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Abstract. In this article, we focus our attention on (q, h)-Gauss’s binomial formula from which we dis-
cover the additive property of (q, h)-exponential functions. We state the (q, h)-analogue of Gauss’s bino-
mial formula in terms of proper polynomials on T(q,h) which own essential properties similar to ordinary
polynomials. We present (q, h)-Taylor series and analyze the conditions for its convergence. We intro-
duce a new (q, h)-analytic exponential function which admits the additive property. As consequences,
we study (q, h)-hyperbolic functions, (q, h)-trigonometric functions and their significant properties such as
(q, h)-Pythagorean Theorem and double-angle formulas. Finally, we illustrate our results by a first order
(q, h)-difference equation, (q, h)-analogues of dynamic diffusion equation and Burger’s equation. Introduc-
ing (q, h)-Hopf-Cole transformation, we obtain (q, h)-shock soliton solutions of Burger’s equation.

1. Introduction

In the literature, the discretization of continuous equations has been studied in two main discrete sets:
h-lattice and q-numbers respectively:

hZ := {hx : x ∈ Z, h > 0}, Kq := {qn : n ∈ Z, q ∈ R, q , 1} ∪ {0},

where the parameter h is devoted to the Planck’s constant in quantum mechanics while the parameter
q refers to the number of elements in finite fields. Both discrete sets recover R, as h → 0 and q → 1,
respectively. Stefan Hilger introduced the notion of time scales T, as an arbitrary nonempty closed subset
of real numbers [10]. The concept of time scales allows to unify and extend not only such discrete sets
but also any type of continuous and discrete sets. The development of time scales extends the study on
differential and difference equations to the so-called dynamic equations on time scales [4]. This epochal
invention has a tremendous potential for applications in economics [1], in biomathematics [5] and in
mathematical physics [3, 9, 19]. However the study on such a general time scale may have discrepancies
and deficiencies even in some elementary subjects. For instance, the polynomials, Taylor’s formula and
exponential functions have implicit and inapplicable expressions requiring very restrictive conditions. For
that reason, a special discrete time scale T(q,h) which unifies and extends h- and q-analysis, is presented in
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[6] in order to study (q, h)-fractional calculus. Since then a variety of mathematicians have contributed to
the (q, h)-analysis such as (q, h)-analogue of Laplace transform [16], (q, h)-analogue of quantum splines [8]
and (q, h)-analogue of binomials and the wave equation [18].

The main objective of the current article is to overcome some of the deficiencies in front of the applicability
of time scales. In Section 2, we improve (q, h)-calculus that we presented in [18]. The emphasize is
placed on (q, h)-analogue of integration. We construct (q, h)-integral as a series explicitly from which
we develop fundamental theorems (existence and uniqueness of antiderivatives, indefinite and definite
integral, fundamental theorem of calculus and integration by parts formula) and their proofs on T(q,h)
which can be regarded as alternative proofs to the ones on an arbitrary T.

Section 3 is devoted to present (q, h)-analogue of Gauss’s binomial formula. Such a binomial formula
needs to be constructed in terms of proper polynomials on T(q,h) rather than the ordinary ones. For this
purpose, we introduce generalized quantum binomial (γx−δx0)n

q,h, whose behavior onT(q,h) is as significants
as the behavior of the ordinary polynomial (γx−δx0)n inR. We establish (q, h)-analogue of Taylor’s formula
in terms of (γx − δx0)n

q,h. We finalize this section by related Leibniz rules and additive property of degrees
for (γx − δx0)n

q,h, n ∈ Z.
In the literature, unlike the real case, the additive property of exponential functions onKq requires a very

restrictive condition, i.e. the variables must be q-commuting variables [17]. This handicap constitutes some
drawbacks in analysis and in the theory of difference equations on Kq and therefore on an arbitrary time
scale. The significant contribution of Section 4 is to introduce a new exponential function which satisfies the
additive property on T(q,h). For this purpose, we first present (q, h)-Taylor series, analyze the conditions for
its convergence and introduce (q, h)-analytic functions. We express such an exponential function in terms
of convergent (q, h)-Taylor series and show that it recovers ordinary exponential function, h-exponential
function, Jackson’s q-exponential function [12] and Euler’s second q-exponential function [15]. We prove
the additive property of exponential functions onT(q,h) by utilizing (q, h)-Gauss’s binomial formula which is
expressed in terms of the polynomials (γx − δx0)n

q,h. Furthermore, this property provides the multiplicative
inverse of exponential function from which we introduce new (q, h)-trigonometric functions and state their
important properties such as (q, h)-analogue of Pythagorean theorem and double-angle formulas.

As an application of additive property of exponential function, in Section 5, we suggest a first order non-
homogeneous linear (q, h)-difference equation whose solution is given by means of variation of parameters
formula. In addition, we present a dynamic diffusion equation on T(q,h) × T(q̄,h̄) with its solutions. This
diffusion equation is a generic equation since it provides various kinds of partial difference/differential
equations. Finally, in the light of (q, h)-analogue of Hopf-Cole transformation, we offer a (q, h)-Burger’s
equation and its multi (q, h)-shock soliton solutions.

2. Preliminaries

In this section, we first briefly summarize the calculus on (q, h)-time scales that we presented in [18]. In [6],
a two-parameter time scale T(q,h) is defined by

T(q,h) := {qnx + [n]h : x ∈ R+
∪ {0}, n ∈ Z, h, q ∈ R+, q , 1} ∪

{
h

1 − q

}
, (1)

where [n] :=
qn
− 1

q − 1
. If 0 < q < 1, we note that

h
1 − q

is an accumulation point since

lim
n→∞

(qnx + [n]h) = lim
n→∞

(qnx + (1 + q + .. + qn−1)h) =
h

1 − q
.

Due to the forward jump operator σ and the backward jump operator ρ, defined for any time scales T,

σ(x) := inf{s ∈ T : s > x}, ρ(x) := sup{s ∈ T : s < x},
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on every x ∈ T(q,h), we have

σn(x) = qnx + [n]h, ρn(x) = q−n(x − [n]h), n ∈N, (2)

which obey the following property

(σ ◦ ρ)(x) = (ρ ◦ σ)(x) = x, x ∈ T(q,h),

indicating that T(q,h) is a regular discrete time scale [9]. In the literature, h-derivative, q-derivative, symmetric
h-derivative or symmetric q-derivative approximate the classical derivative in the proper limits of q and h.
Moreover, it is also possible to comprise and extend h- and q-derivatives in a unified framework.
In order not to repeat expressions every time, throughout this paper we assume that f (x) is any real valued
function defined on T(q,h) .

Definition 2.1. [6] Let x , h
1−q . The delta (q, h)-derivative of any function f (x), denoted by D(q,h) f , is introduced as

D(q,h) f (x) :=
f (σ(x)) − f (x)
σ(x) − x

=
f (qx + h) − f (x)

(q − 1)x + h
, (3)

while the nabla (q, h)-derivative of f , denoted by D̃(q,h), is defined by

D̃(q,h) f (x) :=
f (x) − f (ρ(x))

x − ρ(x)
=

f (x) − f ( x−h
q )

x − ( x−h
q )

. (4)

Since the accumulation point x = h
1−q is right dense, the delta and nabla (q, h)-derivatives of f at this point are

defined by

D(q,h) f (
h

1 − q
) := lim

s→
(

h
1−q

)+

f (s) − f
(

h
1−q

)
s − h

1−q

= f ′(
h

1 − q
), (5)

D̃(q,h) f (
h

1 − q
) := lim

s→
(

h
1−q

)+

f (s) − f
(

h
1−q

)
s − h

1−q

= f ′(
h

1 − q
), (6)

provided that the limits exist. (see [4, Theorem 1.16 i])
Notice that delta (q, h)-derivative reduces to h, q and ordinary derivatives while nabla (q, h)-derivative
recovers nabla h, nabla q and ordinary derivatives in the appropriate limits of q and h.

