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Abstract. In this paper, our aim is to define some new sequence spaces cI
0(Υr), cI(Υr) and `I

∞
(Υr) as a domain

of triangular Jordan totient matrix and study some of its algebraic and topological properties. Further, we
discuss some inclusion relations regarding these said sequence spaces.

1. Introduction

For a given positive integer r, Jordan totient function Jr is an arithmetic function which is a generalization
of Euler totient function φ defined in [8]. The Jordan totient function is defined by the number of r-tuples of
integers (a1, a2, . . . , ar) satisfying 1 ≤ ai ≤ n, i = 1, 2, . . . , r and gcd(a1, a2, . . . , ar,n) = 1. By inclusion–exclusion
principle, if the unique prime decomposition of n is n = pα1

1 , p
α2
2 , . . . , p

αk
k for α ≥ 1, then Jordan totient

function can be defined as Jr(n) = nr ∏
p|n

(
1 − 1

pr

)
. In case r = 1, the Jordan totient function reduces to Euler

function φ. For some properties of Jordan totient function and some of its applications, we refer the reader
to [1, 2, 20, 26]. Recall in [18] the regular Jordan totient matrix operator Υr = (νr

nk) is defined as:

νr
nk =

 Jr(k)
nr , if k|n,

0, otherwise.
(1)

In the classical summability theory the idea of the generalization of the convergence of sequences of real or
complex numbers is to assign a limit of some sort to divergent sequences by considering a matrix transform
of a sequence rather than the original sequence. Recently, the Jordan totient matrix Υr was used and
considered as a compact operator on the space of all absolutely p–summable sequences `p. Afterwards,
Kara et al. [3] introduced some new sequence spaces `∞(Υr), c(Υr) and c0(Υr) as the sets of all sequences
whose Υr–transforms of the sequence x = (xk) are in the spaces of all bounded `∞, convergent c and null c0
sequences, respectively, that is

λΥr =

x = (xk) ∈ ω :

 1
nr

∑
k|n

Jr(k)xk

 ∈ λ
 , for λ = {`∞, c, c0}.
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Many authors have extensively developed the theory of the matrix transformations between some sequence
spaces. Interested readers can refer to [10, 19, 21, 22, 28] and references therein.

Let X be a non empty set; then a family I of subsets of X is said to be ideal in X, if it has additive and
hereditary properties, i.e., for A,B ∈ I we have A ∪ B ∈ I, and for any subset B of A ∈ I, we have B ∈ I. If
I , X and it contains all singletons, then I is said to be admissible in X. A Filter on X, denoted by F is a
family of subsets of X satisfying ∅ < F , for any arbitrary subsets A,B ∈ F their intersection must be in F
and for A ∈ F with B ⊃ A we have B ∈ F . For each ideal I there is a filter denoted by F (I) corresponding
to I, known as filter associated with the ideal I defined as F (I) = {K ⊆ X : Kc

∈ I}. These definitions came as
introduction to a new type of convergence that is more general than usual convergence and statistical con-
vergence introduced by Fast [4] and Steinhaus [25] independently, this type is known as ideal convergence
presented by Kostyrko et al. [16]. Afterward, the notion of ideal convergence or simply I–convergence
was moreover explored from the view point of sequence spaces and connected to the theory of summa-
bility by Šalát et al. [24], Khan and Nazneen [13], Khan et al. [15, 28], Filipów and Tryba [5], and many
others. For further details about the ideal convergence we refer the reader to [11, 12, 14, 27] and its references.

Throughout this paper, cI
0, cI and `I

∞, denote the spaces of all I–null, I–convergent, and I–bounded
sequences, respectively. In this paper, we define the sequence Υr

n(x) that will be frequently used as
Υr–transform of the sequence x = (xk), as follows:

Υr
n(x) :=

1
nr

∑
Jr(k)xk (2)

and the inverse (xn) of the sequence is computed in [18] as:

xn =
∑
k|n

µ( n
k )

Jr(n)
krΥr

k(x),

where µ denotes the Möbius function and it is defined as:

µ(n) =


0, if p2

|n for some prime number p
1, if n = 1
(−1)i, if n is a product of i ditnict primes.

