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Abstract. For f ∈ S, the class of normalized functions, analytic and univalent in the unit diskD and given
by f (z) = z +

∑
∞

n=2 anzn for z ∈ D, we give an upper bound for the coefficient difference |a4| − |a3|when f ∈ S.
This provides an improved bound in the case n = 3 of Grinspan’s 1976 general bound ||an+1| − |an|| ≤ 3.61 . . . .
Other coefficients bounds, and bounds for the second and third Hankel determinants when f ∈ S are found
when either a2 = 0, or a3 = 0.

1. Introduction. preliminaries and definitions

LetA be the class of functions f which are analytic in the open unit discD = {z : |z| < 1} of the form

f (z) = z + a2z2 + a3z3 + · · · , (1)

and let S be the subclass ofA consisting of functions that are univalent inD.

Although the famous Bieberbach conjecture |an| ≤ n for n ≥ 2, was proved by de Branges in 1985 [1], a
great many other problems concerning the coefficients an remain open. The main aim of this paper (Section
3), is by use of the Grunsky inequalities, to find an upper for the difference of coefficients |a4| − |a3| for
f ∈ S, which improves the well-known general bound of Grispan ||an+1| − |an|| ≤ 3.61 . . . [4], when n = 3.
We also obtain information concerning the initial coefficients of f (z), and of the second and third Hankel
determinants when either a2 = 0, or a3 = 0.

For f ∈ S, the Grunsky coefficients ωp,q as defined in N. A. Lebedev [6] are given by

log
f (t) − f (z)

t − z
=

∞∑
p,q=0

ωp,qtpzq,

where ωp,q = ωq,p, and satisfy the so-called Grunsky inequalities [2, 6]
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∞∑
q=1

q

∣∣∣∣∣∣∣∣
∞∑

p=1

ωp,qxp

∣∣∣∣∣∣∣∣
2

≤

∞∑
p=1

|xp|
2

p
, (2)

where xp are arbitrary complex numbers such that last series converges.

Further, it is well-known that if f given by (1) belongs to S, then also

f2(z) =
√

f (z2) = z + c3z3 + c5z5 + · · · (3)

belongs to S. Thus for the function f2 we have the appropriate Grunsky coefficients of the form ω2p−1,2q−1,
and inequalities (2) take the form

∞∑
q=1

(2q − 1)

∣∣∣∣∣∣∣∣
∞∑

p=1

ω2p−1,2q−1x2p−1

∣∣∣∣∣∣∣∣
2

≤

∞∑
p=1

|x2p−1|
2

2p − 1
. (4)

(Note that in this paper, we omit the upper index (2) in ω(2)
2p−1,2q−1 in Lebedev’s notation).

The following similar inequality follows from the relation (15) on page 57 in [6].∣∣∣∣∣∣∣∣
∞∑

p=1

∞∑
q=1

ω2p−1,2q−1x2p−1x2q−1

∣∣∣∣∣∣∣∣ ≤
∞∑

p=1

|x2p−1|
2

2p − 1
. (5)

Thus for example, from (4) and (5) when x2p−1 = 0 and p = 3, 4, . . ., we obtain

|ω11x1 + ω31x3|
2 + 3|ω13x1 + ω33x3|

2 + 5|ω15x1 + ω35x3|
2
≤ |x1|

2 +
|x3|

2

3
(6)

and

|ω11x2
1 + 2ω13x1x3 + ω33x2

3| ≤ |x1|
2 +
|x3|

2

3
, (7)

respectively.

It was also shown in [6, p.57], that if f ∈ S is given by (1), then the coefficients a2, a3, a4 and a5 can be
expressed in terms of the Grunsky coefficients ω2p−1,2q−1 of the function f2 given by (3) as follows.

a2 = 2ω11,

a3 = 2ω13 + 3ω2
11,

a4 = 2ω33 + 8ω11ω13 +
10
3
ω3

11,

a5 = 2ω35 + 8ω11ω33 + 5ω2
13 + 18ω2

11ω13 +
7
3
ω4

11,

0 = 3ω15 − 3ω11ω13 + ω3
11 − 3ω33.

(8)

In this paper we will use these expressions to obtain information concerning the coefficients a2, a3, a4, and
a5 when f ∈ S.

