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On a Fiber-wise Homogeneous Deformation of the Sasaki Metric

Arif Salimov?®, Habil Fattayev?

?Department of Algebra and Geometry, Baku State University, AZ1148, Baku, Azerbaijan

Abstract. In this paper, we firstly determine a new deformed Sasaki type lift of a metric from a Riemannian
manifold to its coframe bundle and investigate a few special (1.1)-tensor structures (i.e. almost Hermit
structures) in the coframe bundle equipped with this type lift.

1. Introduction

Inspired by the work of Sasaki [10] some authors continued investigations on natural lifts of metrics, i.e.
on deformed Sasaki type lifts in different bundles (see for example [1-4, 6-9, 11]). It is well known that any
vector bundle (tangent, cotangent and tensor bundles) one always has the global zero section. But there is
the other situation, that of the coframe bundle, which is a GL(n, R)-principal bundle without zero section.
Using this property we define a homogeneous type deformed Sasaki metric in the coframe bundle. This
paper is devoted to the investigation of this lift in the coframe bundle. In Section 2 we briefly describe the
definitions and results that are needed later, after which a homogeneous type deformed Sasaki lift (metric)
g of a Riemannian metric g to coframe bundle F*(M,,) is constructed in Section 3. The Levi-Civita connection
of 4 is studied in Section 4. A few special (1,1)-tensor structures, i.e. almost Hermit structures in the linear
co-frame bundle equipped with the lift § of a Riemannian metric g is investigated in Section 5.

2. Preliminaries

In this section we shall summarize briefly the basic definitions and results which will be used later. Let
M,, be an n—dimensional differentiable manifold of class C*, and F*(M,) = {(x,u*)|x € M,,, u* : coframe
for a dual space Ty (M,)} be the linear coframe bundle over M,. We denote by 7 the natural projection
of F*(M,) on M, defined by m(x,u*) = x. If (U; xh,x%, ., x") is a system of local coordinates in M,, then a
coframe u* = (X%) = (X', X?,...,X") for T};(M,) can be expressed uniquely in the form X* = X#(dx'), and
hence
(n‘l(l,l); xt o, XG XD XZ)

is a system of local coordinates in F*(M,). The indices i, jk, ..., a,B,y, ... have range in {1,2,...,n}, while
indices A, B, C, ... have range in

{1, onn+l,..,n+ nz}.
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Weputhy=a-n+h(h,=n+1,n+2,.. n+ n?). Summation over repeated indices is always implied.
We denote by J%(M,,) the set of all differentiable tensor fields of type (7, s) on M,,. We consider a symmetric
linear connection V on M,, with components Ffj It is known that T(F*(M,,)) = H(F*(M,,)) ® V(F*(M,,)), where

H(F*(M,)) and V(F*(M,)) are the horizontal and the vertical distributions of a linear coframe bundle F*(M,,),
respectively. Hence every X € 3} (F*(M,)) has the unique decomposing X = #X+VX, #X € H(F'(M,)), VX €
VEM,). |

Let V = V'd; and w = w;dx’ be the local expressions in U C M, of a vector and a covector (1-form) fields
V e 33(M,) and w € I)(M,), respectively. Then the complete and horizontal lifts “V,#V € J}(F*(M,)) of V
and the f—th vertical lifts Véw € fl(l)(F*(M,,)) (B=1,2,...,n)of w are defined by

V=V - X0, V";,, "V =V + X1V, (1)
Vﬁa) = Z 6ga)i8id (2)
i

with respect to the natural frame {J;, d; } = {%, %} , respectively (see [3] for more details). The vertical lift

of a smooth function f on M, is a function Vfon F(M,) defined by Vf = f o 7.
Let (U, x') be a coordinate system in M,,. In U C M,,, we put

2 o
X(l') = a_xi’ o = dx,i=1,2,..,n.

