = −2R1(t),

G = 1
21 ⊗ 1, where R is the Riemann curvature tensor and ⊗ is Kulkarni-Nomizu product (executed as (see

Besse [2], p. 47),
(P ⊗Q)(X,Y,Z,W) = P(X,W)Q(Y,U) + P(Y,U)Q(X,W)

−P(X,U)Q(Y,W) − P(Y,W)Q(X,U)).

Similar to Ricci soliton, the interesting idea of Riemann soliton was introduced by Hirica and Udriste [6].
Analogous to Hirica and Udriste [6], a Lorentzian metric 1 on a Lorentzian manifold M is called a Riemann
solitons if there exists a C∞ vector field Z and a real scalar λ such that

2R + λ1 ⊗ 1 + 1 ⊗ £Z1 = 0. (1)

On this occasion, we should mention that the space of constant sectional curvature is generalized by the
Riemann soliton. If the vector field Z is the gradient of the potential function γ, then the manifold is called
gradient Riemann soliton. Then the foregoing equation can be written as

2R + λ1 ⊗ 1 + 1 ⊗ ∇2γ = 0, (2)
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where ∇2 f denotes the Hessian of γ. If we modified the equation (1) and (2) by fixing the condition on
the parameter λ to be a variable function, then it reduces to ARS and gradient ARS respectively. Here the
terminology “almost Riemann solitons” is written as ARS which will be applied throughout the article.

A general idea of Lorentzian para-Sasakian (briefly LP-Sasakian) manifold has been introduced by K.
Matsumoto [7], in 1989 and several geometers in different context ([1], [8], [9], [10]) have studied LP-Sasakian
manifolds. Riemann solitons and gradient Riemann solitons on Sasakian manifolds have been discussed
in detail by Hirica and Udriste (see, [6]). Moreover, Riemann’s soliton concerning infinitesimal harmonic
transformation was investigated in [13]. Here it is appropriate to notice that Sharma in [11] investigated
almost Ricci soliton in K-contact geometry and in [12], with divergence-free soliton vector field. Very
recently in [4], the authors studied Riemann soliton within the framework of a contact manifold and proved
various fascinating results.

The above studies motivate us to investigate an ARS and the gradient ARS in a 3-dimensional LP-Sasakian
manifold.

The upcoming article is structured as follows: In section 2, we recall some fundamental facts and
formulas of LP-Sasakian manifolds, which will be needed in later sections. Beginning from Section 3, after
providing the proof, we will write our prime theorems. This article terminates with a concise bibliography
which has been used during the formulation of the upcoming article.

2. LP-Sasakian manifolds

Let η, ξ, φ are tensor fields on a smooth manifold Mn of types (0,1), (1,0) and (1,1) respectively, such that

η(ξ) = −1, φ2E = E + η(E)ξ. (3)

The foregoing equations imply that

φξ = 0, η ◦ φ = 0. (4)

Then Mn admits a Lorentzian metric 1 of type (0,2) such that

1(E, ξ) = η(E), 1(φE, φF) = 1(E,F) + η(E)η(F) (5)

for any vector fields E,F. Then the structure (η, ξ, φ, 1) is called Lorentzian almost para-contact structure.
The manifold Mn equipped with a Lorentzian almost para-contact structure (η, ξ, φ, 1) is called a Lorentzian
almost para-contact manifold(briefly LAP-manifold).

If we denote Φ(E,F) = 1(E, φF), then we obtain [7]

Φ(E,F) = 1(E, φF) = 1(φE,F) = Φ(F,E), (6)

where E, F are any vector fields.
An LAP-manifold Mn equipped with the structure (η, ξ, φ, 1) is said to be a Lorentzian para-contact mani-
fold(briefly LP-manifold) if

Φ(E,F) =
1
2
{(∇Eη)F + (∇Fη)E}, (7)

where Φ is defined by (6) and∇ indicates the covariant differentiation operator with respect to the Lorentzian
metric 1. A Lorentzian almost para-contact manifold Mn is said to be a LP-Sasakian manifold if it satisfies

(∇Eφ)F = η(F)E + 1(E,F)ξ + 2η(E)η(F)ξ. (8)

Also since the vector field, η is closed in an LP-Sasakian manifold we have

(∇Eη)F = Φ(E,F) = 1(E, φF), Φ(E, ξ) = 0, ∇Eξ = φE. (9)

Furthermore, we find that the eigen values of φ are -1, 0 and 1. Here the multiplicity of 0 is one. Let us
assume that the multiplicities of -1 and 1 are k and l respectively. Then we get, trace(φ) = l − k. Hence, if
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(trace(φ))2 = (n − 1), then either l= 0 or k =0. Then the structure is called a trivial LP-Sasakian structure.
Throughout this article we presume that trace(φ) , 0, i.e., ξ is not harmonic.

