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Abstract. This paper presents the regularity of a split-quaternionic function and a corresponding split-
Cauchy–Riemann system of a split quaternion. The properties of an inverse and an implicit mapping theory
for a split-quaternionic map are investigated. In addition, the paper proposes a definition and expression
for a split biregular mapping in an open set in C2. The obtained results are illustrated with some examples.

1. Introduction

The set of quaternions, introduced in 1843 by Hamilton [7], can be expressed as

H = q = x0 + x1i + x2 j + x3k | xr ∈ R (r = 0, 1, 2, 3)

with relations among i, j and k, satisfying

i2 = j2 = k2 = −1, i jk = −1.

From the relations among i, j and k, the set of quaternions is noncommutative division algebra. After then,
the set of split-quaternions introduced by Cockle [3] in 1849, as follows:

S = {z = x0 + x1i + x2 j + x3k | xr ∈ R, r = 0, 1, 2, 3},

where i2 = −1, j2 = k2 = 1 and i jk = 1. The set of split quaternions is also non-commutative. On the
other hand, it contains zero divisors, nilpotent elements, and nontrivial idempotents [17]. Recently, various
results have been obtained for the properties of split quaternions and split quaternionic functions. Because
split quaternions can be used to express Lorentzian rotations, split quaternionic equations [1, 6, 16, 17]
have been previously solved on geometric and physical applications of split quaternions. Furthermore,
using the properties of split quaternions, the modified split quaternions are derived which have a modified
and associated form with other algebras. For example, Kula et al. [16] proposed dual split quaternions
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and provided the screw motion in R3
1, using the properties of Hamilton operators. Kim and Shon [14]

provided a regular function with values in dual split quaternions and relations between a corresponding
Cauchy-Riemann system and a regularity of functions with values in dual split quaternions.

Various versions of the implicit function theorem have been presented so far. The history of the implicit
function theorem has been studied on algebraic geometry, real and complex power series, and differential
geometry. Furthermore, some developments have been made in the implicit function theorem and inverse
function theorem in terms of differentiable manifolds, Riemannian geometry, partial differential equations,
and numerical analysis. Krantz and Parks [15], Dontchev and Rockafellar [5], Hurwicz and Richter [8], and
Scarpello [20] presented many variants of the implicit function theorem with proofs and applications to
algebra, differential geometry, functional analysis, and other branches of mathematics. Complex variable
versions of the theorems were introduced by Krantz and Parks [15] and Burckel [2]. Oliveira [18] presented
simple proofs of the implicit and inverse function theorems on a finite-dimensional Euclidean space by
using the intermediate value theorem and mean value theorem.

We have previously investigated the corresponding Cauchy-Riemann systems and the regularity prop-
erties of a split-quaternion-valued function on a split-quaternionic variable [11–13]. Kilbas et al. [10]
provided the most developments on the calculus of integrals and derivatives of any arbitrary real or com-
plex order and fractional differential equations involving many different potentially useful operators of
fractional calculus and its applications (see [22]). Srivastava [21] proposed various operators of fractional-
order derivatives, as well as fractional-order integrals, provide several potentially useful tools for solving
differential and integral equations, and various other problems involving special functions of mathematical
physics. Based on these results, in this paper, section 2 provided a derivative operator based on the algebraic
properties of the split quaternion. The split quaternionic function was defined with a split quaternion as
a variable, and the split regularity was defined by using the previously defined derivative operator. A
Cauchy-Riemann system derived from the definition of split regularity was defined. The properties of
the defined split regularity for the algebraic operation were investigated. Section 3 investigated the im-
plicit split regular mapping, and the split regularity was presented and proved with respect to the inverse
mapping theorem. The results of the respect to the implicit theorem were summarized and verified. In
addition, examples of each theorem were presented to examine the use of the split regular function in the
split quaternion system.

2. Preliminaries

Let er (r = 0, 1, 2, 3) be the basis elements for the split quaternionic field S with the following noncom-
mutative multiplication rules:

e2
1 = −1, e2

2 = e2
3 = 1, e jek = −eke j, e j = −e j ( j , k, j , 0, k , 0),

where e0 is the identity 1 of S and e1 identifies the imaginary unit i =
√
−1 in the complex numbers. A split

quaternion z is given by z =
∑3

r=0 xrer, where xr (r = 0, 1, 2, 3) are real numbers. A split quaternion z can also
be expressed as z = z1 + z2e2, where z1 = x0 + e1x1 and z2 = x2 + e1x3 are complex numbers in C.