Taking into account (1) and (2), we easily see that the components of X, and V«6® are given by

o
"X Z(AfH):( XeT! ] ©
j i
Vap() — HY _ 0
()

with respect to the natural frame {8 ir9js }, respectively, where 6? are the Kronecker symbols. This n+n? vector
fields are linearly independent and generate, respectively, the horizontal distribution of linear connection
V and vertical distribution of the linear bundle F*(M,). The set {HX(i), Va 9(i>} is called the frame adapted to
the linear connection V on t=}(U) C F*(M,). By setting

D; =Xy, D ="09,

we write the adapted frame as {D;} = {D;,D;,}. From equations (1)-(4), we see that Ay and Vew have
respectively, components
. Vi
Hys _ _Hys _ (Hy/I\ _
V_wa,v_(v)_(o), (5)
Viw = 2 wioD; , VPw = (Vﬁwl) = 0 (6)
T Ly T - - 6;‘@
1

with respect to the adapted frame {D;}.
Let us consider the local 1-forms 7} in 7771(U) defined by

=l
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where

-1 il Ai/’ Aijﬁ 63’ 0
AT=A )= g4eoah T —xarm  sasl | @
j I ij BT

The matrix (7) is the inverse of the matrix

i j '
Al 4l ] ~ [ ﬁai 50 ]
Jp I/ m k
A, Ak,, erjk 0, 6].

A=A )=

of the transformation Dx = A I Jj (see (3) and (4)). Itis easy to establish that the set {ff } is the coframe dual
to the adapted frame {Dk]}, i.e.

i(Dk) = A" A, T =6
The following theorem holds.

Theorem 2.1. Let M, be a Riemannian manifold with metric g, let V be the Levi-Civita connection and let R be the
Riemannian curvature tensor. Then the Lie bracket of the linear coframe bundle F*(M,,) of M, satisfies the following:

i)

Vi, Y261 = 0, ®)
ii)

"X, Vrw] = V¥ (Vxw), (9)
ii)

(X, 7Y] = M[X, Y] + y(R(X, ) (10)

forall X, Y € 33(M,,) and w, 6 € I)(M,).
Proof. In the case when I = i, by using (2), we see that the left hand side of (8) reduces to
Ve, V7O = [, V70 = sk 6 = VroXax s = 0.
In the case I = i, we have
Ve, V0] = [V, V701 = VwKak"r 0 — Vr 0o a'e
= Yok @Yy @io + Yok g Vr @i — Vv k9 Vil — Vr 0o gy Veg's
= 594 Z;:‘ Wiy, 0 — 6904 Zk" 040y w; = 0.
ii) In the case I = i, from (1) and (2) we have
X, o] = [FX, Vo] = 1XKo i — ViaKa i X
= VX = Voo FX = 0.
In the case I = i, we obtain
X, Vo] = [AX, Vil = AXKa i wi — VKo H X

Vs wkakHXu, + Vg kakHXl“ _V a)k‘7 akﬂHXza _V wk”(?kuHX’“
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= 54X s — iy, (XIT)XT) = 58 X ey — S5edk 03T X!
= 5g(xkakw,- - X' ) = 5g©xwi
from which, due to symmetry of connection V, it follows that
["X, V'] = V¥ (Vxw).
iii) In the case when I = i, by using (1), we see that left hand side of (10) reduces to
(X HY] = [FX HYT = XK MY — HYKgHxi = Hxkg Hy
+ixlog Hy! - Hykg X! — Hykog, FXT = XFopY' = YR, X' = [X, YT
=H[X YT
In the case I = i, we have
(X, HY] = [AX HY]e = EXKgHyle — HyKgHxin = Hxkg Hyla
+H X0 gy Hyle — HYkgH X — Hyk gy Hxin = Xk (X9T) ')
+(XSHFZ;XS)&;<G(X§’FI’.IY’) - Ykak(x;*r;lx’) — (X5.T7Y*)k, (xyrglxl)
= X XYY + XXGT oY + X5 X YT, = YEX ()X
k i 1 : Ipmyk _ j I k1 j j
-Y Xj?‘Ffl(QkX - XY XTI = X;’l”ﬂ[X, Y] + X*Y X;?‘(Bkl”il —ar,
T =TI = P16 YT + XFY'XOR], = "X, YT + 55 XER(X, V).
Therefore
["X, Y] = "[X, Y] + y(R(X, Y))
and Theorem 2.1 is proved. [

