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New Conformable Fractional Operator and Some Related Inequalities

Deniz Uçara

aDepartment of Mathematics, Faculty of Sciences and Arts, Uşak University, Uşak, Turkey

Abstract. In this study, we introduce a new conformable derivative, namely the beta-conformable deriva-
tive. We derive Taylor’s theorem for this derivative. We also investigate some new properties of Taylor’s
theorem and some useful related theorems for the beta-conformable derivative. In the light of the new oper-
ator, we extend some recent and classical integral inequalities including Steffensen and Hermite-Hadamard
inequality.

1. Introduction

Since L’Hospital asked ”What does dn f
dxn mean if n = 1

2 ” to Lebniz, many researchers tried to define a
fractional derivative. Most of them defined integral form for the fractional derivative. The most popular
ones are:

(i) The Riemann-Liouville fractional derivative of a function f is defined as

Dα
x
(

f (x)
)

=
1

Γ (n − α)

(
d

dx

)n x∫
0

(x − t)n−α−1 f (t) dt, n − 1 < α ≤ n.

(ii) Caputo’s definition of fractional derivative is illustrated as follows

C
a Dα

t
(

f (t)
)

=
1

Γ (n − α)

x∫
0

(x − t)n−α−1 f (n) (τ) dτ, n − 1 < α ≤ n.

(iii) The modified Liouville fractional derivative of a function f is defined as

Dα
x
(

f (x)
)

=
1

Γ (n − α)

(
d

dx

)n x∫
0

(x − t)n−α−1 (
f (t) − f (0)

)
dt, n − 1 < α ≤ n.

(iv) [11] The conformable fractional derivative of f of order α is defined by

f (α) (t) = lim
ε→0

f
(
t + εt1−α

)
− f (t)

ε
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for t > 0, α ∈ (0, 1).
(v) [14] The modified conformable fractional derivative is defined as

Dα (
f
)

(t) = lim
ε→0

f
(
teεt−α

)
− f (t)

ε

for t > 0, α ∈ (0, 1).
For a review of this topic we direct the reader to the monograph [1]. However those fractional derivatives

have some inconsistencies. In instance, ifα is not a natural number, most of the defined fractional derivatives
do not satisfy Dα

a (1) = 0. Some of the fractional derivatives do not satisfy product rule for two functions. The
conformable and modified conformable fractional derivatives satisfy the common properties of the standard
rules but they have some limitations. We can see the weakness of the defined fractional derivatives in [14].

A. Atangana et al in [2] proposed a suitable derivative called the Beta-derivative that allowed us to escape
the lack of the fractional derivatives. We use beta-fractional derivative introduced by Abdon Atangana in
[2] to obtain our results.

Definition 1.1. Let f be a function, such that f:[a,∞)→ R. Then, the beta-derivative of a function f is defined as

A
0 Dβ

x
(

f (x)
)

= lim
ε→0

f
(
x + ε

(
x + 1

Γ(β)

)1−β
)
− f (x)

ε
,

for all x ≥ a, β ∈ (0, 1] . Then if the limit exists, f is said to be β-differentiable.

There is a relation between β-derivative and usual derivative.

A
0 Dβ

x
(

f (x)
)

=

(
x +

1
Γ
(
β
) )β−1

f
′

(x) ,

where f ′ (x) = lim
h→0

f (x+h)− f (x)
h .

Definition 1.2. Let f : [a, b]→ R be a continuous function on the opened interval (a, b) , then the β-integral of f is
given as:

A
0 Iβt

(
f (t)

)
=

∫ t

0

(
x +

1
Γ
(
β
) )β−1

f (x) dx.

This integral was recently referred to as the Atangana beta-integral.

Definition 1.3. Let β ∈ (0, 1] and 0 ≤ a < b. A function f : [a, b] → R is β − f ractional integrable on [a, b] if the
integral∫ b

a
f (t) dβt :=

∫ b

a

(
t +

1
Γ
(
β
) )β−1

f (t) dt

exists and finite.

We assume the reader is familiar with the notation and basic results for fractional calculus. For a review
of this topic we direct the reader to the monograph [2, 4, 5, 12].
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2. Main Results

In this section, we give the main theorem of the paper and obtain some results close to the results in
classical calculus. We first introduce Taylor formula with a new parameter.

Theorem 2.1. Let β ∈ (0, 1] and n ∈N. If the function f is (n + 1) order β − f ractional differentiable on [0,∞) and
s, t ∈ [0,∞), then we have

f (t) =

n∑
k=0

β−k

k!