The split quaternionic conjugation z∗ and modulus N(z) of z in S are expressed as

z∗ =

3∑
r=0

xrer = z1 − z2e2

and
N(z) = zz∗ = x2

0 + x2
1 − x2

2 − x2
3 = |z1|

2
− |z2|

2,

respectively. The inverse element z−1 of z in S is given by the following:

z−1 =
z∗

N(z)
(N(z) , 0).
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The differential operators are denoted by

D :=
∂
∂z1
− e2

∂

∂z2
and D∗ =

∂

∂z1
+ e2

∂

∂z2
,

where ∂/∂zr and ∂/∂zr (r = 1, 2) are usual differential operators used in complex analysis. Then, the
Coulomb operator (see [4]) is given by

DD∗ = D∗D =
1
4

3∑
r=0

∂2

∂x2
r

=
∂2

∂z1∂z1
−

∂2

∂z2∂z2
.

Let Ω be an open set in C2. Consider a function f : Ω→ S denoted by

f =

3∑
r=0

urer = f1 + f2e2,

z = (z1, z2) ∈ Ω 7→ f (z) = f1(z) + f2(z)e2 ∈ S,

where ur (r = 0, 1, 2, 3) are real-valued functions.

Definition 2.1. Let Ω be an open set in C2. A function f (z) = f1(z) + f2(z)e2 is said to be L(R)-split regular in Ω if
the following two conditions are satisfied:
(i) f1(z) and f2(z) are continuously differentiable functions in Ω, and
(ii) D∗ f (z) = 0 ( or f (z)D∗ = 0) in Ω.

Remark 2.2. Let Ω be an open set in C× {0}. A function f (z) is said to be degenerated L(R)-split regular in Ω if the
following two conditions are satisfied:
(i) f (z) is a continuously differential function in Ω, and
(ii) D∗ f (z) = 0 ( or f (z)D∗ = 0) in Ω.

Instead of saying that the function f (z) is L-split regular in Ω ⊂ C2, we simply say that f (z) is split regular
in Ω ⊂ C2.

Remark 2.3. The equation D∗ f (z) = 0 is expanded as follows:

D∗ f = {
∂

∂z1
+ e2

∂

∂z2
}( f1(z) + f2(z)e2)

= {
∂ f1
∂z1

+
∂ f2
∂z2
} + {

∂ f2
∂z1

+
∂ f1
∂z2
}e2.

So, we have the following system:

∂ f1
∂z1

= −
∂ f2
∂z2

and
∂ f2
∂z1

= −
∂ f1
∂z2

. (1)

Remark 2.4. The system (1) is equivalent to the following system:

∂u0

∂x0
−
∂u1

∂x1
+
∂u2

∂x2
−
∂u3

∂x3
= 0,

∂u1

∂x0
+
∂u0

∂x1
−
∂u3

∂x2
−
∂u2

∂x3
= 0,

∂u2

∂x0
−
∂u3

∂x1
+
∂u0

∂x2
−
∂u1

∂x3
= 0,

∂u3

∂x0
+
∂u2

∂x1
−
∂u1

∂x2
−
∂u0

∂x3
= 0. (2)
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The above systems (1) and (2) are called the split Cauchy-Riemann systems for f (z) with values in S.

Proposition 2.5. [11] Let Ω be a bounded open set in C2. If two functions f = ( f1, f2) and 1 = (11, 12) are split
regular functions in Ω, where f1, f2, 11 and 12 are complex-valued functions, then
(i) α f + β1 is a split regular function in Ω, where α and β are real constants.
(ii) For a constant c = c1 + c2e2 in S, a function f c is split regular functions in Ω,
(iii) f1 is a split regular function in Ω when each of the components fr and 1r (r = 1, 2) of f and 1, respectively, is a
real-valued function.