Further, by combining the definitions of Jordan totient Matrix operator Υr and ideal convergence, we define
some new sequence spaces cI

0(Υr), cI(Υr) and `I
∞(Υr) as the sets of all sequences whose Υr–transforms are in

the spaces cI
0, cI and `I

∞, respectively. In addition, we study some topological and algebraic properties and
present some inclusion relations for these sequence spaces.

In what follows, we recall some definitions and lemmas that are needful for this paper.

Definition 1.1. [25] If B is a subset ofN where B = {b ∈ B : b ≤ n}, then the natural density of B denoted by d(B) is

d(B) = lim
n→∞

1
n
|B|

here |B| is the cardinality of set B.

Definition 1.2. [4] A sequence x = (xk) ∈ ω is said to be statistically convergent to a number m ∈ R if, for every
ε > 0, d({k ∈N : |xk−m| ≥ ε}) = 0, and denoted by st– lim xk = m. In case m = 0 then x = (xk) ∈ ω is called st–null.

Definition 1.3. [23] If x = (xk) is a sequence in ω then x is said to be I–Cauchy if, for every ε > 0,∃ a number
N = N(ε) ∈N such that {k ∈N : |xk − xN | ≥ ε} ∈ I.
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Definition 1.4. [16] If I is an ideal and x = (xk) is a sequence in ω then x is said to be I–convergent to a number
m ∈ R if, for every ε > 0, we have {k ∈ N : |xk − m| ≥ ε} ∈ I, and we represent it by I– lim xk = m. If m = 0 then
(xk) ∈ ω is called I–null.

Definition 1.5. [17] If x = (xk) is a sequence in ω then x is called I–bounded if there exists L > 0 such that
{k ∈N : |xk| > L} ∈ I.

Definition 1.6. [23] Let x = (xk) and y = (yk) be two sequences, then we can say that xk = yk for almost all k relative
to I (in short a.a.k.r.I) if the set {k ∈N : xk , yk} ∈ I.

Definition 1.7. [23] Let S be a sequence space, then S is said to be solid (or normal), if (αkxk) ∈ S whenever (xk) is a
sequence in S and (αk) is any sequence of scalar in ω with |αk| < 1, and k ∈N.

Definition 1.8. [23] Let K = {k1 < k2 < . . . } ⊆N and S be a sequence space. A K–step space of S is a sequence space

λS
K = {(xkn ) ∈ ω : (xk) ∈ S}.

A canonical pre–image of a sequence (xki ) ∈ λ
S
K is a sequence (yk) ∈ ω defined as follows:

yk =

xk, if k ∈ K
0, otherwise.

A canonical pre–image of λS
K is a set of canonical pre–images of all elements in λS

K, i.e., y is in canonical pre–image of
λS

K iff y is canonical pre–image of some element x ∈ λS
K.

Definition 1.9. [23] If a sequence space S contains the canonical pre–images of its step space, then S is known as
monotone sequence space.

Lemma 1.10. [23] Every solid space is monotone.

Lemma 1.11. [24] Let K ∈ F (I) and M ⊆N. If M < I, then M ∩ K < I.

2. Main Results

Throughout this section, we suppose that the sequence x = (xk) ∈ ω and Υr
n(x) are connected with the

relation (2) and I is an admissible ideal of subset ofN. We define:

cI
0(Υr) :=

{
x = (xk) ∈ ω :

{
n ∈N : |Υr

n(x)| ≥ ε
}
∈ I

}
, (3)

cI(Υr) :=
{
x = (xk) ∈ ω :

{
n ∈N : |Υr

n(x) − `| ≥ ε, for some ` ∈ R
}
∈ I

}
, (4)

`I
∞(Υr) :=

{
x = (xk) ∈ ω : ∃ K > 0 s.t

{
n ∈N : |Υr

n(x)| > K
}
∈ I

}
. (5)

For convenience of our work we represent

mI
0(Υr) := cI

0(Υr) ∩ `∞(Υr), (6)

and

mI(Υr) := cI(Υr) ∩ `∞(Υr). (7)
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Definition 2.1. Let I be an admissible ideal of subset ofN. If for each ε > 0 there exists a number N = N(ε) ∈ N
such that

{
n ∈N : |Υr

n(x) − Υr
N(x)| ≥ ε

}
∈ I then a sequence x = (xk) ∈ ω is said to be Jordan totient I–Cauchy.

