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Abstract. In this paper, we make Euler inequality, Chen first inequality and Chen-Ricci inequality for
non-integrable distributions in statistical manifolds with constant curvatures. Moreover, we investigate the
conditions for equality cases.

1. Introduction

It is well known that the curvature invariants play an important role in Riemannian geometry as well
as in physics. Among them, the most and well known objects are the sectional curvature, scalar curvature,
and Ricci curvatures. Establishing sharp relationships between intrinsic and extrinsic curvature invariants
are one of interesting topics in submanifold theory.

In 1993, B. Chen [4] defined a new type of curvature invariants, called δ-invariants (or Chen invariants).
He proved the Chen first inequality for submanifolds of a real space form. The Chen first invariant of an
n-dimensional Riemannian manifold Mn is defined by δMn = τ − inf K, where τ and K are the scalar and
sectional curvatures of Mn, respectively. Also a sharp relationship between the Ricci curvature and the
squared mean curvature for any Riemannian submanifold of a real space form was proved in [5], which
is known as the Chen-Ricci inequality. Many geometers studied similar problems for different classes of
submanifolds in various ambient spaces.

Statistical manifolds were introduced by Amari [1] in 1985. There are many applications in information
geometry, which represents one of the main tools for machine learning and evolutionary biology. Since such
a manifold is endowed with a pairing of torsion-free connections, called dual connections (or conjugate
connections in affine geometry [12, 14, 18]), its geometry is closely related to affine differential geometry.
Moreover, a statistical structure is a generalization of a Hessian structure.

In general, the dual connections are not metric; thus one cannot define a sectional curvature with respect
to them by the standard definition from Riemannian geometry. Opozda [15, 16] has proposed two different
definitions.
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The interest in Chen invariants for statistical submanifolds in statistical manifolds grew in the recent
years. Aydin et al., in [2], proved some geometric inequalities for the scalar curvature and the Ricci
curvature associated to the dual connections of submanifolds in statistical manifolds with a constant
curvature. Moreover, Aydin et al. further in [3] obtained a generalized Wintgen inequality for statistical
submanifolds in statistical manifolds with a constant curvature by using the sectional curvature in [15, 16].
By virtue of the sectional curvature, Mihai et al. [10] proved Euler and Chen-Ricci inequalities for statistical
submanifolds in Hessian manifolds of constant Hessian curvature. Chen et al. in [6] got a Chen first
inequality for statistical submanifolds in Hessian manifolds of constant Hessian curvature. Malek and
Akbari, in [9], obtained bounds for Casorati curvatures of submanifolds in Cosymplectic statistical space
forms.

On the other hand, any regular submanifold of Rm is locally an integral manifold of a Pfaff system or
its incident, or dual, regular distribution. For any submanifold of a differentiable manifold M the situation
is the same. So, in some sense, the geometric study of regular distributions or Pfaff systems is a natural
generalization of the geometric study of submanifolds. The case of integrable Pfaff systems, or integrable
distributions, corresponds to the study of foliations. See [13] for a systematic study of this subject.

In [11], the author considered non-integrable distributions in a Riemannian manifold. The second
fundamental form was defined and the Gauss equation for non-integrable distributions was established. In
[17], Wang established the Gauss, Codazzi, and Ricci equations for non-integrable distributions with respect
to a semi-symmetric metric connection, a kind of semi-symmetric non-metric connections and a statistical
connection. He also obtained chen’s inequality for non-integrable distributions in real space forms with
respect to a semi-symmetric metric connection and a kind of semi-symmetric non-metric connection.

Motivated by the above studies, we will in the present paper make a Euler inequality, a Chen first
inequality and a Chen-Ricci inequality for non-integrable distributions in the statistical manifolds with
constant curvature using the sectional curvature defined in [15].

2. Statistical Manifolds and non-integrable distributions

Let (Mm, 1) be an m-dimensional Riemannian manifold (Mm, 1). A pair (∇̄, 1) is called a statistical
structure on M if ∇̄ is an affine and torsion-free connection satisfying

(∇̄Z1)(X,Y) = (∇̄X1)(Z,Y) (1)

for all X,Y,Z ∈ £(TM).
In a statistical manifold, there exists a pair of torsion-free affine connections ∇̄ and ∇̄∗ satisfying

Z1(X,Y) = 1(∇̄ZX,Y) + 1(X, ∇̄∗ZY), (2)

for any X,Y,Z ∈ £(TM). The statistical manifold is denoted by (M, 1, ∇̄). The connections ∇̄ and ∇̄∗ are called
dual connections, and it is easily seen that (∇̄∗)∗ = ∇̄. If (∇̄, 1) is a statistical structure on M, then (∇̄∗, 1) is
also a statistical structure on M [1]. For the pair connections ∇̄ and ∇̄∗, we have:

∇̄ + ∇̄∗ = 2∇, (3)

where ∇ is the Levi-Civita connection on Mm. If ∇̄ = ∇̄∗, then the statistical manifold simply reduces to
usual Riemannian manifold and (M, 1, ∇̄) is called trivial statistical.