Proposition 2.2. [18] For the arbitrary functions f and 1, the product and the quotient rules are given by

D(q,h)
(

f (x)1(x)
)

= f (x)D(q,h)1(x) + 1(qx + h)D(q,h) f (x)
= 1(x)D(q,h) f (x) + f (qx + h)D(q,h)1(x),

D̃(q,h)
(

f (x)1(x)
)

= f (x)D̃(q,h)1(x) + 1(
x − h

q
)D̃(q,h) f (x)

= 1(x)D̃(q,h) f (x) + f (
x − h

q
)D̃(q,h)1(x),

D(q,h)

(
f (x)
1(x)

)
=
1(x)D(q,h) f (x) − f (x)D(q,h)1(x)

1(x)1(qx + h)

=
1(qx + h)D(q,h) f (x) − f (qx + h)D(q,h)1(x)

1(x)1(qx + h)
,

D̃(q,h)

(
f (x)
1(x)

)
=
1(x)D̃(q,h) f (x) − f (x)D̃(q,h)1(x)

1(x)1( x−h
q )

=
1( x−h

q )D̃(q,h) f (x) − f ( x−h
q )D̃(q,h)1(x)

1(x)1( x−h
q )

.
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Following the pioneering article of Hilger [10], on general time scales the notion of ∆-integral and its
reductions to well-known special forms such as R,Z, hZ and Kq are considered in many papers (see [4]).
Although within the concept of time scales the ∆-integral results are of course valid for nontrivial structure
T(q,h), the notion of ∆-integral on this specific structure is not analyzed in details in the literature (only
except the integration formula on T(q,h) given as a finite sum by Čermák [6]). For that reason, we aim to
construct ∆-integral as a series explicitly on T(q,h). We develop fundamental theorems of (q, h)-integral and
their proofs which can be regarded as alternative proofs to the ones for general time scales. Consequently,
we employ these results in Subsection 5.1 for solving a (q, h)-difference equation.
Let f (x) be any continuous function at the accumulation point x = h

1−q . Our aim is to construct a (q, h)-
antiderivative F(x) of f (x) i.e. D(q,h)F(x) = f (x), for all x ∈ T(q,h). Let E denote the forward shift operator,
i.e.,

E(F(x)) = F(σ(x)) = F(qx + h).

Then by the definition of (q, h)-derivative (3), we obtain

(E − 1)F(x) = ((q − 1)x + h) f (x),

which implies that

F(x) = (1 − E)−1 (
((1 − q)x − h) f (x)

)
=

∞∑
i=0

Ei (((1 − q)x − h) f (x)
)
. (7)

The forward shifts of f (x) and x f (x) can be derived recursively for i = 0, 1, 2, . . .

Ei( f (x)) = f (qix + [i]h), Ei(x f (x)) = (qix + [i]h) f (qix + [i]h). (8)

Replacing (8) in (7), we have a series for F(x)

F(x) =
(
(1 − q)x − h

) ∞∑
i=0

qi f (qix + [i]h). (9)

Since f is given to be continuous at the accumulation point x = h
1−q , the series (9) is well-defined. The

following theorem states the convergence of the series (9), namely the existence of (q, h)-antiderivative F(x)
of f (x).

Theorem 2.3. Let | xr f (x) |< K on the interval ( h
1−q , a] ∩ T(q,h), for some K > 0, 0 < r < 1 and 0 < q < 1.

Then the series (9) is absolutely and uniformly convergent on ( h
1−q , a] ∩ T(q,h). In addition, (q, h)-antiderivative F(x)

is continuous at the accumulation point x = h
1−q with F( h

1−q ) = 0.

Proof. Suppose that | xr f (x) |< K on the interval ( h
1−q , a]∩T(q,h), then | (qix + [i]h)r f (qix + [i]h) |< K, which implies

that for h
1−q < x ≤ a and 0 < r < 1,

| f (qix + [i]h) |< K(qix + [i]h)−r < K(qix)−r.

Then the general term of the series (9) reads as

| qi f (qix + [i]h) |< Kqi(qix)−r = Kx−r(q1−r)i.

Since 0 < q < 1 and 1 − r ∈ (0, 1), the series
∞∑

i=0

(q1−r)i is a convergent geometric series. Thus, by Weierstrass M-test

the series (9) is absolutely and uniformly convergent on ( h
1−q , a]∩T(q,h). Clearly by (9), F( h

1−q ) = 0 and the continuity
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of F(x) at x = h
1−q can be seen from∣∣∣∣∣∣∣ ((1 − q)x − h

) ∞∑
i=0

qi f (qix + [i]h)

∣∣∣∣∣∣∣ < Kx−r((1 − q)x − h)
1 − q1−r ,

which vanishes as x→ h
1−q . Finally, we show that D(q,h)F(x) = f (x) by

D(q,h)F(x) =
F(qx + h) − F(x)

(q − 1)x + h

=

(
(1 − q)(qx + h) − h

) ∞∑
i=0

qi f (qi(qx + h) + [i]h) −
(
(1 − q)x − h

) ∞∑
i=0

qi f (qix + [i]h)

(q − 1)x + h

=

∞∑
i=0

qi f (qix + [i]h) −
∞∑

i=0

qi+1 f (qi+1x + [i + 1]h)

=

∞∑
i=0

qi f (qix + [i]h) −
∞∑

i=1

qi f (qix + [i]h) = f (x).

Theorem 2.4. If F1(x) and F2(x) are (q, h)-antiderivatives of f (x), then F1(x) = F2(x) + c, for some constant c.

The proof is a direct consequence of [20, Corollary 4.2].

Since the existence of the (q, h)-antiderivative requires the condition 0 < q < 1, throughout this section we
stick to that.

Definition 2.5. Let f (x) be a continuous function at x = h
1−q . We introduce the indefinite (q, h)-integral of f by∫

f (x)d(q,h)x :=
(
(1 − q)x − h

) ∞∑
i=0

qi f (qix + [i]h) + c, (10)

where c is an arbitrary constant.

Definition 2.6. Let f (x) be a continuous function at x = h
1−q . We introduce the definite (q, h)-integral of f , for

a, b ∈ T(q,h) with a < b∫ b

a
f (x)d(q,h)x :=

∫ b

h
1−q

f (x)d(q,h)x −
∫ a

h
1−q

f (x)d(q,h)x, (11)

where∫ b

h
1−q

f (x)d(q,h)x :=
(
(1 − q)b − h

) ∞∑
i=0

qi f (qib + [i]h). (12)

We emphasize that the definite (indefinite) (q, h)-integral recovers the ordinary definite (indefinite) integral,
definite (indefinite) q- and h-integrals. Indeed, as h→ 0, we have T(q,0) = Kq and definite (q, h)-integral (11)
reduces to definite q-integral∫ b

a
f (x)dqx =

∫ b

0
f (x)d(q,h)x −

∫ a

0
f (x)d(q,h)x =

(
(1 − q)b

) ∞∑
i=0

qi f (qib) −
(
(1 − q)a

) ∞∑
i=0

qi f (qia).
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As q → 1, we have T(1,h) = hZ in which there is no accumulation point. In this case, definite (q, h)-integral
(11) reduces to definite h-integral which is a Riemann sum of f (x) on the interval [a, b]∫ b

a
f (x)dhx = −h

∞∑
i=0

f (b + ih) + h
∞∑

i=0

f (a + ih) = h( f (a) + f (a + h) + . . . + f (b − h)).

Theorem 2.7. Let F(x) be (q, h)-antiderivative of f (x). Let also f (x) be continuous at x = h
1−q . Then we have∫ b

a
f (x)d(q,h)x = F(b) − F(a),

h
1 − q

< a < b.

Proof. The continuity of F(x) at x = h
1−q (see Theorem 2.3 ) guarantees the existence of F( h

1−q ). By Theorem
2.4, (q, h)-antiderivative F(x) of f (x) can be written of the form

F(x) =
(
(1 − q)x − h

) ∞∑
i=0

qi f (qix + [i]h) + F(
h

1 − q
),

up to the additive constant F( h
1−q ). Also by Definition 2.6, we have∫ b

h
1−q

f (x)d(q,h)x =
(
(1 − q)b − h

) ∞∑
i=0

qi f (qib + [i]h) = F(b) − F(
h

1 − q
),

which implies that∫ b

a
f (x)d(q,h)x = F(b) − F(

h
1 − q

) − (F(a) − F(
h

1 − q
)) = F(b) − F(a).

Theorem 2.8. Let D(q,h) f ( h
1−q ) exists. Then (q, h)-analogue of Fundamental Theorem of Calculus can be presented as∫ b

a
D(q,h) f (x)d(q,h)x = f (b) − f (a),

h
1 − q

< a < b.

Proof. Let D(q,h) f ( h
1−q ) exists. Then by equation (5), D(q,h) f ( h

1−q ) = f ′( h
1−q ). The continuity of D(q,h) f (x) at

x = h
1−q follows by

lim
x→ h

1−q

D(q,h) f (x) = lim
x→ h

1−q

f (qx + h) − f (x)
(q − 1)x + h

= lim
x→ h

1−q

q f ′(qx + h) − f ′(x)
q − 1

=
q f ′( h

1−q ) − f ′( h
1−q )

q − 1
= f ′(

h
1 − q

) = D(q,h) f (
h

1 − q
),

where we used L’Hopital’s rule. Hence the proof finishes by Theorem 2.7.