Remark 2.2. Using equality (2), it is easy to establish that a vertical vector field y(R(X,Y)) € J é(F*(M,,)) can
be represented as

n

Y(R(X,Y)) = Z Vi(XP o R(X, Y)). (11)
=1

3. Homogeneous Type Deformed Sasaki Metric

Let (M,, g) be a Riemannian manifold. The diagonal lift (or the Sasaki lift) P of Riemannian metric g to
coframe bundle F*(M,) is defined by

Py = gijdx' @ dx! + 559" 0X¢ ® 6Xf
and satisfies the following conditions:
Pa("X, M) =V (gX, V) = g(X, ) o,

9w, "10) = 60 V(97 (@, 0)) = Bapg ™ (@, O) o 71,
Pg(X,"70) = 0
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for all X,Y € J}(M,) and w,0 € I)(M,), where 6X¢ = dX* — F,’(’;andxk and ¢/ denote contravariant
components of g.

Let us consider the homothety h) : (x,u*) — (x,Au*),A € R, on the fibers of the linear coframe bundle
F*(M,). Then Py is transformed as follows:

Py, Ar') = gijdx' @ dxl + 65,5129 1X¢ @ OXE, YA € R,

We see, that the metric Py is not homogeneous, i.e.
Py(x,u) # Pgx, ).

Now, we define a new lift § of a Riemannian metric g to the coframe bundle F*(M,,) as follows:
G = gijdx' @ dx/ + $5,4976X8 ® 6X7,

where /i is a function defined as

n n n
=YX = ) gUXeXs = ) g X X, (12)
a=1 a=1 a=1
It is easy to see that § is homogeneous with respect to X7, i.e.
G(x, ') = gijx' @ dx! + 7659 10X¢ @ X! = i(x,u7), VA € Ry

Remark 3.1. Since u* = (X', X?, ..., X") # 0 is a basis of the cotangent space T5(M,), the condition /i # 0 is
fulfilled at each point x € M,, and in the coframe bundle does not exist zero section. This means that the
metric 4 is defined in the linear coframe bundle F*(M,,).

We get, without difficulties:

Theorem 3.2. The following properties hold:
1°. The pair (F*(M,), §) is a Riemannian space, depending only on the metric g.
2°. g is homogeneous on the linear coframe bundle F*(M,).
3°. The distributions H and V are orthogonal with respect to §:
§X,VX) =0,YX, Y € I} (F'(M,)).
We can write § in the form

G=9"+g"g" = gidx' @dxl, §" = 1044976X} ® X,
The metric § has components
<\ _ | 9ij 0 )
1) = ij (13)
(o) ( 0 ;0apg”
with respect to the adapted frame {D;} in F*(M,,). From (13) it easily follows that if g is a Riemannian metric

in M, then § is a Riemannian metric in F*(M,,) and it is called a homogeneous type deformed Sasaki metric.
It is easily to verify that the inverse matrix (/) of matrix (gﬁ,) is as follows:

. b0
(#") :( A hoety, )

with respect to the adapted frame {D;} in F*(M,,).
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Also, we can represent the metric § by the following global formulas:
JXHY) = g(X, Vo,
§("w,"0) = 15459 (w, ) 0 71, (14)
§X, V5 0) = 0

for all vector fields X, Y € 51(M ) and covector fields (1-forms) w, 0 € 30(M ). We recall that any element

t e Sg(F*(Mn)) is completely determined by its action on vector fields of type X and Vew. From this it
follows that 4 is completely determined by (14).