Denote by R, R̄ and R̄∗ the Riemannian curvature tensor fields of ∇, ∇̄and ∇̄∗, respectively. A statistical
structure (∇̄, 1) is said to be of constant curvature c ∈ R if

R̄(X,Y)Z = c{1(Y,Z)X − 1(X,Z)Y},∀X,Y,Z ∈ Γ(TM). (4)

A statistical structure (∇̄, 1) of constant curvature 0 is called a Hessian structure.
The curvature tensor fields R̄ and R̄∗ of dual connections satisfy

1(R̄∗(X,Y)Z,W) = −1(Z, R̄(X,Y)W). (5)
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From (5) it follows immediately that if (∇̄, 1) is a statistical structure of constant curvature c, then (∇̄∗, 1)
is also a statistical structure of constant curvature c. In particular, if (∇̄, 1) is Hessian, so is (∇̄∗, 1)(one can
see [7] for details).

In [8], Furuhata and Hasegawa have defined the statistical curvature tensor field S̄ for a statistical
manifold (M, ∇̄, 1) as follows (see also [15]):

S̄(X,Y)Z =
1
2
{R̄(X,Y)Z + R̄∗(X,Y)Z} (6)

for any X,Y,Z ∈ Γ(TM).
Let D ⊆ TM be a non-integrable distribution with constant rank n in an m-dimensional statistical

manifold (M, 1, ∇̄). A non-integrable distribution is a subbundle of the tangent bundle TM and there exist
X,Y ∈ Γ(D) such that [X,Y] is not in Γ(D), where Γ(D) is the space of sections of D. The distribution D
inherits a metric tensor field 1D from the original 1 in M. Let D⊥ ⊆ TM be the orthogonal distribution to D
which inherits a metric tensor field 1D⊥ from the 1 and then 1 = 1D

⊕ 1D⊥ .
Let πD : TM → D, πD⊥ : TM → D⊥ be the projections. For X,Y ∈ Γ(D), we define ∇D

XY = πD(∇XY),
[X,Y]D = πD([X,Y]) and [X,Y]D⊥ = πD⊥ ([X,Y]). By [11], for X,Y ∈ Γ(D) we have

∇
D
X1

D = 0,T(X,Y) := ∇D
XY − ∇D

Y X − [X,Y] = −[X,Y]D⊥ ,

∇XY = ∇D
XY + B(X,Y), (7)

where B(X,Y) = πD⊥ (∇XY) is called the second fundamental forms. Obviously, B(X,Y) , B(Y,X). The
formula (7) may be called the Gauss formula with respect to the Levi-Civita connection.

Similarly, the Gauss formulae with respect to the dual connections [17] are

∇̄XY = ∇̄D
XY + B̄(X,Y),

∇̄
∗

XY = ∇̄D,∗
X Y + B̄∗(X,Y),

(8)

where B̄ and B̄∗ are also not symmetric (0, 2)-tensors and are also called the second fundamental forms with
dual connections. Using (3), we have 2B(X,Y) = B̄(X,Y) + B̄∗(X,Y).

Given X,Y,Z ∈ Γ(D), the curvature tensors RD on D with respect to ∇D is defined by

RD(X,Y)Z = ∇D
X∇

D
Y Z − ∇D

Y∇
D
XZ − ∇D

[X,Y]D Z − πD[[X,Y]D⊥ ,Z]. (9)

In (9), RD is a tensor field by adding the extra term −πD[[X,Y]D⊥ ,Z].
Then the curvature tensors R̄D and R̄D,∗ on D with respect to the statistical connection ∇̄D and ∇̄D,∗ can

be defined analogously.
The corresponding Gauss equations are given by [17]:

1(R(X,Y)Z,W) = 1(RD(X,Y)Z,W) + 1(B(X,Z),B(Y,W)))
− 1(B(X,W),B(Y,Z)) + 1(B(Z,W), [X,Y]),

(10)

1(R̄(X,Y)Z,W) = 1(R̄D(X,Y)Z,W) + 1(B̄(X,Z), B̄∗(Y,W)))
− 1(B̄∗(X,W), B̄(Y,Z)) + 1(B̄∗(Z,W), [X,Y]),

(11)

and

1(R̄∗(X,Y)Z,W) = 1(R̄D,∗(X,Y)Z,W) + 1(B̄∗(X,Z), B̄(Y,W)))
− 1(B̄(X,W), B̄∗(Y,Z)) + 1(B̄(Z,W), [X,Y]).