Theorem 2.9. If f (x) is continuous at x = h
1−q , then the second version of Fundamental Theorem of (q, h)-Calculus

is as follows

D(q,h)

∫ x

h
1−q

f (s)d(q,h)s

 = f (x).
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Proof. By the definition of (q, h)-derivative, we have

D(q,h)

∫ x

h
1−q

f (s)d(q,h)s

 =

∫ qx+h
h

1−q
f (s)d(q,h)s −

∫ x
h

1−q
f (s)d(q,h)s

(q − 1)x + h
= f (x).

The result is a direct consequence of the definite integral (12).

Theorem 2.10. The integration by parts formula for indefinite (q, h)-integral can be presented as∫
f (x)D(q,h)1(x)d(q,h)x = f (x)1(x) −

∫
1(qx + h)D(q,h) f (x)d(q,h)x.

Proof. The proof directly follows from the product rule of (q, h)-derivative (see Proposition 2.2).

3. Generalized Gauss’s Binomial Formula

In this section, our primary goal is to present Gauss’s binomial formula on T(q,h), which provides many
contributions such as additive property of exponential functions on T(q,h). We present Gauss’s binomial
formula expressed in terms of proper polynomials onT(q,h), rather than the ordinary ones, in a way that they
obey the nature of the time scalesT(q,h) without requiring commutation restrictions. To be more precise, the
role of such proper polynomials on T(q,h) needs to be similar to the role of the ordinary polynomials in R.

We introduce a (q, h)-analogue of the polynomial (γx − δx0)n as follows.

Definition 3.1. Let x0 ∈ R and γ, δ ∈ {−1, 1}. We define the generalized quantum binomial as the polynomial

(γx − δx0)n
q,h :=


1 if n = 0,
n∏

i=1
γ
(
x − γδqi−1x0 − [i − 1]h

)
if n > 0.

(13)

We need to improve the binomial (x − x0)n
q,h, presented in [18, Definition 3.3], to the form (13) in order to

generalize and analyze the polynomials (x − x0)n
q,h, (x + x0)n

q,h, (−x − x0)n
q,h and (−x + x0)n

q,h at one hand. The
reason of such description can be observed in the forthcoming sections. By the definition (13), one may
observe the following relations

(−x + x0)n
q,h = (−1)n(x − x0)n

q,h, (14)

(−x − x0)n
q,h = (−1)n(x + x0)n

q,h. (15)

Note also that, the generalized quantum binomial (γx − δx0)n
q,h introduced on (13) recovers the polynomial

(γx − δx0)n as (q, h) → (1, 0) and satisfies the similar properties in T(q,h), as (γx − δx0)n does in ordinary
calculus. Unless otherwise stated throughout this article, we suppose that γ, δ ∈ {−1, 1}.

Proposition 3.2. The generalized quantum binomial (13) satisfies the Leibniz rules

(i) D(q,h)(γx − δx0)n
q,h = γ[n](γx − δx0)n−1

q,h , n = 1, 2, ....

(ii) Dk
(q,h)(γx − δx0)n

q,h = γk [n]!
[n−k]! (γx − δx0)n−k

q,h , 0 ≤ k ≤ n.

Proof. (i) We apply delta (q, h)-derivative (3) on (13)

D(q,h)(γx − δx0)n
q,h =

(γ(qx + h) − δx0)n
q,h − (γx − δx0)n

q,h

(q − 1)x + h

=
qn−1(qx + h − γδx0) − (x − γδqn−1x0 − (1 + q + ... + qn−2)h)

(q − 1)x + h
γ(γx − δx0)n−1

q,h

=
(qn
− 1)x + (1 + q + ...qn−1)h

(q − 1)x + h
γ(γx − δx0)n−1

q,h = γ[n](γx − δx0)n−1
q,h .
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Part (ii) yields by applying delta (q, h)-derivative k-times successively on (13).

We are ready to present (q, h)-analogue of Taylor’s formula.

Theorem 3.3. Let {Pi}i≥0 be a sequence of polynomials where

Pi(x) :=
(γx − δx0)i

q,h

[i]!
, (16)

and [i]! := [i].[i − 1]...[2].[1] with [0]! := 1. Then
(a) The polynomials Pi(x) satisfy the following criteria simultaneously

(i) P0(γδx0) = 1, Pi(γδx0) = 0, i = 1, 2, 3, . . .

(ii) de1Pi = i, i = 0, 1, 2 . . .

(iii) D(q,h)Pi = γPi−1, i = 1, 2, 3 . . .

(b) Any polynomial Q(x) of degree n has the following Taylor’s Formula

Q(x) =

n∑
i=0

γiDi
(q,h)Q(γδx0)

(γx − δx0)i
q,h

[i]!
, (17)

where Di
(q,h) refers to the delta (q, h)-derivative of order i.

Proof. (a) By (16), it is straightforward to observe that the conditions (i) and (ii) are automatically satisfied.
By the use of Proposition 3.2, the condition (iii)

D(q,h)Pi(x) = D(q,h)

 (γx − δx0)i
q,h

[i]!

 =
γ[i](γx − δx0)i−1

q,h

[i]!
=
γ(γx − δx0)i−1

q,h

[i − 1]!
= γPi−1, (18)

is also verified.
(b) Let W be (n + 1)-dimensional vector space of polynomials and B := {P0(x),P1(x), ...Pn(x)}. The set B is
linearly independent which follows from (ii), i.e., de1Pi = i, for each i. Since |B| = n + 1, B spans W and
therefore becomes a basis for W. In other words, any polynomial Q(x) ∈ W can be written as a linear
combination of polynomials in B

Q(x) =

n∑
i=0

aiPi(x). (19)

Using the condition (i), we obtain

Q(γδx0) =

n∑
i=0

aiPi(γδx0) = a0P0(γδx0) = a0.

The linearity of D(q,h) and the condition (iii) provide that

D(q,h)Q(x) =

n∑
i=0

aiD(q,h)Pi(x) =

n∑
i=1

aiγPi−1(x),

which implies D(q,h)Q(γδx0) = γa1. It also means that a1 = γD(q,h)Q(γδx0) since γ = ∓1. Applying D(q,h), k
times to Q(x), we deduce that

Dk
(q,h)Q(x) =

n∑
i=k

aiDk
(q,h)Pi(x) =

n∑
i=k

aiγ
kPi−k(x),
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which allows us to derive Dk
(q,h)Q(γδx0) = akγk, i.e., ak = γkDk

(q,h)Q(γδx0), 0 ≤ k ≤ n. Therefore

Q(x) =

n∑
i=0

γiDi
(q,h)Q(γδx0)Pi(x) =

n∑
i=0

γiDi
(q,h)Q(γδx0)

(γx − δx0)i
q,h

[i]!
. (20)

We present additional properties of the generalized quantum binomial (13) in the following propositions.

Proposition 3.4. The generalized quantum binomial (13) satisfies the identity

(γx − δx0)m+n
q,h = (γx − δx0)m

q,h · (γx − δ(qmx0 + γδ[m]h))n
q,h, m,n = 0, 1, 2 . . .

Proof. If m = 0 or n = 0 or both the proof of the identity trivially follows. Assume that both m and n are
positive. By the definition of the generalized quantum binomial (13), we can write

(γx − δx0)m+n
q,h =γm+n(x − γδx0)(x − γδqx0 − h) · · · (x − γδqm−1x0 − [m − 1]h)(x − γδqmx0 − [m]h)

· · · (x − γδqm+n−1x0 − [m + n − 1]h)
=(γx − δx0)m

q,h · 1(x; x0),

where 1(x; x0) = γn
· (x − γδqmx0 − [m]h) · · · (x − γδqm+n−1x0 − [m + n − 1]h). Note that, if we replace x0 by

qmx0 + γδ[m]h in 1(x; x0), we finish the proof.

Inspired by Proposition 3.4, we can extend the generalized quantum binomial (13) to all integers. Using
(γx − δx0)0

q,h = 1, we define

(γx − δx0)−n
q,h :=

1
(γx − δq−n(x0 − γδ[n]h))n

q,h
, (21)

where we used the relation [−n] = −q−n[n]. Equation (21) allows us to generalize the Proposition 3.4 to all
integers:

Proposition 3.5. The following identity holds for m,n ∈ Z

(γx − δx0)m+n
q,h = (γx − δx0)m

q,h · (γx − δ(qmx0 + γδ[m]h))n
q,h.

Proof. The all possible cases for m,n = 0, 1, 2 . . . are considered in Proposition 3.4. Assume that m = −m′ < 0
and n > 0. Using (21), we obtain

(γx − δx0)−m′
q,h · (γx − δ(q−m′x0 + γδ[−m′]h))n

q,h =
(γx − δq−m′ (x0 − γδ[m′]))n

q,h

(γx − δq−m′ (x0 − γδ[m′]h))m′
q,h

=


γn−m′ (x − γδx0)(x − γδqx0 − h) · · · (x − γδqn−m′−1x0 − [n −m′ − 1]h), n ≥ m′ > 0;

1
(γx − δq−(m′−n)(x0 − γδ[m′ − n]h))m′−n

q,h

, m′ > n > 0

= (γx − δx0)n−m′
q,h = (γx − δx0)n+m

q,h .