Proof. (i) For α and β as real constants as f and 1 are split regular functions in Ω, the equation

D∗(α f + β1) = αD∗ f + βD∗1 = 0

is satisfied. Hence, α f + β1 is a split regular function in Ω.
(ii) For a constant c = c1 + c2e2 in S, the equation is expanded as follows:

D∗( f c) = {
∂ f1
∂z1

+
∂ f2
∂z2
}c1 + {

∂ f2
∂z1

+
∂ f1
∂z2
}c2 + ({

∂ f1
∂z1

+
∂ f2
∂z2
}c2 + {

∂ f2
∂z1

+
∂ f1
∂z2
}c1)e2.

As f is a split regular function in Ω, the equation D∗( f c) = 0 is satisfied, and then, the function f c is a split
regular function in Ω.
(iii) As each of the components fr and 1r (r = 1, 2) of f and 1, respectively, is a real-valued function, we have
fr = fr and 1r = 1r (r = 1, 2). Hence, the equation

D∗( f1) = {
∂ f1
∂z1

+
∂ f2
∂z2
}11 + {

∂ f2
∂z1

+
∂ f1
∂z2
}12 + ({

∂ f1
∂z1

+
∂ f2
∂z2
}12 + {

∂ f2
∂z1

+
∂ f1
∂z2
}11)e2

+ f1
∂11

∂z1
+ f1

∂12

∂z2
+ f2

∂12

∂z1
+ f2

∂11

∂z2
+ ( f1

∂12

∂z1
+ f1

∂11

∂z2
+ f2

∂11

∂z1
+ f2

∂12

∂z2
)e2

= {
∂ f1
∂z1

+
∂ f2
∂z2
}11 + {

∂ f2
∂z1

+
∂ f1
∂z2
}12 + ({

∂ f1
∂z1

+
∂ f2
∂z2
}12 + {

∂ f2
∂z1

+
∂ f1
∂z2
}11)e2

+ f1(
∂11

∂z1
+
∂12

∂z2
+ f2

∂12

∂z1
+
∂11

∂z2
+ ( f1

∂12

∂z1
+
∂11

∂z2
+ f2

∂11

∂z1
+
∂12

∂z2
)e2

is expanded. Thus, we obtain D∗( f1) = 0, and then, f1 is a split regular function in Ω.

3. Implicit Split-regular Mappings

Definition 3.1. Let Ω be an open set inC2 and f = ( f1, f2) : Ω −→ S be a split-quaternionic function. The mapping
f is said to be split regular if both components f1 and f2 are split regular in Ω.

Definition 3.2. Let Ω1 and Ω2 be domains in C2. Suppose a split regular mapping f = ( f1, f2) : Ω1 −→ Ω2 is
bijective and the inverse mapping f−1 : Ω2 −→ Ω1 of f is split regular. Then f is called a split biregular function,
where the domains Ω1 and Ω2 are split biregular equivalents.

Theorem 3.3 (Inverse mapping theorem). Let Ω1 be an open set in Cn and f : Ω1 → Cn be a split regular
mapping. For a point z0

∈ Ω1 and its image w0 = f (z0), f is a split biregular mapping from an open neighborhood of
z0 onto that of w0 if and only if

det J f (z0) :=


∂ f1
∂z1

· · ·
∂ f1
∂zn

...
. . .

...

∂ fn
∂z1

· · ·
∂ fn
∂zn

 , 0.
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Proof. Let us refer to [9]. From the definition of a split biregular mapping, there exists an inverse mapping
f−1 near f (z0). Then we have

det J f−1 (z0) det J f (z0) = det Jid(z0) = id.

Thus, we obtain det J f (z0) , 0. Conversely, according to the real version of the inverse mapping theorem,
there is an inverse mapping 1 : f (Ω1) → Ω1 of the mapping h : Ω1 → f (Ω1) such that 1 is continuous
and has real derivatives. Now, we show that 1 is split regular. As the identity mapping 1( f (z)) = z is split
regular, we have D∗1 = 0. Therefore, 1 is split regular in f (Ω1).

Example 3.4. Consider the mapping f to be given by

f (r, θ) =

(
r coshθ
r sinhθ

)
,

where r and θ are coordinates in a Cartesian (r, θ) plane. Then f is not one-to-one but locally bijective in 0 < θ < π
2 .