(12)

The curvature tensor SD for non-integrable distributions D with respect to the dual connections is
defined by

SD(X,Y)Z =
1
2

[
R̄D(X,Y)Z + R̄D,∗(X,Y)Z

]
(13)
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Let {E1, · · · ,En} and {En+1, · · · ,Em} be a local orthonormal basis of Γ(D) and Γ(D⊥), respectively. Then the
mean curvature vector fields of D denoted by H, H̄, and H̄∗ are given by

H =
1
n

n∑
i=1

B(Ei,Ei) =
1
n

m∑
α=n+1

(
n∑

i=1

hαii)Eα, h
α
i j = 1(B(Ei,E j),Eα),

H̄ =
1
n

n∑
i=1

B̄(Ei,Ei) =
1
n

m∑
α=n+1

(
n∑

i=1

h̄αii)Eα, h̄
α
i j = 1(B̄(Ei,E j),Eα),

and

H̄∗ =
1
n

n∑
i=1

B̄∗(Ei,Ei) =
1
n

m∑
α=n+1

(
n∑

i=1

h̄∗αii )Eα, h̄∗αi j = 1(B̄∗(Ei,E j),Eα)

for 1 ≤ i, j ≤ nand n + 1 ≤ α ≤ m.
We also set

||B||2 =

n∑
i, j=1

1(B(Ei,E j),B(Ei,E j)) =

m∑
α=n+1

n∑
i, j=1

(hαi j)
2,

||B̄||2 =

n∑
i, j=1

1(B̄(Ei,E j), B̄(Ei,E j)) =

m∑
α=n+1

n∑
i, j=1

(h̄αi j)
2,

and

||B̄∗||2 =

n∑
i, j=1

1(B̄∗(Ei,E j), B̄∗(Ei,E j)) =

m∑
α=n+1

n∑
i, j=1

(h̄∗αi j )2.

The curve γ is ∇-geodesic (resp. ∇̄-geodesic, or ∇̄∗-geodesic) if ∇γ̇γ̇ = 0 (resp. ∇̄γ̇γ̇ = 0, or ∇̄∗γ̇γ̇ = 0).
We say that D is totally geodesic with respect to the Levi-Civita connection ∇ (resp. the dual connection ∇̄,
or ∇̄∗) if every ∇-geodesic (resp. ∇̄-geodesic, or ∇̄∗-geodesic) with initial condition in D is contained in D.
Similar to Theorem 19 in [11], we have the following.

Proposition 2.1. A distribution D is totally geodesic with respect to ∇ (resp. ∇̄, or ∇̄∗) if and only if the symmetric
part of the second fundamental form is identically zero, i.e., B(X,Y) + B(Y,X) = 0 (resp. B̄(X,Y) + B̄(Y,X) = 0, or
B̄∗(X,Y) + B̄∗(Y,X) = 0).

Let Π ⊂ D be a 2-plane section. Denote by KD
0 (Π) and KD(Π) the sectional curvature on D with the

induced connection ∇D and dual connections which are defined by, respectively,

KD
0 (Π) =

1
2

[
1(RD(E1, ,E2)E2,E1) + 1(RD(E2, ,E1)E1,E2)

]
, (14)

KD(Π) =
1
2

[
1(SD(E1, ,E2)E2,E1) + 1(SD(E2, ,E1)E1,E2)

]
, (15)

where {E1,E2} is orthonormal basis of Π and KD
0 (Π),KD(Π) are independent of the choice of E1,E2. For

any orthonormal basis {E1, · · · ,En} of D, the scalar curvature τD
0 and τD on D with respect to the induced

connection ∇D and dual connections are given by, respectively,

τD
0 =

1
2

∑
1≤i, j≤n

1(RD(Ei, ,E j)Ei,E j), (16)
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τD =
1
2

∑
1≤i, j≤n

1(SD(Ei, ,E j)Ei,E j). (17)

Set

AD =
1
2

∑
1≤i, j≤n

1(B(E j,Ei), [E j,Ei]),

and

ΩΠ = −
1
2
1(B(E1,E2) − B(E2,E1), [E1,E2]).

Then AD and ΩΠ are independent of the choice of the orthonormal basis.
We state the following algebraic lemmas, which will be used in the proof of the Chen first inequality.

Lemma 2.2. [6] Let n ≥ 3 be an integer and a1, · · · , an be n real numbers. Then we have:∑
1≤i< j≤n

aia j − a1a2 ≤
n − 2

2(n − 1)
(

n∑
i=1

ai)2.