The proofs of the cases m > 0, n < 0 and m < 0, n < 0 are similar to the above proof by using (21) and the
definition of generalized quantum binomial (13).

Proposition 3.6. The following Leibniz rules hold:

(i) D(q,h)(γx − δx0)−n
q,h = γ[−n](γx − δx0)−n−1

q,h , n ∈ Z+.
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(ii) Dk
(q,h)(γx − δx0)−n

q,h =
(−γ)k

qnqn+1 · · · qn+k−1

[n + k − 1]!
[n − 1]!

(γx − δx0)−n−k
q,h , n, k ∈ Z+.

Proof. (i) The quotient rule (see Proposition 2.2) and the relation [−n] = −q−n[n] lead us to have

D(q,h)(γx − δx0)−n
q,h =D(q,h)

 1
(γx − δ(q−nx0 + γδ[−n]h))n

q,h


=

−γ[n] · (γx − δ(q−nx0 + γδ[−n]h))n−1
q,h

(γx − δ(q−nx0 + γδ[−n]h))n
q,h · (γ(qx + h) − δ(q−nx0 + γδ[−n]h))n

q,h

=
−γ[n] · (γx − δ(q−nx0 + γδ[−n]h))n−1

q,h

γ · (γx − δ(q−nx0 + γδ[−n]h))n−1
q,h · (x − γδq−1x0 − [−1]h) · (γ(qx + h) − δ(q−nx0 + γδ[−n]h))n

q,h

=
−γ[n]

γn+1qn(x − γδq−n−1x0 − [−n − 1]h) · (x − γδq−nx0 − [−n]h) · · · (x − γδq−1x0 − [−1]h)

=
γ[−n]

(γx − δq−n−1(x0 − γδ[n + 1]h))n+1
q,h

= γ[−n](γx − δx0)−n−1
q,h .

The proof of (ii) directly follows from (i).

In the light of (q, h)-analogue of Taylor’s formula (Theorem 3.3), we state and prove (q, h)-analogue of
Gauss’s Binomial formula.

Theorem 3.7. The Gauss’s Binomial formula on T(q,h) can be expressed as

(γx − δx0)n
q,h =

n∑
k=0

[
n
k

]
(0 − δx0)n−k

q,h · (γx − 0)k
q,h, (22)

where
[

n
k

]
=

[n]!
[n − k]![k]!

.

Proof. Let f (x) = (γx − δx0)n
q,h. We utilize Theorem 3.3, about x0 = 0 which implies that

(γx − δx0)n
q,h =

n∑
k=0

γkDk
(q,h) f (0)

(γx − 0)k
q,h

[k]!
. (23)

Clearly f (0) = (0 − δx0)n
q,h. By Proposition 3.2, we derive

Dk
(q,h) f (x) = γk [n]!

[n − k]!
(γx − δx0)n−k

q,h ,

which leads to

Dk
(q,h) f (0) = γk [n]!

[n − k]!
(0 − δx0)n−k

q,h , 0 ≤ k ≤ n.

Therefore the equation (23) can be written as

(γx − δx0)n
q,h =

n∑
k=0

γkγk [n]!
[n − k]![k]!

(0 − δx0)n−k
q,h · (γx − 0)k

q,h =

n∑
k=0

[
n
k

]
(0 − δx0)n−k

q,h · (γx − 0)k
q,h,

since γ2k = 1 and
[

n
k

]
=

[n]!
[n − k]![k]!

.
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Remark 3.8. As h→ 0, the formula (22) becomes

(x + x0)n
q,0 = (x + x0)n

q =

n∑
k=0

[
n
k

]
q

(n−k)(n−k−1)
2 xn−k

0 xk, (24)

where (0 + x0)n−k
q = x0.(qx0)(q2x0) · · · (qn−k−1x0) = q

(n−k)(n−k−1)
2 xn−k

0 and (x − 0)k
q = xk for γ = 1, δ = −1. Note that, the

formula (24) is nothing but the celebrated Gauss’s Binomial formula.

It is essential to emphasize that the formula (22) is a generalization of the classical Newton’s Binomial
formula, because as (q, h)→ (1, 0), (22) reduces to

(x + x0)n =

n∑
k=0

(
n
k

)
xn−k

0 xk,

under the setting γ = 1 and δ = −1. For that reason, the binomial formula (22) can be also regarded
as (q, h)-analogue of Newton’s Binomial formula. In [2], another (q, h)-Newton’s binomial formula was
presented. But in that work, the formula is expressed on ordinary polynomials and the coordinates need
to satisfy some commutation relations.

4. Additive property of exponential functions on T(q,h)

In the literature, the additive property of exponential functions is very crucial not only in the field of analysis
but also in the theory of differential equations. The lack of the additive identity even in Kq (it exists only
for q- commuting coordinates), therefore on arbitrary time scales, restricts the applicability of exponential
functions. For that reason, this section is devoted to present the additive property of exponential functions
on T(q,h).

We begin this section by introducing a power series written in terms of (γx − δx0)n
q,h as follows:

∞∑
n=0

cn (γx − δx0)n
q,h.

Clearly this series converges to c0 at the point x = γδx0. We start with Nth partial sum of such power series
and find the form of the coefficients.

Lemma 4.1. If f (x) =

N∑
n=0

cn (γx − δx0)n
q,h, then

cn =
γnDn

(q,h) f (γδx0)

[n]!
. (25)

Proof. Let f (x) =

N∑
n=0

cn (γx − δx0)n
q,h, then f (γδx0) = c0. Since D(q,h) is a linear operator, using Proposition 3.2

we obtain

D(q,h) f (x) =

N∑
n=0

cnD(q,h) (γx − δx0)n
q,h =

N∑
n=1

cnγ[n] (γx − δx0)n−1
q,h ,

which implies that D(q,h) f (γδx0) = c1γ[1], i.e., c1 = γD(q,h) f (γδx0) since γ2 = 1. Continuing in the same way,
we derive

Dk
(q,h) f (x) =

N∑
n=0

cnDk
(q,h) (γx − δx0)n

q,h =

N∑
n=k

cnγ
k [n]!
[n − k]!

(γx − δx0)n−k
q,h .
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Hence for 0 ≤ k ≤ N, we have Dk
(q,h) f (γδx0) = ckγ

k [k]!
[k − k]!

, i.e., ck =
γkDk

(q,h) f (γδx0)

[k]!
.

Definition 4.2. We introduce (q, h)-Taylor series of f at γδx0 as the series

∞∑
n=0

γnDn
(q,h) f (γδx0) (γx − δx0)n

q,h

[n]!
. (26)

We aim to discuss the conditions under which (q, h)-Taylor series (26) is convergent. For this purpose, we
need the following auxiliary lemma.

Lemma 4.3. For any q < 1 and 0 ≤ x0 < x, the following inequality

| (γx − δx0)n
q,h |

[n]!
≤

(x + x0)n

[n]!

holds.

Proof. We investigate the proof for different choices of γ and δ.
(a) Let γ = δ = 1. In this case generalized quantum binomial (13) becomes

(γx − δx0)n
q,h = (x − x0)n

q,h = (x − x0)(x − qx0 − h) · · · (x − qn−1x0 − [n − 1]h). (27)

The inequality 0 < x − qix0 − [i]h ≤ x − qix0 ≤ x + qix0 ≤ x + x0 holds for all 0 ≤ i ≤ n − 1 and for x > x0 > 0.

Furthermore, since lim
i→∞

(x − qix0 − [i]h) = lim
i→∞

(x − [i]h) = x −
h

1 − q
> 0, even the smallest distance in (27) is

positive in the case x0 = 0. Therefore we acquire

| (x − x0)n
q,h |

[n]!
=

(x − x0)(x − qx0 − h) · · · (x − qn−1x0 − [n − 1]h)
[n]!

≤
(x + x0)(x + qx0) · · · (x + qn−1x0)

[n]!
≤

(x + x0)n

[n]!
.

(b) Let γ = δ = −1. The relation (14) and part (a) allow us to obtain

| (γx − δx0)n
q,h |

[n]!
=
| (−x + x0)n

q,h |

[n]!
=
| (−1)n(x − x0)n

q,h |

[n]!
=
|(x − x0)n

q,h|

[n]!
≤

(x + x0)n

[n]!
.

(c) Let γ = 1, δ = −1. In this case generalized quantum binomial (13) becomes

(γx − δx0)n
q,h = (x + x0)n

q,h = (x + x0)(x + qx0 − h) · · · (x + qn−1x0 − [n − 1]h).