Example 2.2. Let us define an ideal I f as I f = {S ⊆ N : S is finite}, then I f is an admissible ideal in N and
cI f (Υr) = c(Υr). Where c(Υr) is the space of all convergent sequences derived by Jordan totient matrix operator Υr

presented in [3].

Example 2.3. Let Id be a non–trivial ideal defined as Id = {B ⊆ N : d(B) = 0}. In this case, cId (Υr) = S(Υr). Here
S(Υr) is the space of all statistically convergent sequences derived by Jordan totient matrix operator Υr we define as
follows:

S(Υr) :=
{
x = (xk) ∈ ω : d

(
{n ∈N : |Υr

n(x) − `| ≥ ε}
)

= 0, for some ` ∈ R
}
. (8)

Remark 2.4. Jordan convergent sequence is of course Jordan st–convergent since the natural density of all finite
subsets ofN is zero. But, the converse is not true. For example, let x = (xk) ∈ ω be a sequence and

Υr
n(x) =

k, if k is square of a natural number n,
0, otherwise,

that is,

Υr
n(x) = {1, 0, 0, 4, 0, 0, 0, 0, 9, 0, . . . }

and let m = 0. Then

{n ∈N : |Υr
n(x) −m| ≥ ε} ⊆ {1, 4, 9, 16, . . . , i2, . . . }.

we have

d({n ∈N : |Υr
n(x) −m| ≥ ε}) = 0.

This implies that the sequence Υr
n(x) is statistically convergent to zero, but the sequence Υr

n(x) is not convergent to
m = 0.

Theorem 2.5. The sequence spaces cI(Υr), cI
0(Υr), `I

∞(Υr), mI
0(Υr) and mI(Υr) are linear spaces over R.

Proof. Suppose that x = (xk), y = (yk) be two arbitrary sequences in cI(Υr) and a, b be scalars. Now, since
x, y ∈ cI(Υr), then for any ε > 0, there exist m1,m2 ∈ R, such that{

n ∈N :
∣∣∣Υr

n(x) −m1

∣∣∣ ≥ ε
2

}
∈ I,

and {
n ∈N :

∣∣∣Υr
n(y) −m2

∣∣∣ ≥ ε
2

}
∈ I.

Let

B1 =
{
n ∈N :

∣∣∣Υr
n(x) −m1

∣∣∣ < ε
2|a|

}
∈ F (I),

B2 =
{
n ∈N :

∣∣∣Υr
n(y) −m2

∣∣∣ < ε
2|b|

}
∈ F (I),
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such that Bc
1,B

c
2 ∈ I. Then

B3 =
{
n ∈N :

∣∣∣Υr
n(ax + by) − (am1 + bm2)

∣∣∣ < ε}
⊇

{{
n ∈N :

∣∣∣Υr
n(x) −m1

∣∣∣ < ε
2|a|

}
∩

{
n ∈N :

∣∣∣Υr
n(y) −m2

∣∣∣ < ε
2|b|

}} (9)

Hence, the sets on HRS of equation (9) is related to F (I). By definition of filter associated with ideal, we
can say that the complement of the set on LHS of (9) belongs to I. This gives a result that (ax + by) ∈ cI(Υr).
Hence cI(Υr) is a linear space. The remaining part of the theorem can be prove on the similar manner.

Theorem 2.6. The spaces X(Υr) are normed spaces with the norm

‖x‖X(Υr) = sup
n
|Υr

n(x)| where X ∈
{
cI, cI

0, `
I
∞, `∞

}
. (10)

Proof of the above theorem is easy and hence omitted.