Furthermore, the equality case of the above inequality holds if and only if a1 + a2 = a3 = · · · = an

The following lemma will be essential for the proof of the Chen-Ricci inequality.

Lemma 2.3. Let a1, · · · , an be n real numbers. Then we have:

a1

n∑
i=2

ai ≤
1
4

(
n∑

i=1

ai)2.

Furthermore, the equality case of the above inequality holds if and only if a1 = a2 + · · · + an.

Proof. The inequality is equivalent to
0 ≤ (a1 − a2 − · · · − an)2,

with the equality holding if and only if a1 = a2 + · · · + an.

3. Euler’s inequality

In this section, we will prove the Euler’s inequality for the non-integrable distributions in statistical
manifolds with constant curvature.

Theorem 3.1. Let (M, c) be an m-dimensional statistical manifold with constant curvature c. Let D ⊂ TM be a
non-integrable distribution with constant rank n and TM = D ⊕D⊥. Then

2τD
− 4τD

0 ≥ n(n − 1)c − 2AD
− n2(||H̄||2 + ||H̄∗||2) −

1
2

(||B̄||2 + ||B̄∗||2) − 4τ0. (18)

where τ0 is the scalar curvature of the Levi-civita connection ∇ on M.

Proof. From (4), (5) and (6), we have

1(S(X,Y)Z,W) =
1
2

[
1(R̄(X,Y)Z,W) + 1(R̄∗(X,Y)Z,W)

]
=

1
2

[
1(R̄(X,Y)Z,W) − 1(R̄(X,Y)W,Z)

]
= c
[
1(Y,Z)1(X,W) − 1(X,Z)1(Y,W)

] (19)
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Using (11), (12), (13) and (19), we obtain

1(SD(X,Y)Z,W) = c
[
1(Y,Z)1(X,W) − 1(X,Z)1(Y,W)

]
+

1
2

{[
1(B̄∗(X,W), B̄(Y,Z)) − 1(B̄(X,Z), B̄∗(Y,W))

]
+
[
1(B̄(X,W), B̄∗(Y,Z)) − 1(B̄∗(X,Z), B̄(Y,W))

]}
−

1
2

[
1(B̄∗(Z,W), [X,Y]) + 1(B̄(Z,W), [X,Y])

]
= c
[
1(Y,Z)1(X,W) − 1(X,Z)1(Y,W)

]
+

1
2

{[
1(B̄∗(X,W), B̄(Y,Z)) + 1(B̄(X,W), B̄∗(Y,Z))

]
−

[
1(B̄(X,Z), B̄∗(Y,W)) + 1(B̄∗(X,Z), B̄(Y,W))

]}
+ 1(B(Z,W), [Y,X]),

(20)

where we used 2B(Z,W) = B̄(Z,W) + B̄∗(Z,W).
Let {E1, · · · ,En} and {En+1, · · · ,Em} be orthonormal basis of Γ(D) and Γ(D⊥), respectively. Putting X =

W = Ei,Y = Z = E j in (20) and taking summation, we get

2τD =
∑

1≤i, j≤n

1(SD(Ei,E j)E j,Ei)

=
∑

1≤i, j≤n

{
c
[
1(E j,E j)1(Ei,Ei) − 1(Ei,E j)1(E j,Ei)

]
+

1
2

{[
1(B̄∗(Ei,Ei), B̄(E j,E j)) + 1(B̄(Ei,Ei), B̄∗(E j,E j))

]
−

[
1(B̄(Ei,E j), B̄∗(E j,Ei)) + 1(B̄∗(Ei,E j), B̄(E j,Ei))

]}
+ 1(B(E j,Ei), [E j,Ei])

}
= n(n − 1)c +

∑
1≤i, j≤n

1(B(E j,Ei), [E j,Ei])

+
1
2

m∑
α=n+1

∑
1≤i, j≤n

[
(h̄αii h̄

∗α
j j + h̄∗αii h̄αj j) − (h̄αi jh̄

∗α
ji + h̄∗αi j h̄αji)

]
= n(n − 1)c + 2AD + n21(H̄, H̄∗) −

1
2

m∑
α=n+1

∑
1≤i, j≤n

(h̄αi jh̄
∗α
ji + h̄∗αi j h̄αji)

= n(n − 1)c + 2AD + n21(H̄, H̄∗) −
1
2

m∑
α=n+1

∑
1≤i, j≤n

[(h̄αi j + h̄∗αi j )(h̄αji + h̄∗αji ) − h̄αi jh̄
α
ji − h̄∗αi j h̄∗αji ]

= n(n − 1)c + 2AD + n21(H̄, H̄∗) − 2
m∑

α=n+1

∑
1≤i, j≤n

hαi jh
α
ji +

1
2

m∑
α=n+1

∑
1≤i, j≤n

(h̄αi jh̄
α
ji + h̄∗αi j h̄∗αji ).