Since lim
i→∞

(x + qix0 − [i]h) = x −
h

1 − q
> 0, then the inequality 0 < x + qix0 − [i]h ≤ x + qix0 ≤ x + x0 holds for

all 0 ≤ i ≤ n − 1. Then we have

| (x + x0)n
q,h |

[n]!
=

(x + x0)(x + qx0 − h) · · · (x + qn−1x0 − [n − 1]h)
[n]!

≤
(x + x0)(x + qx0) · · · (x + qn−1x0)

[n]!
≤

(x + x0)n

[n]!
.

(d) Finally let γ = −1, δ = 1. By the relation (15) and part (c), we derive

| (γx − δx0)n
q,h |

[n]!
=
| (−x − x0)n

q,h |

[n]!
=
| (−1)n(x + x0)n

q,h |

[n]!
=
| (x + x0)n

q,h |

[n]!
≤

(x + x0)n

[n]!
.
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Theorem 4.4. If q < 1, 0 ≤ x0 < x and | Dn
(q,h) f (γδx0) |< Kn for some K > 0 and n ∈ N0, then the series (26) is

absolutely and uniformly convergent on {x : x + x0 < 1
(1−q)K } ∩ T(q,h).

Proof. Let q < 1. By Lemma 4.3, we have∣∣∣∣γnDn
(q,h) f (γδx0)(γx − δx0)n

q,h

∣∣∣∣
[n]!

≤ Kn (x + x0)n

[n]!
.

For the bounding series, we utilize Ratio test and observe that the below limit

lim
n→∞

∣∣∣∣∣∣Kn+1(x + x0)n+1

[n + 1]!
[n]!

Kn(x + x0)n

∣∣∣∣∣∣ = K lim
n→∞

x + x0

[n + 1]
= K(x + x0)(1 − q) < 1,

provided that x + x0 < 1
(1−q)K . Thus, by Weierstrass M-test the series (26) is absolutely and uniformly

convergent on {x : x + x0 < 1
(1−q)K } ∩ T(q,h).

Definition 4.5. A function f : T(q,h) → R is called as (q, h)-analytic at γδx0 if and only if there exists a power series
centered at γδx0 that converges to f in the neighborhood of γδx0.

Therefore Theorem 4.4 provides sufficient conditions for a function f to be (q, h)-analytic.
Now we aim to introduce (q, h)-analogue of exponential function in a way that it is expressed in Taylor
series as in (26) and its delta (q, h)-derivative is proportional to itself.

Definition 4.6. For an arbitrary nonzero constant α ∈ R, we define an exponential function on T(q,h) by the series

Exp(q,h)(α(γx − δx0)) :=
∞∑
j=0

α j(γx − δx0) j
q,h

[ j]!
, (28)

provided that the series is convergent.

Proposition 4.7. For a nonzero constant α, (q, h)-exponential function (28) satisfies the chain rule

D(q,h)Exp(q,h)(α(γx − δx0)) = αγExp(q,h)(α(γx − δx0)).

Proof. Using Proposition 3.2, one can compute the delta (q, h)-derivative of such exponential function as

D(q,h)Exp(q,h)(α(γx − δx0)) =

∞∑
j=0

α j

[ j]!
D(q,h)(γx − δx0) j

q,h = αγ
∞∑
j=1

α j−1

[ j − 1]!
(γx − δx0) j−1

q,h = αγExp(q,h)(α(γx − δx0)).

It is straightforward that Exp(q,h)(0) = 1 and |Dn
(q,h)Exp(q,h)(α(γ2δx0 − δx0))| =| γnαn

|=| αn
|. Theorem 4.4

assures that (28) is absolutely and uniformly convergent on {x : x + x0 <
1

(1 − q) | α |
} ∩ T(q,h) for q < 1.

Therefore, (28) is a (q, h)-analytic function. This consequence is consistent with q-exponential function. [13].

Remark 4.8. Exponential function (28) recovers many exponential functions studied in the literature.
(i) For γ = 1 and x0 = 0, (28) reduces to the (q, h)-exponential function exp(q,h)(αx), introduced in [18]

Exp(q,h)(α(x − 0)) =

∞∑
j=0

α j(x − 0) j
q,h

[ j]!
= exp(q,h)(αx),
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whose convergence follows from Theorem 4.4. Furthermore, as (q, h)→ (1, 0), (28) becomes the ordinary exponential

function eαx =

∞∑
j=0

(αx) j

j!
.

For q < 1, if we consider

Exp(q,h)(α(0 − δx)) =

∞∑
n=0

αn(0 − δx)n
q,h

[n]!
=

∞∑
n=0

(−1)nαn(δx)(δqx + γh) · · · (δqn−1x + γ[n − 1]h)
[n]!

, (29)

its convergence yields by Ratio test

lim
n→∞

∣∣∣∣∣∣ (−α)n+1(δx)(δqx + γh) · · · (δqnx + γ[n]h)
[n + 1]!

[n]!
(−α)n(δx)(δqx + γh) · · · (δqn−1x + γ[n − 1]h)

∣∣∣∣∣∣
= lim

n→∞

|α(δqnx + γ[n]h)|
[n + 1]

≤ |α||x| lim
n→∞

qn

[n + 1]
+ |α|h lim

n→∞

[n]
[n + 1]

= |α|h < 1,

provided that h <
1
|α|
.

(ii) In addition, as h → 0, (q, h)-exponential function (28) recovers q-exponential functions eq and Eq. Indeed, if
γ = α = 1 and x0 = 0, (q, h)-exponential function (28) reduces to eq

Exp(q,0)(x − 0) =

∞∑
j=0

(x − 0) j
q

[ j]!
=

∞∑
j=0

x j

[ j]!
= ex

q ,

since (x − 0) j
q = x j. If x = 0, x0 = y, then we derive

(0 − δy) j
q = γ j(−γδy)(−γδqy)...(−γδq j−1y) = (−1) jδ jy jq

j( j−1)
2 ,

which implies

Exp(q,0)(α(0 − δy)) =

∞∑
j=0

α j(0 − δy) j
q

[ j]!
=

∞∑
j=0

(−αδy) jq
j( j−1)

2

[ j]!
. (30)

Now (30) reduces to Euler’s second q-exponential functions for the choices α = 1, δ = −1 and δ = α = 1

Exp(q,0)(0 + y) =

∞∑
j=0

y jq
j( j−1)

2

[ j]!
= Ey

q ,

Exp(q,0)(0 − y) =

∞∑
j=0

(−1) jy jq
j( j−1)

2

[ j]!
= E−y

q ,

respectively.
(iii) As q → 1, (q, h)-exponential function (28) recovers h-exponential function. Indeed if γ = 1, x0 = 0, (q, h)-
exponential function (28) reduces to

Exp(1,h)(α(x − 0)) =

∞∑
j=0

α j(x − 0) j
h

j!
=

∞∑
j=0

(x
h

(
x
h
− 1) · · · (

x
h
− ( j − 1))

) (αh) j

j!
=

∞∑
j=0

( x
h

j

)
(αh) j = (1 + αh)

x
h .

In the limit q→ 1 with x = 0, x0 = y, and δ = −1, (0+ y) j
h still depends on γ, i.e., (0+ y) j

h = γ j(γ y)(γy−h) · · · (γy−
( j − 1)h). When γ = 1, we derive a similar function

Exp(1,h)(α(0 + y)) =

∞∑
j=0

α jy(y − h)(y − 2h)...(y − ( j − 1)h)
j!

= (1 + αh)
y
h .
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On the other hand, when γ = −1, (q, h)-exponential function (28) reduces to another h-exponential function [21].

Exp(1,h)(α(0 + y)) =

∞∑
j=0

α j(0 + y) j
h

j!
=

∞∑
j=0

α jy(y + h)(y + 2h)...(y + ( j − 1)h)
j!

=

∞∑
j=0

(
−y
h

(
−y
h
− 1) · · · (

−y
h
− ( j − 1))

) (−αh) j

j!
=

∞∑
j=0

(−y
h

j

)
(−αh) j = (1 − αh)

−y
h .

Similarly, (0−y) j
h = γ j(−γ y)(−γy−h) · · · (−γy−( j−1)h), produces similar functions: Exp(1,h)(α(0−y)) = (1+αh)

−y
h

and Exp(1,h)(α(0 − y)) = (1 − αh)
y
h for γ = 1 and γ = −1, respectively.

Theorem 4.9. For a nonzero constant α, (q, h)-exponential function (28) satisfies the following additive property

Exp(q,h)(α(γx − δy)) = Exp(q,h)(α(0 − δy)) · Exp(q,h)(α(γx − 0)). (31)

Proof. Consider

Exp(q,h)(α(0 − δy))Exp(q,h)(α(γx − 0)) =

∞∑
j=0

α j(0 − δy) j
q,h

[ j]!