(t +
1

Γ
(
β
) )β − (

s +
1

Γ
(
β
) )βk

Dkβ
s f (s)

+
β−n

n!

∫ t

s

(t +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βn

D(n+1)β
τ f (τ) dβτ. (1)

Proof. Using integraton by parts, we have

β−n

n!

∫ t

s

(t +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βn

D(n+1)β
τ f (τ) dβτ

= −
β−n

n!

(t +
1

Γ
(
β
) )β − (

s +
1

Γ
(
β
) )βn

Dnβ
s f (s) +

β1−n

(n − 1)!

∫ t

s

(t +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βn−1

Dnβ
τ f (τ) dβτ.

By the same way, integrating the second part of the right of equality, we obtain

β1−n

(n − 1)!

∫ t

s

(t +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βn−1

Dnβ
τ f (τ) dβτ

= −
β1−n

(n − 1)!

(t +
1

Γ
(
β
) )β − (

s +
1

Γ
(
β
) )βn−1

D(n−1)β
s f (s)

+
β2−n

(n − 2)!

∫ t

s

(t +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βn−2

D(n−1)β
τ f (τ) dβτ.

If we continue integrating by this way, we have

β−n

n!

∫ t

s

(t +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βn

D(n+1)β
τ f (τ) dβτ

= −
β−n

n!

(t +
1

Γ
(
β
) )β − (

s +
1

Γ
(
β
) )βn

Dnβ
s f (s)

−
β1−n

(n − 1)!

(t +
1

Γ
(
β
) )β − (

s +
1

Γ
(
β
) )βn−1

D(n−1)β
s f (s)

+... −
β−1

n!

(t +
1

Γ
(
β
) )β − (

s +
1

Γ
(
β
) )β Dβ

s f (s) +

∫ t

s
Dβ
τ f (τ) dβτ

= −
β−n

n!

(t +
1

Γ
(
β
) )β − (

s +
1

Γ
(
β
) )βn

Dnβ
s f (s)

−
β1−n

(n − 1)!

(t +
1

Γ
(
β
) )β − (

s +
1

Γ
(
β
) )βn−1

D(n−1)β
s f (s)

+... −
β−1

n!

(t +
1

Γ
(
β
) )β − (

s +
1

Γ
(
β
) )β Dβ

s f (s) + f (t) − f (s).
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Thus we prove the equality (1). We call the integral in the last inequality β−Taylor Remainder of the function
f .

Definition 2.2. Let β ∈ (0, 1] and the function f is (n + 1) times β − f ractional differentiable on [0,∞) . Using (1),
we define the remainder function by

Rn. f (s, t) := f (s) −
n∑

k=0

β−k

k!

(t +
1

Γ
(
β
) )β − (

s +
1

Γ
(
β
) )βk

Dkβ
s f (s) ,

and

Rn. f (s, t) =
β−n

n!

∫ t

s

(t +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βn

D(n+1)β
τ f (τ) dβτ, (2)

for n > −1.

Theorem 2.3. Let f and 1 are continuous on the closed interval [a, b] and also 1 ≥ 0. Then there exists a point
c ∈ [a, b] where

b∫
a

f (t) 1 (t) dβt = f (c)

b∫
a

1 (t) dβt.

Proof. We define m := min
a≤t≤b

f (t) , M := max
a≤t≤b

f (t) . So we have

m ≤ f (t) ≤M. (3)

Multiplying both sides of the inequality (3) by the function
(
t + 1

Γ(β)

)β−1
1 (t) and integrating over (a, b) with respect

to t, we get

m1 (t) ≤ f (t) 1 (t) ≤M1 (t)

m

b∫
a

1 (t) dβt ≤

b∫
a

f (t) 1 (t) dβt ≤M

b∫
a

1 (t) dβt

m ≤

b∫
a

f (t) 1 (t) dβt

b∫
a
1 (t) dβt

≤M,

where
b∫

a
1 (t) dβt , 0. If

b∫
a
1 (t) dβt = 0, then we can choose any point c. Since the function f is continuous on [a, b] , f

takes each value over [m,M] at least once. So we have

f (c) =

b∫
a

f (t) 1 (t) dβt

b∫
a
1 (t) dβt

for some c ∈ [a, b] and hence the proof is completed.
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Remark 2.4. If we apply Theorem 2.3 to the β−Taylor Remainder (2), we have

Rn. f (s, t) = D(n+1)β
t f (c)

∫ t

s

β−n

n!