(21)

where we used h̄αi j + h̄∗αi j = 2hαi j,∀i, j, α.
We denote by τ0 the scalar curvature of the Levi-civita connection ∇ on M. Gauss equation (10) implies

2τD
0 = 2τ0 + n2

||H||2 −
m∑

α=n+1

∑
1≤i, j≤n

hαi jh
α
ji + 2AD. (22)
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We note that

1
2

m∑
α=n+1

∑
1≤i, j≤n

(h̄αi jh̄
α
ji + h̄∗αi j h̄∗αji ) ≥ −

1
2

m∑
α=n+1

∑
1≤i, j≤n

[
(h̄αi j)

2 + (h̄αji)
2

2
+

(h̄∗αi j )2 + (h̄∗αji )2

2
]

= −
1
2

(||B̄||2 + ||B̄∗||2)

(23)

From (21),(22) and (23), we obtain

2τD
− 4τD

0 ≥ n(n − 1)c − 2AD + n21(H̄, H̄∗) − 2n2
||H||2 −

1
2

(||B̄||2 + ||B̄∗||2) − 4τ0

= n(n − 1)c − 2AD
− n2(||H̄||2 + ||H̄∗||2) −

1
2

(||B̄||2 + ||B̄∗||2) − 4τ0.
(24)

This ends the proof Theorem 3.1.

Corollary 3.2. The equality case of (18) holds if and only if h̄αi j + h̄αji = 0, h̄∗αi j + h̄∗αji = 0, ∀i, j = 1, · · · ,n;α =

n + 1, · · · ,m. i.e., D is totally geodesic with respect to dual connections ∇̄ and ∇̄∗.

Let M̃(c̃) be a Hessian manifold of constant Hessian curvature c̃. Then it is flat with respect to the dual
connections ∇̄ and ∇̄∗. Moreover M̃(c̃) is a Riemannian space form of constant sectional curvature −c̃ \ 4
(with respect to the Levi-Civita connection ∇). So from Theorem 3.1, we have the following.

Theorem 3.3. Let M̃(c̃) be an m-dimensional Hessian manifold of constant Hessian curvature c̃. Let D ⊂ TM be a
non-integrable distribution with constant rank n and TM = D ⊕D⊥. Then

2τD
− 4τD

0 ≥ −2AD
− n2(||H̄||2 + ||H̄∗||2) −

1
2

(||B̄||2 + ||B̄∗||2) +
n(n − 1)c̃

2
. (25)

4. Chen first inequality

This section is devoted to establish Chen first inequality for non-integrable distributions in statistical
manifolds of constant curvature.

Theorem 4.1. Let (M, c) be an m-dimensional statistical manifold with constant curvature c. Let D ⊂ TM be a
non-integrable distribution with constant rank n and TM = D ⊕D⊥. Then

τD
− KD(Π) − 2(τD

0 − KD
0 (Π)) ≥

(n + 1)(n − 2)
2

c − AD
−ΩD

−
n2(n − 2)
4(n − 1)

(||H̄||2 + ||H̄∗||2)

−
1
4

(||B̄||2 + ||B̄∗||2) − 2(τ0 − K0(Π)),
(26)

where τ0 and K0(Π) are the scalar curvature and sectional curvature of the Levi-civita connection∇ on M, respectively.
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Proof. Using (17) and (20), we have

τD =
∑

1≤i< j≤n

{
c
[
1(E j,E j)1(Ei,Ei) − 1(Ei,E j)1(E j,Ei)

]
+

1
2

{[
1(B̄∗(Ei,Ei), B̄(E j,E j)) + 1(B̄(Ei,Ei), B̄∗(E j,E j))

]
−

[
1(B̄(Ei,E j), B̄∗(E j,Ei)) + 1(B̄∗(Ei,E j), B̄(E j,Ei))

]}}
+

1
2

∑
1≤i, j≤n

1(B(E j,Ei), [E j,Ei])

=
n(n − 1)

2
c + AD +

1
2

m∑
α=n+1

∑
1≤i< j≤n

[
(h̄αii h̄

∗α
j j + h̄∗αii h̄αj j) − (h̄αi jh̄

∗α
ji + h̄∗αi j h̄αji)