In recent years a great deal of attention has been given to finding upper bounds for the modulus of
the second and third Hankel determinants H2(2) and H3(1), defined as follows who’s elements are the
coefficients of f ∈ S (see e.g. [8]).
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For f ∈ S

H2(2) = a2a4 − a2
3

and

H3(1) = a3(a2a4 − a2
3) − a4(a4 − a2a3) + a5(a3 − a2

2). (9)

Almost all results have concentrated on finding bounds for |H2(2)| and |H3(1)| for subclasses of S, and
only recently has a significant bound been found for the whole class S [7] for |H2(2)| and |H3(1)|. However
finding exact sharp bounds remains an open problem.

We begin by using the Grunsky inequalities in (5) to obtain bounds for the modulus of some initial
coefficients and |H2(2)| and |H3(1)|when f ∈ S provided either a2, or a3 = 0.

2. Coefficient bounds and Hankel determinants

Obtaining sharp bounds for the modulus of the coefficients for odd functions in S has long been been
an open problem. If f2, given by (3) is an odd function in S, then the only known sharp bounds for |c2n−1|

for n ≥ 2 are |c3| ≤ 1, and |c5| ≤ 1/2 + e−2/3 = 1.013 . . . . In general the best bound to date is |c2n−1| ≤ 1.14 for
n ≥ 2, (see e.g.[2]).

In our first theorem, we give bounds for |a3|, |a4| and |a5| when f ∈ S assuming only that only a2 = 0,
thus providing bounds for a wider class of functions than the odd functions in S. We also give bounds for
|H2(2)| and |H3(1)| in this case.

Theorem 2.1. Let f ∈ S and be given by (1) with a2 = 0. Then

(i) |a3| ≤ 1,

(ii) |a4| ≤
2
3 = 0.666 . . .,

(iii) |a5| ≤

√
19
15 = 1.67666 . . .,

(iv) |H2(2)| ≤ 1,

(v) |H3(1)| ≤ 21
20 = 1.05.

Proof.

(i) The classical inequality |a3 − a2
2| ≤ 1 for f in Swhen a2 = 0, gives |a3| ≤ 1, which from (8) gives

|ω13| ≤
1
2
. (10)
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(ii) Next choose x1 = 0 and x3 = 1 in (7), which gives

|ω33| ≤
1
3
. (11)

Also, since ω11 = 0 (⇔ a2 = 0), then from (8) and (11) we obtain

|a4| = 2|ω33| ≤
2
3

= 0.666 . . . .

(iii) Again since ω11 = 0, from (8) we obtain

|a5| = |2ω35 + 5ω2
13|. (12)

From (6) with x1 = 0 and x3 = 1 we have (ω11 = 0)

|ω13|
2 + 3|ω33|

2 + 5|ω35|
2
≤

1
3

and from here

|ω35| ≤
1
√

15

√
1 − 3|ω13|

2. (13)

From (12) and (13) we have

|a5| ≤ 2|ω35| + 5|ω13|
2
≤

1
√

15

√
1 − 3|ω13|

2 + 5|ω13|
2
≤

503
300

= 1.67666 . . . .

(iv) Since we are assuming a2 = 0, (i) shows that |H2(2)| ≤ 1 is trivial.

(v) When ω11 = 0, from the last relation in (8) we have ω33 = ω15, and from (9),

|H3(1) = |2ω3
13 + 4ω13ω35 − 4ω2

33| ≤ 2|ω13|
3 + 4 + |ω13ω35 − ω

2
15|︸           ︷︷           ︸

E1

.
(14)

Now choose x1 = −ω15, and x3 = ω13, and since ω33 = ω15, from (6) we obtain

|ω13|
4 + 5E2

1 ≤ |ω15|
2 +
|ω13|

2

3
≤

1
5
−

3
5
|ω13|

2 +
1
3
|ω13|

2,

(since by (6) 3|ω13|
2 +5|ω15|

2
≤ 1 for x1 = 1, x3 = 0 andω11 = 0), which implies 5E2

1 ≤
1
5 −

4
15 |ω13|

2
−|ω13|

4,
i.e., E1 ≤

1
5 .

Finally from (10) and (14), it follows that

|H3(1)| ≤ 2 ·
1
8

+ 4 ·
1
5

=
21
20

= 1.05.

This completes the proof of Theorem 2.1.

We next prove a similar result, this time assuming that a3 = 0.
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Theorem 2.2. Let f ∈ S and be given by (1), with a3 = 0. Then

(i) |a2| ≤ 1,

(ii) |a4| ≤
√

37+13
12 = 1.59023 . . .,

(iii) |a5| ≤
1
4

√
757
15 + 85

64 = 3.10412 . . .,

(iv) |H2(2)| ≤ 13+
√

37
12 = 1.59023 . . .,

(v) |H3(1)| ≤ 24+
√

645
30 = 1.64656 . . ..