∞∑
k=0

αk(γx − 0)k
q,h

[k]!
=

∞∑
j=0

∞∑
k=0

α j+k(0 − δy) j
q,h(γx − 0)k

q,h

[ j]![k]!
. (32)

We multiply and divide the equation (32) by [ j + k]! and then use the substitution j + k = n, then we derive

Exp(q,h)(α(0 − δy))Exp(q,h)(α(γx − 0)) =

∞∑
k=0

∞∑
n=k

αn[n]!(0 − δy)n−k
q,h (γx − 0)k

q,h

[n − k]![k]![n]!

=

∞∑
n=0

 n∑
k=0

[
n
k

]
(0 − δy)n−k

q,h (γx − 0)k
q,h

 αn

[n]!
=

∞∑
n=0

αn(γx − δy)n
q,h

[n]!

= Exp(q,h)(α(γx − δy)),

where we utilized (q, h)-Gauss’s binomial formula.

Remark 4.10. In order to deal with applications precisely, we need to analyze the reductions of Theorem 4.9. Due
to the definition of generalized quantum binomial, (γx − δy)n

q,h = 0 when x = γδqi−1y + [i − 1]h for some 1 ≤ i ≤ n.
Therefore Theorem 4.9 implies that

Exp(α(δ(qi−1
− 1)y + γ[i − 1]h)) = Exp(α(0 − δy)) Exp(α(δqi−1y + γ[i − 1]h − 0)),

from which we obtain

Exp(q,h)(α(δy − δy)) = Exp(q,h)(α(0 − δy)) Exp(q,h)(α(δy − 0)) = 1,

as q→ 1 and h→ 0. For simplicity, we consider the case i = 1, i.e., we take δ = γ and y = x, which implies

Exp(q,h)(α(0 − γx)) · Exp(q,h)(α(γx − 0)) = Exp(q,h)(α(γx − γx)) = 1. (33)

(i) If γ = δ = 1 as h → 0, the additive property (31) provides the famous relation among the two q-exponential
functions eq and Eq:

Exp(q,0)(α(0 − x)) · Exp(q,0)(α(x − 0)) =

∞∑
j=0

α j(0 − x) j
q

[ j]!

∞∑
k=0

αk(x − 0)k
q

[k]!
= E−αx

q · eαx
q = 1.



B. Silindir, A. Yantir / Filomat 35:11 (2021), 3855–3877 3870

Similarly when γ = δ = −1, we derive

Exp(q,0)(α(0 + x))Exp(q,0)(α(−x − 0)) = Eαx
q .e

−αx
q = 1.

(ii) On the other hand, as q→ 1 with γ = δ = 1, we deduce that

Exp(1,h)(α(0 − x)) · Exp(1,h)(α(x − 0)) =

∞∑
j=0

α j(0 − x) j
h

j!

∞∑
k=0

αk(x − 0)k
h

k!
= (1 + αh)

−x
h · (1 + αh)

x
h = 1,

while for γ = δ = −1, we have

Exp(1,h)(α(0 + x))Exp(1,h)(α(−x − 0)) = (1 − αh)
−x
h .(1 − αh)

x
h = 1.

Note that other solutions of the equation (γx − δy)n
q,h = 0 produce similar reductions for Theorem 4.9.

We would like to stress that from the special case (33), it is possible to define the multiplicative inverse of
(q, h)-exponential function as

(Exp(q,h)(α(γx − 0)))−1 := Exp(q,h)(α(0 − γx)), (34)

which inspires us to define the (q, h)-analogue of trigonometric functions as follows:

Definition 4.11. We introduce (q, h)-analogue of sine function

sin(q,h)(γx − δx0) :=
Exp(q,h)(i(γx − δx0)) − Exp(q,h)(i(−γx + δx0))

2i
(35)

and cosine function

cos(q,h)(γx − δx0) :=
Exp(q,h)(i(γx − δx0)) + Exp(q,h)(i(−γx + δx0))

2
. (36)

The (q, h)-analogue of trigonometric functions (35), (36) are well-defined since one can show that the linear,
homogenous (q, h)-IVP

D2
(q,h)u(x) + au(x) = 0, (37)

D(q,h)u(γδx0) = γc, u(γδx0) = b, (38)

has unique solution sin(q,h)(γx−δx0), where we take the constants a = 1, b = 0, c = 1. When a = 1, b = 1, c = 0,
the IVP (37)-(38) has unique solution cos(q,h)(γx − δx0). Similarly, the choices a = −1, b = 0, c = 1 and
a = −1, b = 1, c = 0 imply respectively that the associated IVPs (37)-(38) has unique solutions as generalized
(q, h)-hyperbolic functions

sinh(q,h)(γx − δx0) : =
Exp(q,h)((γx − δx0)) − Exp(q,h)((−γx + δx0))

2
, (39)

cosh(q,h)(γx − δx0) : =
Exp(q,h)((γx − δx0)) + Exp(q,h)((−γx + δx0))

2
. (40)

Note that by using the relation

(−γx + δx0)n
q,h = (−1)n(γx − δx0)n

q,h,

the series representations for (q, h)-trigonometric (35)-(36) and hyperbolic functions (39)-(40) can be calcu-
lated straightforwardly:

cos(q,h)(γx − δx0) =

∞∑
n=0

(−1)n(γx − δx0)2n
q,h

[2n]!
, sin(q,h)(γx − δx0) =

∞∑
n=0

(−1)n(γx − δx0)2n+1
q,h

[2n + 1]!
,
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cosh(q,h)(γx − δx0) =

∞∑
n=0

(γx − δx0)2n
q,h

[2n]!
, sinh(q,h)(γx − δx0) =

∞∑
n=0

(γx − δx0)2n+1
q,h

[2n + 1]!
.

Furthermore, as a direct consequence of Theorem 4.4, (q, h)-trigonometric and hyperbolic functions are
(q, h)-analytic.

Proposition 4.12. The following results hold for the (q, h)-trigonometric and hyperbolic functions.

(i) D(q,h) sin(q,h)(γx − δx0) = γ cos(q,h)(γx − δx0), D(q,h) cos(q,h)(γx − δx0) = −γ sin(q,h)(γx − δx0).

(ii) D(q,h) sinh(q,h)(γx − δx0) = γ cosh(q,h)(γx − δx0), D(q,h) cosh(q,h)(γx − δx0) = γ sinh(q,h)(γx − δx0).

(iii)
∫

sin(q,h)(γx − δx0)d(q,h)x = −γ cos(q,h)(γx − δx0) + c,
∫

cos(q,h)(γx − δx0)d(q,h)x = γ sin(q,h)(γx − δx0) + c.

(iv)
∫

sinh(q,h)(γx− δx0)d(q,h)x = γ cosh(q,h)(γx− δx0) + c,
∫

cosh(q,h)(γx− δx0)d(q,h)x = γ sinh(q,h)(γx− δx0) + c.

Proof. The proofs follow from the definitions of (q, h)-trigonometric and hyperbolic functions.

We finish this section by presenting consequences of Theorem 4.9 such as (q, h)- analogue of Pythagorean
Theorem and related double-angle formulas for (q, h)-trigonometric functions.

Theorem 4.13. The (q, h)-trigonometric functions satisfy the following identities:

(i) sin(q,h)(0 + x) sin(q,h)(x − 0) + cos(q,h)(0 + x) cos(q,h)(x − 0) = 1.

(ii) sin(q,h)(x + x) = 2 sin(q,h)(x − 0) cos(q,h)(0 + x).

(iii) cos(q,h)(x + x) = 1 − 2 sin(q,h)(0 + x) sin(q,h)(x − 0) = 2 cos(q,h)(0 + x) cos(q,h)(x − 0) − 1.

Proof. (i) First of all let us calculate

sin(q,h)(0 + x). sin(q,h)(x − 0) =
−1
4

(Exp(q,h)(i(0 + x))Exp(q,h)(i(x − 0)) − Exp(q,h)(i(0 + x))Exp(q,h)(i(−x − 0))

−Exp(q,h)(i(0 − x))Exp(q,h)(i(x − 0)) + Exp(q,h)(i(0 − x))Exp(q,h)(i(−x − 0))),

where

Exp(q,h)(i(0 + x))Exp(q,h)(i(x − 0)) =

∞∑
j=0

i j(0 + x) j
q,h

[ j]!

∞∑
k=0

ik(x − 0)k
q,h

[k]!
=

∞∑
j=0

∞∑
k=0

i j+k(0 + x) j
q,h(x − 0)k

q,h

[ j]![k]!
.

Let us multiply and divide with the term [ j + k]! and change the index as j + k = n. Then we have

Exp(q,h)(i(0 + x))Exp(q,h)(i(x − 0)) =

∞∑
n=0

 n∑
k=0

(0 + x)n−k
q,h (x − 0)k

q,h[n]!