(t +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βn

dβτ

= D(n+1)β
t f (c)

β−n

(n + 1)!

(t +
1

Γ
(
β
) )β − (

s +
1

Γ
(
β
) )βn+1

.

We call this form of remainder β−Lagrange Remainder.

Lemma 2.5. Let β ∈ (0, 1] and the function f is (n + 1) times β − f ractional differentiable on [0,∞). If β−Taylor’s
remainder is defined as in (2), then the following inequality holds.∫ b

a

β−n−1

(n + 1)!

(t +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βn+1

D(n+1)β
τ f (τ) dβτ

=

∫ t

a
Rn. f (a, τ) dβτ +

∫ b

t
Rn. f (b, τ) dβτ. (4)

Proof. We use mathematical induction to prove (4). For n = −1, we get∫ b

a

(t +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βn+1

D(n+1)β
τ f (τ) dβτ

=

∫ b

a
f (τ) dβτ =

∫ t

a
f (τ) dβτ +

∫ b

t
f (τ) dβτ.

Assume that (4) holds for n = k − 1,∫ b

a

β−k

k!

(t +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βk

Dkβ
τ f (τ) dβτ

=

∫ t

a
Rk−1. f (a, τ) dβτ +

∫ b

t
Rk−1. f (b, τ) dβτ.

Let n = k. Using the integration by parts, we obtain∫ b

a

β−k−1

(k + 1)!

(t +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βk+1

D(k+1)β
τ f (τ) dβτ (5)

=
β−k−1

(k + 1)!


(t +

1
Γ
(
β
) )β − (

b +
1

Γ
(
β
) )βk+1

Dkβ
τ f (b)

−

(t +
1

Γ
(
β
) )β − (

a +
1

Γ
(
β
) )βk+1

Dkβ
τ f (a)


+

∫ b

a

β−k

k!

(t +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βk

Dkβ
τ f (τ) dβτ

=
β−k−1

(k + 1)!


(t +

1
Γ
(
β
) )β − (

b +
1

Γ
(
β
) )βk+1

Dkβ
τ f (b)

−

(t +
1

Γ
(
β
) )β − (

a +
1

Γ
(
β
) )βk+1

Dkβ
τ f (a)

 +

∫ t

a
Rk−1. f (a, τ) dβτ +

∫ b

t
Rk−1. f (b, τ) dβτ.
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Since

β−k

k!
Dkβ
τ f (b)

∫ t

b

(τ +
1

Γ
(
β
) )β − (

b +
1

Γ
(
β
) )βk

dβτ

=
β−k−1

(k + 1)!
Dkβ
τ f (b)

(t +
1

Γ
(
β
) )β − (

b +
1

Γ
(
β
) )βk+1

,

and

β−k

k!
Dkβ
τ f (a)

∫ t

a

(τ +
1

Γ
(
β
) )β − (

a +
1

Γ
(
β
) )βk

dβτ

=
β−k−1

(k + 1)!
Dkβ
τ f (a)

(t +
1

Γ
(
β
) )β − (

a +
1

Γ
(
β
) )βk+1

.

Then, we can write (5) to obtain∫ b

a

β−k−1

(k + 1)!

(t +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βk+1

D(k+1)β
τ f (τ) dβτ

=

∫ t

a
Rk−1. f (a, τ) dβτ +

∫ b

t
Rk−1. f (b, τ) dβτ

+
β−k

k!
Dkβ
τ f (b)

∫ t

b

(τ +
1

Γ
(
β
) )β − (

b +
1

Γ
(
β
) )βk

dβτ

−
β−k

k!
Dkβ
τ f (a)

∫ t

a

(τ +
1

Γ
(
β
) )β − (

a +
1

Γ
(
β
) )βk

dβτ

=

∫ t

a

Rk−1. f (a, τ) −
β−k

k!
Dkβ
τ f (a)

(τ +
1

Γ
(
β
) )β − (

a +
1

Γ
(
β
) )βk dβτ

+

∫ b

t

Rk−1. f (b, τ) −
β−k

k!
Dkβ
τ f (b)

(τ +
1

Γ
(
β
) )β − (

b +
1

Γ
(
β
) )βk dβτ.

This completes the proof.

Corollary 2.6. Let β ∈ (0, 1] in Lemma 2.5, then we have∫ b

a

β−n−1

(n + 1)!