]
=

n(n − 1)
2

c + AD +
1
2

m∑
α=n+1

∑
1≤i< j≤n

[
(h̄αii + h̄∗αii )(h̄αj j + h̄∗αj j ) − h̄αii h̄

α
j j − h̄∗αii h̄∗αj j

− (h̄αi j + h̄∗αi j )(h̄αji + h̄∗αji ) + h̄αi jh̄
α
ji + h̄∗αi j h̄∗αji

]
=

n(n − 1)
2

c + AD + 2
m∑

α=n+1

∑
1≤i< j≤n

(hαiih
α
j j − hαi jh

α
ji) −

1
2

m∑
α=n+1

∑
1≤i< j≤n

h̄αii h̄
α
j j

−
1
2

m∑
α=n+1

∑
1≤i< j≤n

h̄∗αii h̄∗αj j +
1
2

m∑
α=n+1

∑
1≤i< j≤n

h̄αi jh̄
α
ji +

1
2

m∑
α=n+1

∑
1≤i< j≤n

h̄∗αi j h̄∗αji ,

where we used h̄αi j + h̄∗αi j = 2hαi j,∀i, j, α.

We denote by τ0 the scalar curvature of the Levi-civita connection ∇ on M. Gauss equation (10) implies

τD =
n(n − 1)

2
c + 2τD

0 − 2τ0 − AD
−

1
2

m∑
α=n+1

∑
1≤i< j≤n

h̄αii h̄
α
j j

−
1
2

m∑
α=n+1

∑
1≤i< j≤n

h̄∗αii h̄∗αj j +
1
2

m∑
α=n+1

∑
1≤i< j≤n

h̄αi jh̄
α
ji +

1
2

m∑
α=n+1

∑
1≤i< j≤n

h̄∗αi j h̄∗αji ,

(27)

Let E1,E2 be a basis of Π ⊂ D. By (15) and (20), we get

KD(Π) =c −ΩΠ + 2
n∑

α=n+1

(hα11hα22 − hα12hα21) −
1
2

m∑
α=n+1

h̄α11h̄α22

−
1
2

m∑
α=n+1

h̄∗α11h̄∗α22 +
1
2

m∑
α=n+1

h̄α12h̄α21 +
1
2

m∑
α=n+1

h̄∗α12h̄∗α21,

(28)

where K0(Π) is sectional curvature of the Levi-civita connection ∇ on M.
Using the Gauss equation (10) for the Levi-Civita connection, we obtain

KD
0 (Π) = K0(Π) −ΩΠ +

n∑
α=n+1

(hα11hα22 − hα12hα21). (29)
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From (28) and (29), we have

KD(Π) = c + ΩΠ + 2KD
0 (Π) − 2K0(Π) −

1
2

m∑
α=n+1

h̄α11h̄α22

−
1
2

m∑
α=n+1

h̄∗α11h̄∗α22 +
1
2

m∑
α=n+1

h̄α12h̄α21 +
1
2

m∑
α=n+1

h̄∗α12h̄∗α21

(30)

By subtracting (30) from (27), we obtain

τD
− KD(Π) − 2(τD

0 − KD
0 (Π)) =

(n + 1)(n − 2)
2

c − AD
−ΩD

− 2(τ0 − K0(Π))

−
1
2

m∑
α=n+1

[
∑

1≤i< j≤n

h̄αii h̄
α
j j − h̄α11h̄α22] −

1
2

m∑
α=n+1

[
∑

1≤i< j≤n

h̄∗αii h̄∗αj j − h̄∗α11h̄∗α22]

+
1
2

m∑
α=n+1

[
∑

1≤i< j≤n

h̄αi jh̄
α
ji − h̄α12h̄α21] +

1
2

m∑
α=n+1

[
∑

1≤i< j≤n

h̄∗αi j h̄∗αji − h̄∗α12h̄∗α21].

(31)

Then Lemma 1.1 implies
m∑

α=n+1

[
∑

1≤i< j≤n

h̄αii h̄
α
j j − h̄α11h̄α22] ≤

m∑
α=n+1

n − 2
2(n − 1)

(
n∑

i=1

h̄αii)
2 =

n2(n − 2)
2(n − 1)

||H̄||2, (32)

m∑
α=n+1

[
∑

1≤i< j≤n

h̄∗αii h̄∗αj j − h̄∗α11h̄∗α22] ≤
m∑

α=n+1

n − 2
2(n − 1)

(
n∑

i=1

h̄∗αii )2 =
n2(n − 2)
2(n − 1)

||H̄∗||2. (33)

We note that
m∑

α=n+1

[
∑

1≤i< j≤n

h̄αi jh̄
α
ji − h̄α12h̄α21]

=

m∑
α=n+1

[
∑

3≤ j≤n

h̄α1 jh̄
α
j1 +

∑
2≤i< j≤n

h̄αi jh̄
α
ji]

≥ −

m∑
α=n+1

[
∑

3≤ j≤n

(h̄α1 j)
2 + (h̄αj1)2

2
+
∑

2≤i< j≤n

(h̄αi j)
2 + (h̄αji)

2

2
]

≥ −

m∑
α=n+1

[
∑

3≤ j≤n

(h̄α1 j)
2 + (h̄αj1)2

2
+
∑

2≤i< j≤n

(h̄αi j)
2 + (h̄αji)

2

2
+

n∑
i=1

(h̄αii)
2

2
+

(h̄α12)2 + (h̄α21)2

2
]

= −
||B̄||2

2
.