Let us presume that {ei} be an orthonormal basis such that e1 = ξ. Then the well-known Ricci tensor S
and the scalar curvature r are defined by

S(E,F) =

n∑
i=1

εi1(R(ei,E)F, ei)

and

r =

n∑
i=1

εiS(ei, ei),

where we put εi = 1(ei, ei), that is, ε1 = −1,ε2 = · · · = εn = 1.
Also in an LP-Sasakian manifold Mn, the subsequent relations hold ([1], [7], [10]):

η(R(E,F)Z) = 1(F,Z)η(E) − 1(E,Z)η(F), (10)

R(E,F)ξ = η(F)E − η(E)F, (11)

R(ξ,E)F = 1(E,F)ξ − η(F)E, (12)

S(E, ξ) = (n − 1)η(E), (13)

∇ξη = 0, (14)

for any vector fields E,F,Z where R is the Riemannian curvature tensor, S is the Ricci tensor and ∇ is the
Levi-Civita connection associated to the metric 1.
It is well-known that a 3-dimensional Riemannian manifold M assumes the following curvature form

R(E,F)Z = 1(F,Z)QE − 1(E,Z)QF + S(F,Z)E − S(E,Z)F

−
r
2

[1(F,Z)E − 1(E,Z)F], (15)

for any vector fields E,F,Z where Q is the Ricci operator, i.e., 1(QE,F) = S(E,F) and r is the scalar curvature
of the manifold. Replacing F=Z=ξ in the previous equation and utilizing (11) and (13) we get (see [10])

QE =
1
2

[(r − 2)E + (r − 6)η(E)ξ]. (16)

In view of (16) the Ricci tensor is written as

S(E,F) =
1
2

[(r − 2)1(E,F) + (r − 6)η(E)η(F)]. (17)

Using (17) and (16) in (15), we deduce

R(E,F)Z =
(r − 4)

2
{1(F,Z)E − 1(E,Z)F}

+
(r − 6)

2
{1(F,Z)η(E)ξ − 1(E,Z)η(F)ξ

+η(F)η(Z)E − η(E)η(Z)F}. (18)

We first prove the following Lemma:
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Lemma 2.1. Let M3 be a LP-Sasakian manifold. Then we have

ξr = −2(r − 6)trace(φ). (19)

Proof. The equation (16) can be rewritten as:

QF =
1
2

[(r − 2)F + (r − 6)η(F)ξ]. (20)

Taking covariant derivative along E and recalling (9) we write

(∇EQ)F =
(Er)

2
F +

(Er)
2
η(F)ξ +

(r − 6)
2
1(E, φF)ξ

+
(r − 6)

2
η(F)φE. (21)

Taking inner product operation with respect to Z in the foregoing equation, we obtain

1((∇EQ)F,Z) =
(Er)

2
1(F,Z) +

(Er)
2
η(F)η(Z) +

(r − 6)
2
1(E, φF)η(Z)

(r − 6)
2

η(F)1(φE,Z). (22)

Putting E = Z = ei (where {ei} is an orthonormal basis for the tangent space of M3 and taking
∑

i, 1 ≤ i ≤ 3 )
in the above equation and utilizing the formula of Riemannian manifolds divQ = 1

21rad r, we obtain

(ξr)η(F) = −2(r − 6)η(F)trace(φ). (23)

Substituting F = ξ in the above equation we get the desired result. This finishes the proof.

If an LP-Sasakian manifold M3 is a space of constant curvature, then the manifold is said to be a space form.

Lemma 2.2. (Lemma. 1.1 of [10]) A 3-dimensional LP-Sasakian manifold is a space form if and only if the scalar
curvature r = 6.

Lemma 2.3. (Lemma. 3.8 of [4]) For any vector fields E,F on M3, for a gradient ARS (M, 1, γ,m, λ), we have

R(E,F)Dγ = (∇FQ)E − (∇EQ)F
+{F(2λ + 4γ)E − E(2λ + 4γ)F}, (24)

where 4γ = div Dγ, 4 is the Laplacian operator.