Using (5), (6), (7) and Dx = A, Jo j, after straightforward computations, we obtain:

Y. 77X, X | = (XD

a=1

Hxm) =HXx

Xn: g (X", X%
a=1

= X' (9 + T X))

i g—l(Xa, Xa)] — Xiai [i g—l(Xa’ Xa)
a=1 a=1

= X') (@)X, X7
a=1

+I XX O, Z g (X, X%

= XY @Ggxex:

a=1

+I XX, Z g (X, X%

n
=X )T~ T X X:

a=1

n
ATUX X0 | Y g Xe XS

n
+ Z TXig” X 0k00Xe + )| TX g X, 6k03 X
a=1

n
_err Z glsXaXa ersl Z‘ grlXaXa + Xz Z grsX%Xg

a=1 a=1
) n
+XTE Y gXeXE =0, (15)

and

a=1

Vsw(h) = ShayD; (Z 7XEX®

6’f,a)i8,-y [Xn: grs X?X?
a=1
a3 (3,50) 5+ e Y 0 0)
=1 a=1

n n n
= Shw; Y OL0ig XS + Sha; Y Sh0ig XY = Y Shg X w,

+Za X g, —225’g (X9, (16)
a=1
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for all X € I3(M,) and w € II(M,).
From (15) and (16) it immediately follows that

Xt =0, (17)

Y 8 (X0 W
V(ra)(}_l) - Zufl hzg ( “). (18)

4. Levi-Civita Connection of §
It is well-known that the Levi-Civita connection V of a Riemannian metric g is given by Koszul formula
29(VxY,2) = Xg(Y,Z) + Yg(Z,X) - Zg(X, Y) + 9(IX, Y], 2)

for all vector fields X, Y, Z € 3}(M,).
Using (5), (6), (11), (14), (17), (18) and (19), we have

Theorem 4.1. Let M, be a Riemannian manifold with metric g and V be the Levi-Civita connection of the linear
coframe bundle F*(M,,) equipped with the metric §. Then V satisfies:

i
x7 H~ _H 1 - Vs (o
VuxHY = (VXY)+§Z (X? o R(X, Y)),
o=1
ii)
n
Vix @ = V*(Vxw) + £ ) o™ (X7 0 R(, X)),
o=1
iii)
n
Vio Y = % Y 60 (X7 0 R(, Y)@), (20)
o=1
iv)

P00 =~ Y X0 - g7, ) VXY + 0,50 Y e,
o=1 o=1 o=1

forall X,Y € 3\(M,), @,0 € 3%(M,), where & = g~ o w € L (M,,), X = g7 0 X* € T} (M,,) with respect to the
adapted frame {Dy}.
Proof. i) By help of Koszul formula (19), (10) and (11), we have

259"y, "2) = "X @'Y, "2) + PY@(1Z, X)) - PZ(g(1X, T Y)

—g"X 1Y, Z]) + (Y 172, 7XD) + §(7Z, 17X, YD) = 29(VxY, Z) (21)
and

2§(Vix™Y, e w) = FX(@GY, " w)) + Y (G0, X)) = V(G X, 7Y))

=X 7Y @] + g [w, TXD) + 5w, 17X YD) = Vw(g(X, V)
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—g("X, V1 (Vyw)) + §(TY, =V (Vyw) + §(V 0, T IX, YT + p(R(X, Y)))

= §("@, yRX, V) = | @, ) V(X" o RX, V) .

o=1
By combining of (21) and (22), we obtain:

n
VY = H(VxY) + 1 Z Ve(X? 0 R(X, Y)).

o=1
ii) By help of Koszul formula (19) and (9), we get:
24(Vix"w,"Y) = X" w, ")) + V(@Y X)) - Y (G(X, Vo w))

—50X, [V, YD) + G0, 11X + g1, X, Vo))

= 5", RO X)) = (@, Y V(X7 0 R(Y, X))
o=1

n

= 3|} xT o RO X)), Y| = Y (X7 o R(Y, X)), Vo)

o=1 o=1

=Y 100087 (X7 0 R(Y, X), ).