(a +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βn+1

D(n+1)β
τ f (τ) dβτ

=

∫ b

a
Rn. f (b, τ) dβτ

∫ b

a

β−n−1

(n + 1)!

(b +
1

Γ
(
β
) )β − (

τ +
1

Γ
(
β
) )βn+1

D(n+1)β
τ f (τ) dβτ

=

∫ b

a
Rn. f (a, τ) dβτ.

2.1. Steffensen Inequality

We prove a new β− f ractional version of Steffensen inequality and of Hayashi’s inequality. We need the
folllowing lemma to prove our results.
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Lemma 2.7. Let β ∈ (0, 1] and a, b ∈ R with 0 ≤ a < b. We assume M > 0 and f : [a, b] → [0,M] be an
β − f ractional integrable function on [a, b] . Then the inequalities∫ b

b−l
Mdβt ≤

∫ b

a
f (t) dβt ≤

∫ a+l

a
Mdβt (6)

hold where

l :=
β (b − a)

M
[(

b + 1
Γ(β)

)β
−

(
a + 1

Γ(β)

)β] ∫ b

a
f (t) dβt, t ∈ [0, b − a] . (7)

Proof. Since f (t) ∈ [0,M] for all t ∈ [a, b] , using (7) we have

0 ≤ l =
β (b − a)

M
[(

b + 1
Γ(β)

)β
−

(
a + 1

Γ(β)

)β] ∫ b

a
f (t) dβt

≤
β (b − a)(

b + 1
Γ(β)

)β
−

(
a + 1

Γ(β)

)β ∫ b

a
dβt = b − a.

We can easily see that
(
t + 1

Γ(β)

)β−1
is a decreasing function on [a, b] or (a, b] for a = 0.Thus using the fact that

dβt =
(
t + 1

Γ(β)

)β−1
, we obtain the following inequalities

1
l

∫ b

b−l
dβt ≤

1
b − a

∫ b

a
dβt ≤

1
l

∫ a+l

a
dβt.

So that using (7), we have∫ b

b−l
Mdβt ≤

l
b − a

∫ b

a
Mdβt ≤

∫ a+l

a
Mdβt,

which ends the proof.

We call the following theorem as Steffensen’s inequality. If we choose M = 1 and A > 0 for generality it

is called Hayashi’s inequality.

Theorem 2.8. Let β ∈ (0, 1] and a, b ∈ R with 0 ≤ a < b and M > 0. Assume that the functions f : [a, b]→ [0,M]
and 1 : [a, b]→ [0,M] be β − f ractional integrable functions on [a, b] . If f is nonnegative and nonincreasing, then

M
∫ b

b−l
f (t) dβt ≤

∫ b

a
f (t) 1 (t) dβt ≤M

∫ a+l

a
f (t) dβt, (8)

where l is defined in (7).

Proof. Assume that f is nonnegative and nonincreasing, we first prove the left side of the inequality. By the
definition of l in (7) and the conditions on function 1,we have inequality (6). Using the left hand side of the
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inequality (8), we obtain∫ b

a
f (t) 1 (t) dβt −M

∫ b

b−l
f (t) dβt

=

∫ b−l

a
f (t) 1 (t) dβt +

∫ b

b−l
f (t) 1 (t) dβt −M

∫ b

b−l
f (t) dβt

=

∫ b−l

a
f (t) 1 (t) dβt −

∫ b

b−l

(
M − 1 (t)

)
f (t) dβt.

Since f is nonincreasing and for t ∈ [b − l, b] , we have

f (t) ≤ f (b − l) . (9)

Using the inequality (9), we get∫ b−l

a
f (t) 1 (t) dβt −

∫ b

b−l

(
M − 1 (t)

)
f (t) dβt

≥

∫ b−l

a
f (t) 1 (t) dβt − f (b − l)

∫ b

b−l

(
M − 1 (t)

)
dβt

≥

∫ b−l

a
f (t) 1 (t) dβt − f (b − l)

∫ b

b−l
1 (t) dβt

≥

∫ b−l

a

(
f (t) − f (b − l)

)
1 (t) dβt ≥ 0.

Thus we prove the left hand side of the inequality (8). The proof of the right hand side of the inequality is
similar and one can easily prove theinequality by using (6).

Theorem 2.9. If f is nonpositive and nondecreasing function and 1 : [a, b] → [0,M] , the inequalities in Theorem
2.8 are reversed.