3. ARS on 3-dimensional LP-Sasakian manifolds

We consider a 3-dimensional para-Sasakian manifold M admitting an ARS defined by(1). Using Kulkarni-
Nomizu product in (1) we write

2R(E,F,W,X) + 2λ{1(E,X)1(F,W) − 1(E,W)1(F,X)}
+ {1(E,X)(£Z1)(F,W) + 1(F,W)(£Z1)(E,X)
− 1(E,W)(£Z1)(F,X) − 1(F,X)(£Z1)(E,W)} = 0. (25)

Contracting (25) over E and X, we get

(£Z1)(F,W) + 2S(F,W) + (4λ + 2divZ)1(F,W) = 0. (26)

Utilizing (17) in the above equation we obtain

(£Z1)(F,W) = −(r − 2 + 4λ + 2divZ)1(F,W)
− (r − 6)η(F)η(W) = 0. (27)
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Applying Z has constant divergence and executing covariant derivative along E, we lead

(∇E£Z1)(F,W) = −[(Er) + 4(Eλ)]1(F,W)
− (Er)η(F)η(W)
− (r − 6)[1(φE,F)η(W) + 1(φE,W)η(F)] = 0. (28)

Now we recall the formula by Yano (see, [16]):

(£Z∇E1 − ∇E£Z1 − ∇[Z,E]1)(F,W) = −1((£Z∇)(E,F),W) − 1((£Z∇)(E,W),F).

Hence by a straightforward calculation, we infer

(∇E£Z1)(F,W) = 1((£Z∇)(E,F),W) + 1((£Z∇)(E,W),F). (29)

Using symmetric property of £F∇ , it reveals from (29) that

1((£Z∇)(E,F),W)

=
1
2

(∇E£Z1)(F,W) +
1
2

(∇F£Z1)(E,W) −
1
2

(∇W£Z1)(E,F). (30)

Utilizing (28) in (30) we obtain

21((£Z∇)(E,F),W) = −[(Er) + 4(Eλ)]1(F,W) − (Er)η(F)η(W)
− (r − 6)[1(φE,F)η(W) + 1(φE,W)η(F)]
− [(Fr) + 4(Fλ)]1(E,W) − (Fr)η(E)η(W)
− (r − 6)[1(φF,E)η(W) + 1(φF,W)η(E)]
+ [(Wr) + 4(Wλ)]1(E,F) + (Wr)η(E)η(F)
− (r − 6)[1(φW,E)η(F) + 1(φW,F)η(E)]. (31)

After substituting E = F = ei in the foregoing equation and removing Z from both sides, where {ei} is an
orthonormal basis of the tangent space at each point of the manifold and taking

∑
i, 1 ≤ i ≤ 3, we have

(£Z∇)(ei, ei) = 2Dλ − (ξr)ξ − 2(r − 6)trace(φ)ξ, (32)

where Eα = 1(Dα,E), D denotes the gradient operator with respect to 1.
Now differentiating(1) and utilizing it in (29) we can easily determine

1((£Z∇)(E,F),W) = (∇WS)(E,F) − (∇ES)(F,W) − (∇FS)(E,W). (33)

Taking E = F = ei (where {ei} is an orthonormal frame) in (33) and summing over i we obtain

(£Z∇)(ei, ei) = 0, (34)

for all vector fields Z. Combining (32) and (34) gives

−2Dλ + (ξr)ξ + 2(r − 6)trace(φ)ξ = 0. (35)

Utilizing (19) in the previous equation, we get

Dλ = 0. (36)

This implies that λ is constant. This leads to the following theorem:

Theorem 3.1. If the soliton vector Z has constant divergence in a LP-Sasakian manifold M3, then an ARS reduces
to a Riemann soliton.
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Now let the potential vector field Z be point-wise collinear with the characteristic vector field ξ (i.e.,
Z = bξ, where b is a function on M3)and has constant divergence. Therefore from (26) we lead

1(∇Ebξ,F) + 1(∇Fbξ,E) + 2S(E,F) + 4λ1(E,F) = 0. (37)

Using (9) in (37), we get

(Eb)η(F) + (Fb)η(E) + 2S(E,F) + (4λ + 2divZ)1(E,F) = 0. (38)

Putting F = ξ in (38) yields

−(Eb) + (ξb)η(E) + 4η(E) + (4λ + 2divZ)η(E) = 0. (39)

Putting E = ξ in (39) we have

(ξb) = (2λ + divZ − 2). (40)

Putting the value of ξb in (39) gives

db = −(6λ + 3divZ + 2)η. (41)

Operating (41) by d and utilizing Poincare lemma d2
≡0, we infer

0 = d2b = −(6λ + 3divZ + 2)dη − 6dλη. (42)

Executing wedge product of (42) with η, we have

−(6λ + 3divZ + 2)η ∧ dη = 0. (43)

Since η ∧ dη , 0 in a LP-Sasakian manifold M3, therefore

λ = −(
1
2

divZ +
1
3

). (44)

Using (44) in (41) gives db = 0 i.e., b =constant. Also from (32) we obtain

λ = −(
1
2

divZ +
1
3

) = constant. (45)

Hence we write the following:

Theorem 3.2. If the metric of a LP-Sasakian manifold M3 is ARS and Z is pointwise collinear with ξ and has
constant divergence, then Z is a constant multiple of ξ and the ARS reduces to a Riemann soliton.