o=1
Using
771 (X7 o R(Y, X), @) = ¢7(X? o R(Y, X))iw; = g'XIR,,, *Y*X'w;
= X{R, Y X'@' = g XIR", VX&' = g(XP(g™" o R(, X)@),Y)
= g""(XP(g7" o R( , X)@)),"Y)
and
X3 =0,
we have

25(Vix w, 1Y) = 1 Z 800 d(X(g7 o R( , X)@)), Y.

o=1

On the other hand,
2§(Vix"*w,"70) = "X(3("*w, 7 0)) - §("*w, "*(Vx0))

+3(V10,"*(Vxw)) = §("*w, V¥ (Vx0)) + §(V*0, V* (Vxw))
—§("w, "#(Vx0)) + §("76, " (Vxw)) = 24("* (Vxw), "*0).
Therefore,

Vim0 = Vo (Vxw) + £ Y 0 (X(g7 0 R(, X)@)).

o=1

3614

(22)
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iii) By calculations analogy to those in ii), we obtain:
25(Vv., Y, 70) = 1Y (3(V @, 70)) = (" w, * (V1 0))
=g("10, " (Vyw)) = §(** (Vyw), #0) + g("w, " (Vv 0)
—g("w, " (Vx0)) = 4(6, " (Vyw)) = 0
and
25(Vve ™, "Z) = =§(" w0, Y (R(Y, 2)) = —q{“w, Z " (RQY, Z>X°>]

o=1

==Y G("(X70R(Y, 2)), V@) = = Y 6,5 (X" 0 R(Y, Z), )

o=1 o=1

= Y oudg((X (g7 0 R(, V)@), "2).

o=1

Thus, we have
ViaolY = £ ) 000X (g7 0 R(, V))).
o=1
iv) By using Koszul formula (19), we have
25(Vve,70,72) = S Z(§(" @, " 0)) + §(V @, "*(V20))
+3(70, " (Vzw)) = =§(" (Vzw), "10) = (" w, "*(V20))
+7(" @, *(V20)) + §("#6, " (Vzw)) = 0.
On the other hand, using (8), (11) (for R(X,Y) = 0), (14) and

_ n a —1cyo )
V‘*a)(%) — 2301 5;229 (X /ﬂ)/
~ v ) - -2y 8% (X0 w _
Vaw(g(VﬁQ, vy E)) — Vaa)(%éﬁyg 1(6, 5)) — w . 6;379 1(6, 5),
n n n
g(vaw, )/(5) — g[vaw/ Z Voxo | = Z ?(V“a), V“XU) — }%Z 6249—1(60’ Xa)’
o=1 o=1 o=1

we have the following

P(§(Vrai,'70,"78) = (" w(@(76,"78) + 0G(7 €,V w))

n

Ve, 00) = = ) 697 (X7, @) - 65,07 (6,€)

o=1

=Y b (X7, 0)- 687 (& @) + Y SLgTHXT, ) - Bapg (@, 0)
o=1

o=1

=h Zl 8 (X, @) - 516, &) = h 21 Oy (X7, 0) - 5("7&, )

3615
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n

Y 87X, 8) 5w, 6) = [ hzg( KONES
o=1 o=1
_h2g~ [V,3 0, Z Ve xo

o=1

Vﬂ 9_

Vi + 124 (Vw, " 0) Z Vaxe, el

o=1

Thus

n
ﬁvawVﬂe — _!7 [V“a), Z Vgxo

o=1

n
Vﬁg _ g[VﬂQl VGXU

o=1

Ve o+

n
+ g~(va w, Vg 0) Z Ve xo
o=1

and the proof of Theorem 4.1 is completed. [
Let

Vp,Dy = T{ Dk

with respect to the adapted frame {Dx} of linear coframe bundle F*(M,,), where fﬁ denote the components
of the Levi-Civita connection V. Then by using the Theorem 4.1, we immediately get following:

Theorem 4.2. Let (M, g) be a Riemannian manifold and V be the Levi-Civita connection of the linear coframe bundle
F(My) equipped with the homogeneous type deformed Sasaki lift § of a Riemannian metric g on M,,. The particular
values of T | for different indices, by taking account of (20) are then found to be

=k k ok _ ko _
F 1“1],1*1 js Fiaj =0,

¥ i YT
Za XoRp, T3 = =0T,

n

"k_l o pk im §k  _ 1 o pk jm

la] _hZéaUX R] /F,‘jﬁ ~ 2 6[3(7XmR.l’. 7
o=1

=k,

O = = (0ucg ™ X5,030, + 05" X500, — dapg 1))

m® gk

m — g
with respect to the adapted frame {Dg}, where R = g"gFR,".

5. Almost Hermit Structures on the Coframe Bundle

Various tensor structures of type (1.1) (i.e. (1.1)-tensor structures) on manifolds have been studied
by many authors (see for example [5]). Some classes of (1,1)-tensor structures can be an isomorphic
representation of certain algebras. Such tensor structures are called algebraic tensor structures. In this
section, we define a few specific (1,1)-tensor structures, i.e almost Hermit structures on the linear coframe
bundle equipped with a homogeneous type deformed Sasaki lift of the Riemannian metric.

Let (M,, g) be a Riemannian manifold and let F*(M,,) be its linear coframe bundle equipped with a lift §
of the metric g to F*(M,). On linear coframe bundle F*(M,) we define the mappings

Fg, Fg : 3)(F'(My)) = 35(F (M), B=1,2,..,n,
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as follows:
Fo(Di) = Fy(Z) = Vhgy; Vid) = Y VhgyDj, = Y Vhg=2, (23)
7 p f
Fs(Di,) = Fy(38r) = —z0ap9"" (35) =~ 00 9D, (24)

where {D;} = {D;, D;,} is the adapted frame of the linear frame bundle F*(M,,) and
h is a function defined by (12).
It is not difficult to prove:

Theorem 5.1. Foreachf=1,2,..,n, I;ﬁ has the following properties:
1°. F;; is a (1,1)-tensor structure on linear coframe bundle F*(M,,);
2°. Fg depends only on the metric g;
3°. Fy is homogeneous on the fibers of the linear coframe bundle F*(M,).

We denote by IT the (1,1)-tensor structure {I;ﬁ},ﬁ = 1,2,..,n, defined by (23) and (24) on the linear
coframe bundle F*(M,,). Using (23) and (24), we have

Theorem 5.2. The (1.1)-tensor structure I1 = {l—jﬁ} ,B=1,2,...,n, satisfies the relations:

Fe?=-1, f=1,2,.,n,

FﬂOFJ,:O,‘B;t)/,

where I and O are the identity and zero tensor fields on F*(M,,), respectively.

Proof. From (23) and (24) we obtain
Fg*(Dy) = Fg (Fﬁ(Di)) = Fg [Z ‘/Egiijﬁ] = Vh Z.’?ijﬁ(Dfﬁ)
j j

= = Vh- J:8439:i9" Dy = =6{Dy = =D;
F(Dy) = Fy (Fp(D,,) = Fy (<2703 D;) = =050 Fy(D))

—% Vi - 5ﬁa_t]ij9jkaﬁ = —52Dkﬂ =-D;,

from which it follows that
Fo2=-I, f=1,2,.,n

Similarly, we have

(135 ° fy)(Di) = ﬁﬁ (ﬁ),(Di)) = p*ﬁ

Z Vi gD,
]

= ‘/EZ 9iiFs(Dj,)
j

=~V 00"\ Di = ~8,6 D = ~,Di =0 (B#7),
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and
(Fp © F)D;) = Fy (Fy(D3) = Fy (2 6700,D) = = 60,0 TFy(D))
= —J= - Vitday gDy, = =005 8}Dy, = =)D, =0 (B # ).
Thus
FyoF, =0

for all B # y and Theorem 5.2 is proved. [

On the linear coframe bundle F*(M,,) we introduce the (1,1)-tensor structure I'T = {(p[g} B=12,.,nn+1
as follows