[k]![n − k]!

 in

[n]!
=

∞∑
n=0

 n∑
k=0

[
n
k

]
(0 + x)n−k

q,h (x − 0)k
q,h

 in

[n]!
.

Utilizing Theorem 3.7 with γ = 1, δ = −1, x0 = x, we have

(x + x)n
q,h =

n∑
k=0

[
n
k

]
(0 + x)n−k

q,h (x − 0)k
q,h.

Therefore we get

Exp(q,h)(i(0 + x))Exp(q,h)(i(x − 0)) =

∞∑
n=0

in(x + x)n
q,h

[n]!
= Exp(q,h)(i(x + x)).
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With a similar discussion let us present all products of exponentials in a detailed way as follows:

Exp(q,h)(i(0 + x))Exp(q,h)(i(−x − 0)) =

∞∑
n=0

 n∑
k=0

[
n
k

]
(0 + x)n−k

q,h (−x − 0)k
q,h

 in

[n]!

=

∞∑
n=0

in(−x + x)n
q,h

[n]!
= Exp(q,h)(i(−x + x)) = 1,

where we used Theorem 3.7 with γ = −1, δ = −1, x0 = x. We deduce

Exp(q,h)(i(0 − x))Exp(q,h)(i(x − 0)) =

∞∑
n=0

 n∑
k=0

[
n
k

]
(0 − x)n−k

q,h (x − 0)k
q,h

 in

[n]!

=

∞∑
n=0

in(x − x)n
q,h

[n]!
= Exp(q,h)(i(x − x)) = 1,

where Theorem 3.7 with the parameters γ = 1, δ = 1, x0 = x, is used. Finally,

Exp(q,h)(i(0 − x))Exp(q,h)(i(−x − 0)) =

∞∑
n=0

 n∑
k=0

[
n
k

]
(0 − x)n−k

q,h (−x − 0)k
q,h

 in

[n]!

=

∞∑
n=0

in(−x − x)n
q,h

[n]!
= Exp(q,h)(i(−x − x)),

arises with γ = −1, δ = 1, x0 = x. Therefore

sin(q,h)(0 + x). sin(q,h)(x − 0) =
−1
4

(
Exp(q,h)(i(x + x)) + Exp(q,h)(i(−x − x)) − 2

)
.

Similarly one can derive

cos(q,h)(0 + x). cos(q,h)(x − 0) =
1
4

(
Exp(q,h)(i(x + x)) + Exp(q,h)(i(−x − x)) + 2

)
,

which implies that

sin(q,h)(0 + x). sin(q,h)(x − 0) + cos(q,h)(0 + x). cos(q,h)(x − 0) = 1.

(ii) For the second part, one can calculate

cos(q,h)(0 + x). sin(q,h)(x − 0) =
1
4i

(
Exp(q,h)(i(0 + x)) + Exp(q,h)(i(0 − x))

) (
Exp(q,h)(i(x − 0)) − Exp(q,h)(i(−x − 0))

)
=

1
4i

(
Exp(q,h)(i(x + x)) − Exp(q,h)(i(−x − x)) + 1 − 1

)
=

1
2

sin(q,h)(x + x).

(iii) Following the part (i), it is straightforward that

sin(q,h)(0 + x). sin(q,h)(x − 0) =
−1
4

(
Exp(q,h)(i(x + x)) + Exp(q,h)(i(−x − x)) − 2

)
=

1 − cos(q,h)(x + x)
2

and

cos(q,h)(0 + x). cos(q,h)(x − 0) =
1
4

(
Exp(q,h)(i(x + x)) + Exp(q,h)(i(−x − x)) + 2

)
=

1 + cos(q,h)(x + x)
2

.
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Remark 4.14. It is clear that (x − 0)n
1,0 = (0 + x)n

1,0 = xn and (−x − 0)n
1,0 = (0 − x)n

1,0 = (−1)nxn which imply that
sin(1,0)(x−0) = sin(1,0)(0+x) = sin(x) and cos(1,0)(x−0) = cos(1,0)(0+x) = cos(x). Thus Theorem 4.13 approximates
the classical Pythagorean Theorem and double angle formulas. Moreover, by the use of Remark 4.8, as h→ 0 we have

sin(q,0)(0 + x) =
Eix

q − E−ix
q

2i
= Sinq(x), cos(q,0)(0 + x) =

Eix
q + E−ix

q

2
= Cosq(x)

and

sin(q,0)(x − 0) =
eix

q − e−ix
q

2i
= sinq(x), cos(q,0)(x − 0) =

eix
q + e−ix

q

2
= cosq(x),

which provide the q-Pythagorean theorem

Sinq(x)sinq(x) + Cosq(x)cosq(x) = 1.

Because of the lack of the additive identity for q-exponential functions, the literature was lack of q-double-angle
formulas, which we are able to fulfill as

sinq(x + x) = 2sinq(x)Cosq(x), cosq(x + x) = 1 − 2Sinq(x)sinq(x) = 2Cosq(x)cosq(x) − 1,

as a consequence of the Theorem 4.13.

5. Applications on (q, h)-difference Equations

5.1. The variation of parameters formula for first order (q, h)-difference equations
The additive property of generalized quantum exponential function (31) can be applied to a (q, h)-difference
equation. Assume q < 1 and consider the first order linear (q, h)-difference equation

D(q,h)y(x) + y(qx + h) = f (x),
y(x0) = y0,

where h
1−q < x0 ∈ T(q,h). Multiplying the equation by Exp(q,h)(x − 0) we obtain

Exp(q,h)(x − 0)D(q,h)y(x) + Exp(q,h)(x − 0)y(qx + h) = Exp(q,h)(x − 0) f (x).

Using Proposition 2.2, we deduce

D(q,h)(Exp(q,h)(x − 0)y(x)) = Exp(q,h)(x − 0) f (x).

Integrating the resulting equation over [x0, x] ∩ T(q,h), we obtain∫ x

x0

D(q,h)(Exp(q,h)(s − 0)y(s))d(q,h)s =

∫ x

x0

Exp(q,h)(s − 0) f (s)d(q,h)s.

The fundamental theorem of (q, h)-calculus (see Theorem 2.8) concludes that

Exp(q,h)(x − 0)y(x) − Exp(q,h)(x0 − 0)y(x0) =

∫ x

x0

Exp(q,h)(s − 0) f (s)d(q,h)s,

from which we obtain

y(x) =
Exp(q,h)(x0 − 0)
Exp(q,h)(x − 0)

y0 +
1

Exp(q,h) f (x − 0)

∫ x

x0

Exp(q,h)(s − 0) f (s)d(q,h)sd(q,h)s.

By Theorem 4.9 and its consequence (34), we accomplish the solution of the form

y(x) = Exp(q,h)(x0 − x)y0 + Exp(q,h)(0 − x)
∫ x

x0

Exp(q,h)(s − 0) f (s)d(q,h)s. (41)

Note that the solution (41) is the variation of parameters formula for first order (q, h)-difference equations.
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5.2. Dynamic Diffusion Equation

We state a dynamic diffusion equation on T(q,h) × T(q̄,h̄) as

∂t
(q,h)u(x, t) − v(∂x

(q̄,h̄))
2u(x, t) = 0, v ∈ R/{0}, (42)

where the quantum parameters q, q̄ and h, h̄ need not to be equal. (See [18] for the definition of partial
delta (q, h)-derivative.) We emphasize that (42) is a generic equation producing various kinds of partial
differential/ difference type of equations. Using various choices of limits q → 1, h → 0, q̄ → 1, h̄ → 0 in
(42), it is possible to obtain sixteen different kinds of partial differential/ difference equations. For instance,
as h→ 0 and q̄→ 1, the equation (42) produces a q-difference-h̄-difference diffusion equation onKq × h̄Z

∂t
qu(x, t) − c2(∂x

h̄)2u(x, t) = 0.

In this case if also q→ 1, we derive a differential-h̄-difference Heat equation on R × h̄Z

∂tu(x, t) − v(∂x
h̄)2u(x, t) = 0.

When h̄ = h→ 0, we obtain q-difference-q̄-difference equation onKq ×Kq̄

∂t
qu(x, t) − v(∂x

q̄)2u(x, t) = 0.

In this case if also q→ 1, we derive a differential-q̄-difference Heat equation on R ×Kq̄

∂tu(x, t) − v(∂x
q̄)2u(x, t) = 0.