Corollary 3.3. If a LP-Sasakian manifold M3 admits an ARS of type (1, ξ), then the ARS reduces to a Riemann
soliton.

4. Gradient Almost Riemann soliton

This section is devoted to investigate a LP-Sasakian manifold M3 admitting gradient ARS. Now before
producing the detailed proof of our main theorems, we first write the following results without proof (Since
the result can be obtained directly from (21)):

Lemma 4.1. For a LP-Sasakian manifold M3, we have

(∇EQ)ξ = −(
r
2
− 3)φE, (∇ξQ)E = −2(r − 6)traceφ[E + η(E)ξ]. (46)
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Replacing F by ξ in (24) and utilizing the foregoing Lemma, we obtain

R(E, ξ)Dγ = (
r
2
− 3)φE − 2(r − 6)traceφ[E + η(E)ξ]

+{ξ(2λ + 4γ)E − E(2λ + 4γ)ξ}. (47)

Then using (8), we infer

1(E,Dγ + D(2λ + 4γ))ξ = (
r
2
− 3)φE − 2(r − 6)traceφ[E + η(E)ξ]

+{(ξγ) + ξ(2λ + 4γ)}E. (48)

Executing the inner product of the previous equation with ξ gives

E(γ + (2λ + 4γ)) = {(ξγ) + ξ(2λ + 4γ)}η(E), (49)

from which easily we obtain

d(γ + (2λ + 4γ)) = {(ξγ) + ξ(2λ + 4γ)}η, (50)

where d indicates the exterior derivative. From the previous equation we see that γ+ (2λ+4γ) is invariant
along the distributionD . In other terms, E(γ + (2λ + 4γ)) = 0 for any E ∈ D. Using (49) in (48), we lead

{(ξγ) + ξ(2λ + 4γ)}[η(E)ξ − E] (51)

= (
r
2
− 3)φE − 2(r − 6)traceφ[E + η(E)ξ].

Contracting the above equation yields

{(ξγ) + ξ(2λ + 4γ)} = 0. (52)

Utilizing (52) in (51), we get

(r − 6){φE − 4traceφ[E + η(E)ξ]} = 0. (53)

If {φE − 4traceφ[E + η(E)ξ]} = 0, operating φ we can easily obtain φ2E = 4traceφ (φE), which is obviously a
contradiction. Thus we have r = 6. Hence by Lemma 2.2, the manifold is a space form.

Hence we write the following:

Theorem 4.2. If a LP-Sasakian manifold M3 admits a gradient ARS, then the manifold is a space form.

5. Example

Here we consider a known example of our paper [3]. In this article, we considers a 3-dimensional
manifold M = {(u, v,w) ∈ R3,w , 0} and The vector fields

e1 = ew ∂
∂v
, e2 = ew(

∂
∂u

+
∂
∂v

), e3 =
∂
∂w

are linearly independent at each point of M and shows that the manifold is a LP-Sasakian manifold. Further,
the well-known Koszul’s formula gives

∇δ1δ1 = −δ3, ∇δ1δ2 = 0, ∇δ1δ3 = −δ1,

∇δ2δ1 = 0, ∇δ2δ2 = −δ3, ∇δ2δ3 = −δ2,

∇δ3δ1 = 0, ∇δ3δ2 = 0, ∇δ3δ3 = 0. (54)

Also, we have obtained the expressions of the curvature tensor and the Ricci tensor, respectively, as follows:
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R(δ1, δ2)δ3 = 0, R(δ2, δ3)δ3 = −δ2, R(δ1, δ3)δ3 = −δ1,

R(δ1, δ2)δ2 = δ1, R(δ2, δ3)δ2 = −δ3, R(δ1, δ3)δ2 = 0,

R(δ1, δ2)δ1 = −δ2, R(δ2, δ3)δ1 = 0, R(δ1, δ3)δ1 = −δ3,

and

S(δ1, δ1) = 1(R(δ1, δ2)δ2, δ1) − 1(R(δ1, δ3)δ3, δ1)
= 2.

Similarly we have
S(δ2, δ2) = 2,S(δ3, δ3) = −2

and
S(δi, δ j) = 0(i , j).

Therefore,
r = S(δ1, δ1) + S(δ2, δ2) − S(δ3, δ3) = 6.

From the expressions of the Ricci tensor, we find that M is an Einstein manifold.
Suppose f : M3

→ R be a smooth function such that f = w. Then we can obtain

D f =
∂
∂w

= δ3.

Using (54) we get
Hess f (δ3, δ3) = 0.

Thus from (2) we can easily see that 1 is a gradient Riemann soliton with f = w and λ = −1. Hence the
Theorem 4.2. is verified.
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