(34)

Similarly, we get
m∑

α=n+1

[
∑

1≤i< j≤n

h̄αi jh̄
α
ji − h̄α12h̄α21] ≥ −

||B̄∗||2

2
. (35)

By summing the above relations we obtain

τD
− KD(Π) − 2(τD

0 − KD
0 (Π)) ≥

(n + 1)(n − 2)
2

c − AD
−ΩD

− 2(τ0 − K0(Π))

−
n2(n − 2)
4(n − 1)

(||H̄||2 + ||H̄∗||2) −
1
4

(||B̄||2 + ||B̄∗||2).
(36)
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This completes the proof of Theorem 4.1.

Corollary 4.2. The equality case of (26) holds if and only if D are also totally geodesic with respect to dual connections
∇̄ and ∇̄∗, and h̄α12 = h̄α21 = 0, h̄∗α12 = h̄∗α21 = 0 for α = n + 1, · · · ,m.

Proof. The equality case of (32) holds if and only if h̄α11 + h̄α22 = h̄α33 = · · · = h̄αnn. The equality case of (33) holds
if and only if h̄∗α11 + h̄∗α22 = h̄∗α33 = · · · = h̄∗αnn.

The equality case of (34) holds if and only if h̄α1 j + h̄αj1 = 0 for 3 ≤ j ≤ n, h̄αi j + h̄αji = 0 for 2 ≤ i < j ≤ n, h̄αii = 0
for i = 1, · · · ,n and h̄α12 = h̄α21 = 0.

The equality case of (35) holds if and only if h̄∗α1 j + h̄∗αj1 = 0 for 3 ≤ j ≤ n, h̄∗αi j + h̄∗αji = 0 for 2 ≤ i < j ≤ n,
h̄∗αii = 0 for i = 1, · · · ,n and h̄∗α12 = h̄∗α21 = 0. This ends the proof of Corollary 4.2.

For a Hessian manifold of constant Hessian curvature c̃, from Theorem 4.1 we have the following:

Theorem 4.3. Let M̃(c̃) be an m-dimensional statistical manifold with constant curvature c. Let D ⊂ TM be a
non-integrable distribution with constant rank n and TM = D ⊕D⊥. Then

τD
− KD(π) − 2(τD

0 − KD
0 (π)) ≥

(n + 1)(n − 2)c̃
4

− AD
−ΩD

−
n2(n − 2)
4(n − 1)

(||H̄||2 + ||H̄∗||2) −
1
4

(||B̄||2 + ||B̄∗||2).

5. Chen-Ricci inequality

In this section, we will prove a Chen-Ricci inequality for non-integrable distributions in the statistical
manifolds of constant curvature.

For each unit vector field X ∈ Γ(D), we choose an orthornormal basis {E1, · · · ,En} of D such that E1 = X.
We define

RicD(X) =

n∑
j=2

1(SD(X,E j)E j,X);

AD(X) =

n∑
j=2

1(B(E j,X), [E j,X]);

||B̄X
||

2 =

n∑
j=2

[1(B̄(E j,X), B̄(E j,X)) + 1(B̄(X,E j), B̄(X,E j))];

||B̄∗X||2 =

n∑
j=2

[1(B̄∗(E j,X), B̄∗(E j,X)) + 1(B̄∗(X,E j), B̄∗(X,E j))].