We find the equation

det J f (r, θ) =

∣∣∣∣∣∣ coshθ r sinhθ

sinhθ r coshθ

∣∣∣∣∣∣ = r , 0,

where z1 = r coshθ and z2 = r sinhθ. Therefore, f is locally split biregular in 0 < θ < π
2 .

Theorem 3.5. Let Ω = Ω1×Ω2 ⊂ Cn
×Cm be an open set and f : Ω → Cm be a split regular mapping. In addition,

suppose that (z0,w0) ∈ Ω is a point with f (z0,w0) = 0 and

det J f (z0) :=


∂ f1
∂w1

· · ·
∂ f1
∂wm

...
. . .

...

∂ fm
∂w1

· · ·
∂ fm
∂wm

 , 0.

Then there exists an open neighborhood U = U1 ×U2 of a point (z0,w0), where U1 and U2 are open neighborhoods of
z0 and w0, respectively, and a split regular mapping 1 : U1 → U2 such that

{(a, b) ∈ U1 ×U2 | f (a, b) = 0} = {(a, 1(a)) | a ∈ U1}.

Proof. From the inverse mapping theorem [9], a split regular mapping ψ : Ω → Cn+m with ψ(z,w) =
(z, f (z,w)) induces a split biregular mapping φ : Ω → V which has an inverse mapping, where V is an
open set in Cn. Then the mapping φ is split regular in Ω1 × {0}. Therefore, according to the real version of
the inverse mapping theorem, there exists a split regular mapping 1 such that

{(a, b) ∈ U | f (a, b) = 0} = {(a, 1(a)) | a ∈ U1},

where U1(⊂ Ω1) and U2(⊂ Ω2) are open neighborhoods of z0 and w0, respectively.

Example 3.6. Let Ω ⊂ C2
× C2 be an open set, f = ( f1, f2) : Ω → C2 be a split regular mapping and (0,w) ∈ Ω.

Suppose that f (z,w) = (z1, z2), where f1(z,w) = z1 and f2(z,w) = z2. Then det J f (0) , 0 and there is a split regular
map 1 : U1 → U2 such that 1(z) = w with

{(z,w) ∈ U1 ×U2 | f (z,w) = 0} = {(0,w) | w ∈ U2}.

Theorem 3.7. Let U be an open neighborhood of a point z in C2 and let f : U −→ S be a split regular mapping. The
mapping f = ( f1, f2) is not split regular if and only if it is split biregular from U onto an open neighborhood of f (z).



J. E. Kim, K. H. Shon / Filomat 35:11 (2021), 3833–3840 3838

Proof. Suppose that f = ( f1, f2) is not split regular mapping. From the inverse mapping theorem, as
f = ( f1, f2) is a split regular mapping and

det J f (z) =

∣∣∣∣∣∣∣
∂ f1
∂z1

∂ f1
∂z2

∂ f2
∂z1

∂ f2
∂z2

∣∣∣∣∣∣∣ , 0,

the mapping f is locally bijective and the inverse mapping f−1 belongs to classC∞ in an open neighborhood
of w = f (z), where w = (w1,w2), w1 = f1(z) and w2 = f2(z).
Now, we just need to show that f−1 is split regular in an open neighborhood of f (z). Let 1 be an inverse
mapping of f . Then, by [19],

0 = D∗z =
(∂1( f (z))

∂z1
+ e2

∂1( f (z))
∂z2

)
=

( 2∑
k=1

∂1

∂wk

∂ fk
∂z1

+
∂1

∂wk

∂ fk
∂z1

)
+ e2

( 2∑
k=1

∂1

∂wk

∂ fk
∂z2

+
∂1

∂wk

∂ fk
∂z2

)
(k = 1, 2).

Since f is a split regular mapping, we have

D∗ fk =
(∂ fk
∂z1

+ e2
∂ fk
∂z2

)
= 0 (k = 1, 2).

In addition, as f = ( f1, f2) is not a split regular mapping, we have the following two cases:

(i) D∗ f1 , 0 and D∗ f2 , 0,

(ii) D∗ f1 = 0 and D∗ f2 , 0 (or D∗ f1 , 0 and D∗ f2 = 0).

However, as f is a split regular mapping, we have the equation D∗ f1 = 0, which implies

∂u0

∂x0
=
∂u1

∂x1
,
∂u1

∂x0
= −

∂u0

∂x1
.