Proof.

(i) Since |a3 − a2
2| ≤ 1 and a3 = 0, then |a2

2| ≤ 1, i.e., |a2| ≤ 1. Also, since by (8), a3 = 2ω13 + 3ω2
11 = 0, it

follows that

ω13 = −
3
2
ω2

11

(
⇔ ω2

11 = −
2
3
ω13

)
. (15)

Because |a2| = |2ω11| ≤ 1, we have

|ω11| ≤
1
2

and |ω13| ≤
3
8

(by (15). (16)

(ii) By using (8) and (15), we obtain

|a4| =

∣∣∣∣∣2ω33 + 8ω11

(
−

3
2
ω2

11

)
+

10
3
ω3

11

∣∣∣∣∣
=

∣∣∣∣∣2ω33 −
26
3
ω3

11

∣∣∣∣∣
≤ 2|ω33| +

26
3
|ω11|

3.

(17)

From (6), using x1 = 0 and x3 = 1, we have

|ω13|
2 + 3|ω33|

2
≤

1
3
,

which implies (with ω13 = − 3
2ω

2
11, see (15))

|ω33| ≤

√
1
9
−

3
4
|ω11|

4. (18)

Combining (17) and (18) we obtain

|a4| ≤ 2

√
1
9
−

3
4
|ω11|

4 +
26
3
|ω11|

3 =: ϕ(|ω11|), (19)

where ϕ(t) = 2
√

1
9 −

3
4 t4 + 26

3 t3, 0 ≤ t = |ω11| ≤
1
2 (by (16)). Since ϕ is increasing function on [0, 1/2],

ϕ(t) ≤ ϕ(1/2) =

√
37 + 13

12
,

which, together with (19), gives the desired result.
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(iii) From the last relation in (8), using (15) we have ω33 = ω15 + 11
6 ω

3
11, which with the expression for a5 in

(8), gives

|a5| = |2ω35 + 8ω11ω15 + 5ω2
13 − 10ω4

11|

≤ 2 |ω35 + 4ω11ω15|︸            ︷︷            ︸
C∗1

+ 5|ω13|
2 + 10|ω11|

4︸               ︷︷               ︸
C∗2

. (20)

Once again, using (6) choosing x1 = 4ω11, x3 = 1 and ω13 = − 3
2ω

2
11, we have

(C∗1)2 = |4ω11ω15 + ω35|
2
≤ −

5
4
|ω11|

4 +
16
5
|ω11|

2 +
1
15
≤

757
64 · 15

,

since |ω11| ≤
1
2 . Thus

C∗1 ≤
1
8

√
757
15
.

Next, since ω13 = − 3
2ω

2
11 and |ω11| ≤

1
2 , we have

C∗2 = 5 ·
9
4
· |ω11|

4 + 10|ω11|
4 =

85
4
|ω11|

4
≤

85
4
·

1
16

=
85
64
,

since |ω11| ≤
1
2 .

Finally from (20) we have

|a5| ≤
1
4

√
757
15

+
85
64

= 3.10412 . . . .

(iv) By using (9), (8) and (15), we have

H2(2) = 4ω11ω33 + 4ω2
11ω13 − 4ω2

13 −
7
3
ω4

11

= 4ω11ω33 −
52
3
ω4

11

(21)

and from here

|H2(2)| ≤ 4|ω11||ω33| +
52
3
|ω11|

4. (22)

From (18) and (22) we have

|H2(2)| ≤ 4|ω11|

√
1
9
−

3
4
|ω11|

4 +
52
3
|ω11|

4 =: ϕ1(|ω11|,

where

ϕ1(t) = 4t

√
1
9
−

3
4

t4 +
52
3

t4,

with 0 ≤ t = |ω11| ≤
1
2 . Finally, it can be checked that ϕ1 is an increasing function on the interval

(0, 1/2), and so

|H2(2)| ≤ ϕ1(1/2) =
13 +

√
37

12
= 1.59023 . . . .
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(v) By using the last relation from (8) with ω13 = − 3
2ω

2
11, it follows that ω33 = ω15 + 11

6 ω
3
11, and so using

(9), after some calculations we obtain

H3(1) = −12ω2
11

(
ω11ω15 +

2
3
ω35

)
− 4ω2

15 − 30ω6
11,

which gives

|H3(1)| ≤ 12|ω11|
2
∣∣∣∣∣ω11ω15 +

2
3
ω35

∣∣∣∣∣︸                         ︷︷                         ︸
D1

+ 4|ω15|
2 + 30|ω11|

6︸               ︷︷               ︸
D2

. (23)

Now choose x1 = ω11 and x3 = 2
3 in (6), then (since ω13 = − 3

2ω
2
11),∣∣∣∣∣ω11ω15 +

2
3
ω35

∣∣∣∣∣ ≤
√

1
5

(
|ω11|

2 +
4
27

)
,

and so

D1 ≤ 12|ω11|
2

√
1
5

(
|ω11|

2 +
4

27

)
≤ 12 ·

1
4

√
1
5

(1
4

+
4

27

)
=

√
43
60

=

√
645
30

= 0.84656 . . . ,

(24)

since |ω11| ≤
1
2 .