In order to solve generalized diffusion equation (42), we seek for the solutions of the form u(x, t) = f (x)1(t),
where we assume that f is a formal power series written in terms of (γx − δx0)i

q̄,h̄

f (x) =

∞∑
i=0

ai(γx − δx0)i
q̄,h̄. (43)

We plug u and its delta (q, h)-partial derivatives on the diffusion equation (42) and get(
∂t

(q,h) − v(∂x
(q̄,h̄))

2
)

u(x, t) =

∞∑
i=0

(
aiD(q,h)1(t) − v ai+2[i + 2][i + 1]1(t)

)
(γx − δx0)i

q̄,h̄ = 0.

Comparing the coefficients of (γx − δx0)i
q̄,h̄

for all i ≥ 0, we have

ai+2 =
D(q,h)1(t)
1(t)

ai

v[i + 2][i + 1]
. (44)

Since ai are constants, the relation (44) leads us to obtain a (q, h)-difference equation

D(q,h)1(t) = α1(t), (45)

for any nonzero constant α. Using Proposition 4.7, we may obtain the solution for (45) as 1(t) = Exp(q,h)(α(t−
δt0)) with initial condition 1(δt0) = 1. On the other hand, the coefficients ai yield as

ai =

(αv )k a0
[2k]! if i = 2k, k ≥ 0,

(αv )k a1
[2k+1]! if i = 2k + 1, k ≥ 0.

(46)
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In this case one may assume that a0 = 1, a1 = γD(q̄,h̄) f (γδx0) and α
v = γ2D(q̄,h̄) f 2(γδx0), then (43) becomes the

Taylor series of f (x)

f (x) =

∞∑
i=0

γi Di
(q̄,h̄)

f (γδx0) (γx − δx0)i
q̄,h̄

[i]!
, (47)

which is convergent under the assumption hypothesis of Theorem 4.4. More specifically, if we set a0 = 1,
α
v = β2 and a1 = β in (46), then f (x) can be written as

f (x) =

∞∑
i=0

βi(γx − δx0)i
q̄,h̄

[i]!
= Exp(q̄,h̄)(β(γx − δx0)).

Furthermore, one may choose the constants a0 = c1, a1 = c2, αv = −1, then (43) can be expressed in terms of
(q, h)-trigonometric functions

f (x) = c1 cos(q̄,h̄)(γx − δx0) + c2 sin(q̄,h̄)(γx − δx0).

Alternatively if a0 = c1, a1 = c2, αv = 1, then (43) can be presented via (q, h)-hyperbolic functions

f (x) = c1 cosh(q̄,h̄)(γx − δx0) + c2 sinh(q̄,h̄)(γx − δx0).

To sum up, the solution of the IVP

∂t
(q,h)u(x, t) − v(∂x

(q̄,h̄))
2u(x, t) = 0, v ∈ R/{0}, (48)

u(x, δt0) = f (x), (49)

can be expressed as

u(x, t) = Exp(q,h)(vβ2(t − δt0)) f (x),

where f is of the form (47).

Proposition 5.1. The following operator representation holds

Exp(q,h)

(
v(t − δt0)(∂x

(q̄,h̄))
2
)
· Exp(q̄,h̄)(β(γx − δx0)) = Exp(q,h)(vβ2(t − δt0)) · Exp(q̄,h̄)(β(γx − δx0)).

Proof. By the definition of the generalized quantum exponential function (28), we write the operator

Exp(q,h)

(
v(t − δt0)(∂x

(q̄,h̄))
2
)

=

∞∑
n=0

vn(t − δt0)n
q,h(∂x

(q̄,h̄)
)2n

[n]!
.

Since

(∂x
(q̄,h̄))

2nExp(q̄,h̄)(β(γx − δx0)) = β2nExp(q̄,h̄)(β(γx − δx0)),

we conclude that

Exp(q,h)

(
v(t − δt0)(∂x

(q̄,h̄))
2
)
· Exp(q̄,h̄)(β(γx − δx0)) =

∞∑
n=0

vn(t − δt0)n
q,hβ

2n

[n]!
Exp(q̄,h̄)(β(γx − δx0))

= Exp(q,h)(vβ2(t − δt0)) · Exp(q̄,h̄)(β(γx − δx0)).
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Now consider a function in formal power series f (x) =
∞∑
j=0

a j(γx − δx0) j
(q̄,h̄)

. Then the function

h(x, t) = Exp(q,h)

(
v(t − δt0)(∂x

(q̄,h̄))
2
)

f (x) =

∞∑
j=0

a jExp(q,h)

(
v(t − δt0)(∂x

(q̄,h̄))
2
)

(γx − δx0) j
(q̄,h̄)

is a solution of (q, h)-Heat equation (42). We may present the evolution operator for (q, h)-Heat equation

U(t) = Exp(q,h)

(
v(t − δt0)(∂x

(q̄,h̄))
2
)
,

from which the initial value problem (48)-(49) has a solution

u(x, t) = Exp(q,h)

(
v(t − δt0)(∂x

(q̄,h̄))
2
)

u(x, δt0) = Exp(q,h)

(
v(t − δt0)(∂x

(q̄,h̄))
2
)

f (x).

5.3. (q, h)-analogue of shock soliton solutions of generalized Burger’s equation
In this section, we aim to present (q, h)-analogue of Burger’s equation and its shock soliton solutions. Let us
assume that u(x, t) be the solution of the dynamic diffusion equation (42). We introduce the (q, h)-analogue
of the Hopf-Cole transformation [7, 11] as

ψ(x, t) := −2v
∂x

(q̄,h̄)
u(x, t)

u(x, t)
. (50)

Then by the use of the diffusion equation (42) and the (q, h)-Hopf-Cole transformation (50), the function
ψ(x, t) satisfies the following equation(

∂t
(q,h) − v(∂x

(q̄,h̄))
2
)
ψ =

1
2

[(EtψψEx)∂x
(q̄,h̄)ψ] −

1
2
∂x

(q̄,h̄)[(E
xψ)ψ] +

1
4v

[((Ex)2
− Et)ψ](Exψ)ψ, (51)

where Et and Ex are forward shift operators with respect to t, x respectively, i.e. Etψ(x, t) = ψ(x, qt + h) and
Exψ(x, t) = ψ(q̄x + h̄, t). One can observe that, as (q, q̄, h, h̄) → (1, 1, 0, 0), (51) recovers the classical Burger’s
equation

ψt − vψxx = −ψψx. (52)

Thus the equation (51) can be regarded as (q, h)-analogue of Burger’s equation. In order to compute its
solutions, we may start with a solution of (q, h)-diffusion equation (42)

u(x, t) = Exp(q,h)(vβ2(t − δt0)) · Exp(q̄,h̄)(β(γx − δx0)).

By utilizing the Hopf-Cole transformation (50), we compute a constant solution ψ(x, t) = −2vβγ for (51).
Since dynamic diffusion equation (42) is a linear equation, we superpose its two linearly independent
solutions as

u(x, t) =

2∑
i=1

Exp(q,h)(vβ2
i (t − δt0)) · Exp(q̄,h̄)(βi(γx − δx0)),

from which we derive

ψ(x, t) = −2vγ

∑2
i=1 βiExp(q,h)(vβ2

i (t − δt0)) · Exp(q̄,h̄)(βi(γx − δx0))∑2
i=1 Exp(q,h)(vβ2

i (t − δt0)) · Exp(q̄,h̄)(βi(γx − δx0))
. (53)

When γ = 1 and as (q, h)→ (1, 0), (53) reduces to 2-shock soliton solutions of classical Burger’s equation

ψ(x, t) = −2v
∑2

i=1 βievβ2
i t+βix∑2

i=1 evβ2
i t+βix

.
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Then the solutions (53) can be regarded as two (q, h)-shock soliton solutions. Notice that, if β1 = 1, β2 = −1,
(53) yields as (q, h)-stationary shock soliton solutions

ψ(x, t) = −2vγ
Exp(q̄,h̄)(γx − δx0) − Exp(q̄,h̄)(−γx + δx0)

Exp(q̄,h̄)(γx − δx0) + Exp(q̄,h̄)(−γx + δx0)
= −2vγ tanh(q̄,h̄)(γx − δx0).

By superposing N linearly independent solutions of (42)

u(x, t) =

N∑
i=1

Exp(q,h)(vβ2
i (t − δt0)) · Exp(q̄,h̄)(βi(γx − δx0)),

we derive multi (q, h)-shock soliton solutions of (51) as

ψ(x, t) = −2vγ

∑N
i=1 βiExp(q,h)(vβ2

i (t − δt0)) · Exp(q̄,h̄)(βi(γx − δx0))∑N
i=1 Exp(q,h)(vβ2

i (t − δt0)) · Exp(q̄,h̄)(βi(γx − δx0))
. (54)

Notice that as h → 0, (q, h)-shock soliton solutions (54) recover the q-shock soliton solutions presented
in [14]. As (q, h) → (1, 0) the solutions (54) generalize multi shock soliton solutions of classical Burger’s
equation (52).
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