But, if D∗ f1 = 0, then
∂u0

∂x0
= −

∂u1

∂x1
,
∂u1

∂x0
=
∂u0

∂x1
.

Thus, it is sufficient to deal with the first case. If U is sufficiently small, then
∂1

∂wk
= 0 for all k = 1, 2.

Therefore, f−1 is split regular in U.
For the converse, we assume that the mapping f is split regular in U. If 1 is the inverse mapping of f , then

id = D∗z =
(∂1( f (z))

∂z1
− e2

∂1( f (z))
∂z2

)
=

( 2∑
k=1

∂1

∂wk

∂ fk
∂z1

+
∂1

∂wk

∂ fk
∂z1

)
− e2

( 2∑
k=1

∂1

∂wk

∂ fk
∂z2

+
∂1

∂wk

∂ fk
∂z2

)
(k = 1, 2).

By the assumption, since the mapping f and f are split regular in U, we have the equations

∂ f
∂zk

= 0 ,
∂ f
∂zk

= 0 (k = 1, 2),

respectively; thus, this is a contradiction.
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Example 3.8. Let U be an open neighborhood of z in C2 and f : U → S be a split regular mapping such that
f1(z) = z1, f2(z) = z2 and f = ( f1, f2) = (z1, z2). Then f is a split regular mapping and f is not a split regular
mapping in U. Therefore, from Theorem 12, f is split regular from U onto an open neighborhood of f (z).

Theorem 3.9. For a point z0 = (z0
1, z

0
2) in C2, let U be an open neighborhood of a point zo. If

∂ f1
∂z1
, 0

in U, then the equation f1(z) = 0 is locally solvable to the point z1 and the solution z1 = h(z2) is degenerated split
regular in an open neighborhood V of a point zo

2.

Proof. From the implicit mapping theorem, there exists a C1-function h : C × {0} → C with h(z2) = z1 that
solve the equation f1(z1, z2) = 0. We show that the function h is degenerated split regular in U. The function
f1 can be differentiated with respect to z2:

∂ f1
∂z2

=
∂ f1
∂z1

∂h
∂z2

+
∂ f1
∂z1

∂h
∂z2

+
∂ f1
∂z2

= 0.

As the function f1 is split regular in U,
∂ f1
∂z1

= 0 ,
∂ f1
∂z2

= 0.

By the hypothesis
∂ f1
∂z1
, 0 in U, we have

∂h
∂z2

= 0. Therefore, the solution z1 = h(z2) is degenerated split

regular in an open neighborhood V of the point z0
2.

Example 3.10. Let f1 be a split regular in an open neighborhood U of a point z0 = (z0
1, z

0
2) = (0, 0) in C2 such that

f1(z) = z1 − z2. Then
∂ f1
∂z1
, 0 in U and the equation f1(z) = 0 is locally solvable with respect to the point z1. In

addition, the solution z1 = h(z2) = z2 is degenerated split regular in an open neighborhood of the point z0
2.

4. Conclusion

This paper defined derivative operators and proposed a regular split-quaternionic mappings that have a
split Cauchy-Riemann system on split quaternions, as well as an implicit mapping of a regular mapping in
split quaternions. In addition, we investigated the properties of split biregular mappings and their relations
with split regular mappings on an open set in C2. Some examples give to illustrate the obtained results.

The split quaternion is useful for expressing Lorentz rotation and transformation, and it can represent
situations such as spacelike, timelike, and lightlike depending on the combination of the basis, so it can
be applied in geometry and physics. In multivariable calculus, the implicit function theorem suggests
a sufficient condition that the equations for variables show a sufficiently smooth functional relationship
locally. In addition, it is possible to return from the primed to unprimed coordinates depending on the
invertibility of the Jacobian matrix, which can be expressed by the inverse function theorem. The implicit
and inverse theorems are used, among others, to demonstrate the existence of solutions of nonlinear partial
differential equations and to parameterize the space of solutions. Therefore, by expressing the implicit and
inverse function theorems by defining the split regularity for the split quaternionic function and presenting
an example, they can be applied to situations that can be expressed as the split quaternions. It is expected
that the contents of differential multivariate, partial differential equation, and numerical analysis for the
number of split quadrants can be expanded.
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