Theorem 2.7. A sequence x = (xk) ∈ ω is Jordan totient I–convergent if and only if for every ε > 0, there exists
N = N(ε) ∈N, such that{

n ∈N :
∣∣∣Υr

n(x) − Υr
N(x)

∣∣∣ < ε} ∈ F (I). (11)

Proof. Consider that the sequence x = (xk) ∈ ω is Jordan totient I–convergent to some number m ∈ R, then
for any ε > 0, we have

Bε =
{
n ∈N :

∣∣∣Υr
n(x) −m

∣∣∣ < ε
2

}
∈ F (I).

Take a number N = N(ε) ∈ Bε. Then we have∣∣∣Υr
n(x) − Υr

N(x)
∣∣∣ ≤ ∣∣∣Υr

n(x) −m
∣∣∣ +

∣∣∣m − Υr
N(x)

∣∣∣ < ε
2

+
ε
2

= ε

for all n ∈ Bε. Hence (11) holds.

Conversely, let (11) holds for all ε > 0. Then

B′ε =
{
n ∈N : Υr

n(x) ∈ Jε
}
∈ F (I), for all ε > 0.

Where Jε =
[
Υr

n(x) − ε,Υr
n(x) + ε

]
. By taking ε > 0, we have B′ε ∈ F (I) and B′ε

2
∈ F (I). Hence B′ε ∩ B′ε

2
∈ F (I).

This implies that

J = Jε ∩ J ε
2
, ∅,

that is,{
n ∈N : Υr

n(x) ∈ J
}
∈ F (I)

and thus

diam (J) ≤
1
2

diam (Jε),

here the notation of diam is using for the length of interval. In the same procedure by using induction we
obtain a sequence of closed intervals

Jε = I0 ⊇ I1 ⊇ · · · ⊇ In ⊇ · · ·



V. A. Khan et al. / Filomat 35:11 (2021), 3643–3652 3648

such that

diam (In) ≤
1
2

diam (In−1), for n = (2, 3, . . . )

and {
n ∈N : Υr

n(x) ∈ In
}
∈ F (I).

Then there exists a number m ∈
⋂

n∈N In and it is a pattern process to verify that m = I– lim Υr
n(x) observing

that x = (xk) ∈ ω is Jordan totient I–convergent. Hence the proof.

Theorem 2.8. The inclusions cI
0(Υr) ⊂ cI(Υr) ⊂ `I

∞(Υr) are strict.

Proof. Its easy to show that cI
0(Υr) ⊂ cI(Υr). Consider x = (xk) ∈ ω such that Υr

n(x) = 2. It is obvious that
Υr

n(x) ∈ cI but Υr
n(x) < cI

0, this implies, x ∈ cI(Υr)\cI
0(Υr). Next, let x = (xk) ∈ cI(Υr). Then there exists m ∈ R

such that I– lim Υr
n(x) = m, that is,{

n ∈N :
∣∣∣Υr

n(x) −m
∣∣∣ ≥ ε} ∈ I.

We can write∣∣∣Υr
n(x)

∣∣∣ =
∣∣∣Υr

n(x) −m + m
∣∣∣ ≤ ∣∣∣Υr

n(x) −m
∣∣∣ + |m| .

Now it is easy to conclude that (xk) ∈ `I
∞(Υr). Moreover, we show the strictness of cI(Υr) ⊂ `I

∞(Υr) by
constructing the following example.

Example 2.9. Let x = (xk) ∈ ω be a sequence such that

Υr
n(x) =


√

n, if n is square
1, if n is odd non–square
0, if n is even non–square.

Then Υr
n(x) ∈ `I

∞, but Υr
n(x) < cI hence we concludes that which x ∈ `I

∞(Υr
n)\cI(Υr).

Thus, we get that cI
0(Υr) ⊂ cI(Υr) ⊂ `I

∞(Υr) are strict.

Remark 2.10. Jordan bounded sequence is of course Jordan I–bounded as ∅ ∈ I, I is the ideal. But, the converse need
not to be true. For instance, let x = (xk) ∈ ω be a sequence such that

Υr
n(x) =

 n2

n+1 , if n is prime
0, otherwise.