ILiff=1,
8= Fgq, if f=2,3,..,nn+1,

where [ is the identity (1,1)-tensor field on F*(M,). Such tensor structures play an important role in the
theory of algebraic structures. From Theorem 5.2 we have

Corollary 5.3. The (1,1)-tensor structure Il = {qog} ,B=1,2,..,n,n+1 satisfies the conditions
Pa o pf= ng(py, apB,7,..=1,2,..,n+1,

Ch:C%z:...:Cnﬂ =1,C§2=Cé3=‘-':cl

1,n+1 n+ln+l —

-1,
all the other coefficients are zero.

The following theorem holds.

Theorem 5.4. The homogeneous type deformed Sasaki lift § of a Riemannian metric g to the coframe bundle F*(M,,)
is compatible with the (1,1)-tensor structure IT = {Fﬁ} ,B=1,2,..,n,ie,

GFsX, FgY) = §(X,Y),p = 1,2, .1,
forall X, Y € 3 (F*(M,)).

Proof. Since the matrix (g) is the inverse of the matrix (g; i), from (23), (24) and (13), it follows that for each
B=12,..,n,

4(Fs(Dy), Fo(D})) = 4(D;, D),
#(Fy(Dy,), Fy(D;)) = Dy, Dy),

g(Fg(D;,), Fs(Dy)) = 4(Di,, D) =0.
Hence

G(FsX, FgY) = §(X, Y)
forall X,Y e Sé(F*(MH)) and $ =1,2,..,n. Thus, Theorem 5.4 is proved. [

From Theorem 5.4 it follows

Corollary 5.5. The triple (F*(M,), g, I;ﬁ) is an almost Hermit manifold for any g = 1, n.



A. Salimov, H. Fattayev / Filomat 35:11 (2021), 3607-3619 3619

References

(1]
[2]
3]

[4

[5]
[6]
[7]

(8]
191

[10]
[11]

L.A. Cordero, M. de Leon, On the curvature of the induced Riemannian metric on the frame bundle of a Riemannian manifold,
J. Math. Pures Appl. 65 (1986) 81-91.

S.L. Druta-Romaniuc, Natural diagonal Riemannian almost product and para- Hermitian cotangent bundles, Czechoslovak
Math. J. 62 (2012) 937-949.

H.D. Fattayev, A. Salimov, Diagonal lifts of metrics to coframe bundle, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 44 (2018)
328-337.

0. Kowalski, Curvature of the induced Riemannian metric of the tangent bundle of Riemannian manifold, J. Reine Angew. Math.
250 (1971) 124-129.

G.I. Kruckovic, Hypercomplex structures on manifolds I, Trudy Sem. Vektor. Tenzor. Anal. 16 (1972) 174-201.

E. Musso, F. Tricerri, Riemannian metrics on tangent bundles, Ann. Mat. Pura. Appl. 150:4 (1988) 1-19.

E. Peyghan, H. Nasrabadi, A. Tayebi, The homogeneous lift to the (1.1)-tensor bundle of a Riemannian metric, Internat. J.
Geometric Methods Modern Physics 10:4 (2013), Article number 1350006.

A. Salimov, F. Agca, Some properties of Sasakian metrics in cotangent Bundles, Mediterr. J. Math. 8 (2011) 243-255.

A. Salimov, A. Gezer, On the geometry of the (1.1)-tensor bundle with Sasaki type metric, Chin. Ann. Math. Ser. B 32 (2011)
369-386.

S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. 10 (1958) 338-354.

M. Sekizawa, Curvatures of tangent bundles with Cheeger-Gromoll metric, Tokyo J. Math. 14 (1991) 407—417.