Theorem 5.1. Let (M, c) be an m-dimensional statistical manifold with constant curvature c. Let D ⊂ TM be a
non-integrable distribution with constant rank n and TM = D ⊕D⊥. Then

RicD(X) − 2RicD
0 (X) ≥ (n − 1)c − AD(X) −

n2

8
(||H̄||2 + ||H̄∗||2)

−
1
4

(||B̄||2 + ||B̄∗||2) − 2Ric0(X),
(37)

where Ric0(X) and RicD
0 (X) are Ricci curvatures with respect to the Levi-civita connection∇ on M and D, respectively.
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Proof. From (20) and the definition of RicD(X), we have

RicD(X) =

n∑
j=2

{
c
[
1(E j,E j)1(X,X) − 1(X,E j)1(E j,X)

]
+

1
2

{[
1(B̄∗(X,X), B̄(E j,E j))

+ 1(B̄(X,X), B̄∗(E j,E j))
]
−

[
1(B̄(X,E j), B̄∗(E j,X)) + 1(B̄∗(X,E j), B̄(E j,X))

]}
+ 1(B(E j,X), [E j,X])

}
= (n − 1)c + AD(X) +

1
2

m∑
α=n+1

n∑
j=2

[h̄α11h̄∗αj j + h̄∗α11h̄αj j − h̄α1 jh̄
∗α
j1 − h̄∗α1 j h̄

α
j1]

= (n − 1)c + AD(X) +
1
2

m∑
α=n+1

n∑
j=2

[(h̄α11 + h̄∗α11)(h̄αj j + h̄∗αj j )

− h̄α11h̄αj j − h̄∗α11h̄∗αj j − (h̄α1 j + h̄∗α1 j )(h̄
α
j1 + h̄∗αj1 ) + h̄α1 jh̄

α
j1 + h̄∗α1 j h̄

∗α
j1 ]

= (n − 1)c + AD(X) +
1
2

m∑
α=n+1

n∑
j=2

[4(hα11hαj j − hα1 jh
α
j1) − h̄α11h̄αj j − h̄∗α11h̄∗αj j + h̄α1 jh̄

α
j1 + h̄∗α1 j h̄

∗α
j1 ]

(38)

Also, with respect to the Levi-Civita connection, we get

RicD
0 (X) =

n∑
j=2

1(RD(X,E j)E j,X)

= Ric0(X) +

m∑
α=n+1

n∑
j=2

(hα11hαj j − hα1 jh
α
j1) + AD(X),

(39)

where Ric0(X) and RicD
0 (X) are Ricci curvatures with respect to the Levi-civita connection on M and D,

respectively.
Using (38) and (39), we get

RicD(X) − 2RicD
0 (X) = (n − 1)c − AD(X) − 2Ric0(X) −

1
2

m∑
α=n+1

n∑
j=2

h̄α11h̄αj j

−
1
2

m∑
α=n+1

n∑
j=2

h̄∗α11h̄∗αj j +
1
2

m∑
α=n+1

n∑
j=2

h̄α1 jh̄
α
j1 +

1
2

m∑
α=n+1

n∑
j=2

h̄∗α1 j h̄
∗α
j1 .

(40)

Applying Lemma 2.2, we have

m∑
α=n+1

n∑
j=2

h̄α11h̄αj j ≤
n2

4
||H̄||2,

m∑
α=n+1

n∑
j=2

h̄∗α11h̄∗αj j ≤
n2

4
||H̄∗||2. (41)

On the other hand, we note

m∑
α=n+1

n∑
j=2

h̄α1 jh̄
α
j1 ≥ −

m∑
α=n+1

n∑
j=2

(h̄α1 j)
2 + (h̄αj1)2

2
= −
||B̄X
||

2

2
, (42)

m∑
α=n+1

n∑
j=2

h̄∗α1 j h̄
∗α
j1 ≥ −

m∑
α=n+1

n∑
j=2

(h̄∗α1 j )
2 + (h̄∗αj1 )2

2
= −
||B̄∗X||2

2
, (43)
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Using (41),(42) and (43), the formula (40) can become

RicD(X) − 2RicD
0 (X) ≥ (n − 1)c − AD(X) −

n2

8
(||H̄||2 + ||H̄∗||2)

−
1
4

(||B̄X
||

2 + ||B̄∗X||2) − 2Ric0(X).
(44)

Corollary 5.2. The equality in (37) holds if and only if for α ∈ {n + 1, · · · ,m}

h̄α11 =

n∑
j=2

h̄αj j, h̄
∗α
11 =

n∑
j=2

h̄∗αj j ;

h̄α1 j + h̄αj1 = 0, h̄∗α1 j + h̄∗αj1 = 0, j = 2, · · · ,n.

For a Hessian manifold of constant Hessian curvature c̃, from Theorem 4.1 we have the following:

Theorem 5.3. Let M̃(c̃) be an m-dimensional statistical manifold with constant curvature c. Let D ⊂ TM be a
non-integrable distribution with constant rank n and TM = D ⊕D⊥. Then

RicD(X) − 2RicD
0 (X) ≥

(n − 1)c̃
2

− AD(X) −
n2

8
(||H̄||2 + ||H̄∗||2)

−
1
4

(||B̄X
||

2 + ||B̄∗X||2).
(45)
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