Proof. Assume f is nonpositive and nondecreasing. In this case, we prove the right hand side of the
inequality (8). Using the inequality (8) and the inequality (6), we have∫ b

a
f (t) 1 (t) dβt −M

∫ a+l

a
f (t) dβt

=

∫ a+l

a
f (t) 1 (t) dβt +

∫ b

a+l
f (t) 1 (t) dβt −M

∫ a+l

a
f (t) dβt

=

∫ b

a+l
f (t) 1 (t) dβt +

∫ a+l

a

(
1 (t) −M

)
f (t) dβt

≥

∫ b

a+l
f (t) 1 (t) dβt + f (a + l)

∫ a+l

a

(
1 (t) −M

)
dβt

≥

∫ b

a+l
f (t) 1 (t) dβt − f (a + l)

∫ a+l

a
1 (t) dβt

=

∫ b

a+l

(
f (t) − f (a + l)

)
1 (t) dβt ≥ 0.

Thus the right hand side of the inequality (8) holds. The proof of the left hand side of the reversed inequality
is similar as in the proof of the Theorem 2.8.
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In the following we obtain some results by using β − f ractional Steffensen inequality.

Theorem 2.10. Let β ∈ (0, 1] and the function f : [a, b] → R be (n + 1) times β − f ractional differentiable. We
assume that D(n+1)β f is increasing and Dnβ f is decreasing on [a, b] . Then inequalities

Dnβ f (a + l) −Dnβ f (a) ≤ (n + 1)!βn+1

(b +
1

Γ
(
β
) )β − (

a +
1

Γ
(
β
) )β−n−1 ∫ t

a
Rn. f (a, τ) dβτ

≤ Dnβ f (b) −Dnβ f (b − l)

hold where

l :=
b − a
n + 2

.

Proof. We define the function F := −D(n+1)β f . Since D(n+1)β f is increasing and Dnβ f is decreasing on [a, b] ,
we have D(n+1)β f ≤ 0. So that F ≥ 0 and decreasing on [a, b] . For the assumptions of Steffensen’s inequality
we define

1 (t) :=

[(
b + 1

Γ(β)

)β
−

(
t + 1

Γ(β)

)β]n+1

[(
b + 1

Γ(β)

)β
−

(
a + 1

Γ(β)

)β]n+1 ,

for t ∈ [a, b] , n ≥ −1. We apply M = 1 in Theorem 2.8, the functions F and 1 satisfy the assumptions of

Steffensen’s inequality. We can write

−

∫ b

b−l
D(n+1)β

t f (t) dβt ≤ −
∫ b

a
D(n+1)β

t f (t) 1 (t) dβt ≤ −
∫ a+l

a
D(n+1)β f (t) dβt. (10)

If we simplify (10) using Corollary 2.6, we obtain

Dnβ f (a + l) −Dnβ f (a) ≤ (n + 1)!βn+1

(b +
1

Γ
(
β
) )β − (

a +
1

Γ
(
β
) )β−n−1 ∫ t

a
Rn. f (a, τ) dβτ

≤ Dnβ f (b) −Dnβ f (b − l) .

This completes the proof.

Remark 2.11. Let D(n+1)β f is decreasing and Dnβ f is increasing on [a, b] . If we define the function F := D(n+1)β f ,
one can easily show that the above inequalities in Theorem 2.10 are reversed.

If we choose n = 0 in Theorem 2.10, we obtain the well-known inequality called Hermite-Hadamard.
Since the discovery of the inequality of Hermite-Hadamard, a number of mathematicians have dedicated
their efforts to obtain new proofs, generalizations, refinements variations and applications. In recent years,
authors have studied the Hermite-Hadamard inequality for different classes of functions and for fractional
calculus. For more details, we refer the reader to [3, 6–10, 13].
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Definition 2.12. Let β ∈ (0, 1] and the function f : [a, b]→ R be β − f ractional differentiable. If Dβ f is increasing
and f is decreasing on [a, b] , then

f
(

a + b
2

)
≤

β(
b + 1

Γ(β)

)β
−

(
a + 1

Γ(β)

)β ∫ b

a
f (t) dβt ≤ f (b) + f (a) − f

(
a + b

2

)
. (11)

Remark 2.13. If Dβ f is decreasing and f is increasing on [a, b] , then the inequalities (11) are reversed.

Conclusion

In this paper, we have studied Taylor’s formula with a new parameter and have obtained new results
for beta-derivative. The main theorem improves previously results and this presents a new approach to
β-version of Steffensen inequality and well known Hermite-Hadamard inequality.
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