Also, as in the proof of (iii), we have

5|ω15|
2
≤ 1 − |ω11|

2
− 3|ω13|

2 = 1 − |ω11|
2
−

27
4
|ω11|

4,

where we have once again used ω13 = − 3
2ω

2
11. Now

D2 ≤
4
5
−

4
5
|ω11|

2
−

27
5
|ω11|

4 + 30|ω11|
6 =: ϕ2(|ω11|

2),

where

ϕ2(t) =
1
5

(
4 − 4t − 27t2 + 150t3

)
,

and 0 ≤ t = |ω11|
2
≤

1
4 . Since ϕ2 attains its maximum at t0 = 0,

D2 ≤ ϕ2(0) =
4
5
. (25)

Finally, by using (23), (24) and (25) we obtain

|H3(1)| ≤ D1 + D2 ≤
24 +

√
645

30
= 1.64656 . . . .
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3. Coefficient differences for f ∈ S

A long standing problem in the theory of univalent functions is to find sharp upper and lower bounds
for |an+1| − |an|, when f ∈ S. Since the Keobe function has coefficients an = n, it is natural to conjecture that
||an+1| − |an|| ≤ 1. As early as 1933, this was shown to be false even when n = 2, when Fekete and Szegö [3]
obtained the sharp bounds

−1 ≤ |a3| − |a2| ≤
3
4

+ e−λ0 (2e−λ0 − 1) = 1.029 . . . ,

where λ0 is the unique value of λ in 0 < λ < 1, satisfying the equation 4λ = eλ.

Hayman [5] showed that if f ∈ S, then ||an+1| − |an|| ≤ C, where C is an absolute constant. The exact value
of C is unknown, the best estimate to date being C = 3.61 . . . [4], which because of the sharp estimate above
when n = 2, cannot be reduced to 1.

We now use the methods of this paper to obtain a better upper bound in the case n = 3.

Theorem 3.1. Let f ∈ S and be given by (1). Then

|a4| − |a3| ≤ 2.1033299 . . . .

Proof. By using (8) we have

|a4| − |a3| ≤ |a4| − |ω11||a3| ≤ |a4 − ω11a3| = 2
∣∣∣∣ω33 + 3ω11ω33 +

1
6
ω3

11︸                      ︷︷                      ︸
B

∣∣∣∣.
From (7) with x1 = 1

√
6
ω11 and x3 = 1, we obtain∣∣∣∣∣∣ω33 +

2
√

6
ω11ω13 +

1
6
ω3

11

∣∣∣∣∣∣ ≤ 1
6
|ω11|

2 +
1
3

⇒

∣∣∣∣∣∣B +

(
2
√

6
− 3

)
ω11ω13

∣∣∣∣∣∣ ≤ 1
6
|ω11|

2 +
1
3

⇒ |B| ≤
(
3 −

√
6

3

)
|ω11||ω13| +

1
6
|ω11|

2 +
1
3

⇒ |B| ≤
(
3 −

√
6

3

)
|ω11| ·

1
√

3

√
1 − |ω11|

2 +
1
6
|ω11|

2 +
1
3

⇒ |B| ≤
1
3

[
(3
√

3 −
√

2)|ω11|
√

1 − |ω11|
2 +

1
2
|ω11|

2 + 1
]

=: ϕ(|ω11|),

where ϕ(t) = 1
3

[
(3
√

3 −
√

2)t
√

1 − t2 + 1
2 t2 + 1

]
for 0 ≤ t ≤ 1, and where we have used that |ω13| ≤

1
√

3

√
1 − |ω11|

2. Since the function ϕ attains its maximum at

t0 =

√
1
2

+
1
6

√
1

379
(39 + 8

√

6) = 0.75202 . . . ,

and since ϕ(t0) = 1
12

(
5 +

√
117 − 24

√
6
)
, it follows that

|a4| − |a3| ≤ 2ϕ(t0) = 2.10495 . . . .
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