It is clear that the Υr
n(x) is not a bounded sequence. But, {n ∈N :

∣∣∣Υr
n(x)

∣∣∣ > 1} ∈ I. Hence (xk) is Jordan I–bounded.

Theorem 2.11. Let cI(Υr), cI
0(Υr), `∞(Υr) are sequence spaces then

(i) cI(Υr) and `∞(Υr), overlap but neither one contains the other,

(ii) cI
0(Υr) and `∞(Υr), overlap but neither one contains the other.

Proof. (i) We start the proof by showing that cI(Υr) and `∞(Υr) are not disjoint. Suppose x = (xk) ∈ ω be a
sequence such that Υr

n(x) = 1
n for n ∈ N. Then x ∈ cI(Υr) but x ∈ `∞(Υr). Now, define the sequence

x = (xk) ∈ ω with

Υr
n(x) =


√

n, if n is square
0, otherwise.
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Thus x ∈ cI(Υr) but x < `∞(Υr). Next, choose the sequence x = (xk) ∈ ω such that

Υr
n(x) =

n, if is even
0, otherwise.

Then x ∈ `∞(Υr) but x < cI(Υr).

(ii) The proof of second part, of theorem is similar with part (i) and hence omitted.

Theorem 2.12. The sets mI(Υr) and mI
0(Υr) are closed subspaces of `∞(Υr).

Proof. Choose the Cauchy sequence (x( j)
i ) in mI(Υr) ⊂ `∞(Υr). Then (x( j)

i ) convergent in `∞(Υr) and we have
lim j→∞Υ

rj
n (x) = Υr

n(x). Now, let I– lim Υ
rj
n (x) = ` j for each j ∈N. Then we must show that

(i) (` j) is convergent to a number say `.

(ii) I– lim Υr
n(x) = `.

(i) We know that (x( j)
i ) is a Cauchy sequence, then for any ε > 0 there is n0 ∈N such that∣∣∣∣Υrj

n (x) − Υrk
n (x)

∣∣∣∣ < ε
3
, for all j, k ≥ n0. (12)

Now let B j and Bk be tow sets in I as follow:

B j =
{
n ∈N : |Υrj

n (x) − ` j| ≥
ε
3

}
(13)

and

Bk =
{
n ∈N : |Υrk

n (x) − `k| ≥
ε
3

}
. (14)

Now suppose that j, k ≥ n0 and n < B j ∩ Bk. Then by using (12), (13) and (14) we have

|` j − `k| ≤ |Υ
rj
n (x) − ` j| + |Υ

rk
n (x) − `k| + |Υ

rj
n (x) − Υrk

n (x)| < ε.

Thus (` j) is a Cauchy sequence in R and thus convergent to `, hence, lim j→∞ ` j = `.

(ii) Let δ > 0 be a given number, then we can chose m0 as

|` j − `| <
δ
3
, for each j > m0. (15)

Since (x( j)
i )→ xi as j→∞. Thus

|Υ
rj
n (x) − Υr

n(x)| <
δ
3
, for each j > m0. (16)

Since (Υrk
n ) is I–convergent to `k, there exists A ∈ I such that for each n < A, we have

|Υrk
n (x) − `k| <

δ
3
. (17)

Without loss of generality, let k > m0, then with aid of (15), (16) and (17) for all n < A, we have

|Υr
n(x) − `| ≤ |Υr

n(x) − Υrk
n (x)| + |Υrk

n (x) − `k| + |`k − `| < δ.

This implies that (xi) is Jordan totient I–convergent to `. Thus mI(Υr) is a closed subspace of `∞(Υr).
Similarly the second result can be obtained.



V. A. Khan et al. / Filomat 35:11 (2021), 3643–3652 3650

Theorem 2.13. Let cI(Υr), cI
0(Υr), and `I

∞(Υr) are sequence spaces with norm given by (10). Then cI(Υr), cI
0(Υr), and

`I
∞(Υr) are BK–spaces.

Proof. It is obvious that the sequence spaces cI, cI
0, and `I

∞ are BK–spaces with their sup–norm. Also we
know that the Jordan matrix is a triangular matrix. Now by considering these two facts and Wilansky’s
theorem [29], we can conclude that the stated sequence spaces are BK–spaces. Hence the proof.

Since mI(Υr) ⊂ `∞(Υr) and mI
0(Υr) ⊂ `∞(Υr) are strict spaces, then by using the Theorem 2.12, we obtained

the following result.

Theorem 2.14. The space mI(Υr) and mI
0(Υr) are no where dense subset of `∞(Υr).

Theorem 2.15. The spaces cI
0(Υr) and mI

0(Υr) are solid and monotone.

Proof. Let x = (xk) ∈ cI
0(Υr), then for ε > 0, the set{

n ∈N :
∣∣∣Υr

n(x)
∣∣∣ ≥ ε} (18)

belongs to I. Let α = (αk) be a sequence of scalars with |α| ≤ 1 for all k ∈N. Then,∣∣∣Υr
n(αx)

∣∣∣ =
∣∣∣αΥr

n(x)
∣∣∣ ≤ |α| ∣∣∣Υr

n(x)
∣∣∣ ≤ ∣∣∣Υr

n(x)
∣∣∣ , for all n ∈N.

with aid of this inequality and from (18) we have{
n ∈N : |Υr

n(αx)| ≥ ε
}
⊆

{
n ∈N : |Υr

n(x)| ≥ ε
}
∈ I.

This implies that{
n ∈N : |Υr

n(αx)| ≥ ε
}
∈ I.

Thus, (αxk) ∈ cI
0(Υr), and hence cI

0(Υr) is solid. Finally in view of Lemma 1.10 we obtained that cI
0(Υr) is

monotone.

The proof for mI
0(Υr) has same procedure and hence omitted.

Example 2.16. If I is neither maximal nor I = I f , then show by an example that the spaces cI(Υr) and mI(Υr) are
neither monotone nor solid.
Consider I = I f and K = {n ∈N : n is odd }, define the K–step space EK of E as follow:

EK = {(xk) ∈ ω : (xk) ∈ E}.

Now define the sequence (zk) ∈ EK such that

Υr
n(z) =

Υr
n(x), if n ∈ K

0, otherwise.

Now chose (xk) such that Υr
n(x) = 3, for all n ∈N. Then (xk) ∈ E(Υr), but its K–step space pre–image is not in E(Υr),

where E = cI and mI. This implies that E(Υr) are not monotone, and hence by Lemma 1.10 the spaces E(Υr) are not
solid.

Theorem 2.17. Suppose x = (xk) ∈ ω and let I be a non–trivial admissible ideal in N. If z = (zk) ∈ cI(Υr) is a
sequence, such that Υr

n(x) = Υr
n(z) for a.a.n.r.I, then x ∈ cI(Υr).



V. A. Khan et al. / Filomat 35:11 (2021), 3643–3652 3651

Proof. Consider that Υr
n(x) = Υr

n(z) for a.a.n.r.I, that is,

{n ∈N : Υr
n(x) , Υr

n(z)} ∈ I.

And let (zk) be a sequence which is Jordan totient I–convergent to `. Then for any ε > 0, we have

{n ∈N : |Υr
n(z) − `| ≥ ε} ∈ I.

Since I is an admissible ideal, then the result follows from the following inclusion

{n ∈N : |Υr
n(x) − `| ≥ ε} ⊆

{
{n ∈N : Υr

n(x) , Υr
n(z)} ∪ {n ∈N : |Υr

n(z) − `| ≥ ε}
}
.

Conclusion

In this research work we introduced and studied some new sequence spaces, S(Υr), cI
0(Υr), cI(Υr) and

`I
∞(Υr), that is, we presented some new I–convergent sequence spaces derived by triangular Jordan totient

matrix operator Υr. Also we explore some topological and algebraic properties for these spaces. Moreover
we investigate some inclusion relations related to these sequence spaces. The results obtained in this paper
yields novel tools to arrange and solve some problem of sequence convergence in numerous field of science
and engineering.
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