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Abstract. We present some characterizations for the compactness of the difference of two composition
operators acting between analytic Besov spaces and the weighted little Bloch type space over the unit disk.

1. Introduction

LetD denote the open unit disk in the complex plane C and dA the normalized area measure onD (i.e.,
A(D) = 1). Let H(D) be the set of all analytic functions onD. When 1 < p < ∞, a function f ∈ H(D) is said
to be in the analytic Besov space Bp(D) = Bp if and only if∫

D

| f ′(z)|p(1 − |z|2)p−2dA(z) < ∞. (1)

The following functional

‖ f ‖p = | f (0)| +
[∫
D

| f ′(z)|p(1 − |z|2)p−2dA(z)
]1/p

,

is a norm on Bp.
In the case p = 1, condition (1) is satisfied by only constant functions. Thus the definition of the space

B1 is complicated and there are several ways to define B1. If 1 < p < ∞, it is well known that f ∈ Bp is
equivalent to∫ 1

0
Mp

p(r, f ′′)(1 − r)p−1dr < ∞,
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where

Mp
p(r,F) =

1
2π

∫ 2π

0
|F(reiθ)|pdθ, r ∈ (0, 1).

In the case p = 1, the above condition becomes∫ 1

0
M1(r, f ′′)dr < ∞.

Hence we can define the space B1 by the condition∫
D

| f ′′(z)|dA(z) < ∞.

For w ∈ D, let αw(z) be the conformal automorphism ofD defined by

αw(z) =
w − z

1 − wz
, z ∈ D.

Each function f ∈ B1 has an atomic decomposition, that is, there exist sequences (c j) j∈N ∈ l1 and
(w j) j∈N ⊂ D such that

f (z) = c0 +

∞∑
j=1

c jαw j (z), z ∈ D.

By using this representation, a norm ‖ · ‖1 on B1 is defined by

‖ f ‖1 = inf
∞∑
j=0

|c j|,

where the infimum is taken over all (c j) j∈N ∈ l1 satisfying the above atomic decomposition for a given
f ∈ B1. It is known that ‖ f ‖1 is comparable to

| f (0)| + | f ′(0)| +
∫
D

| f ′′(z)|dA(z).

For more details about analytic Besov spaces, we can refer to the monograph [17].
Next we will introduce the weighted Bloch type space. Throughout this paper, let ν be a positive

continuous radial function onD. Here “radial” means that ν(z) = ν(|z|) for z ∈ D. The weighted Bloch type
space Bν is the space of all f ∈ H(D) which satisfy supz∈D ν(z)| f ′(z)| < ∞, and the little Bloch type space Bν,0
consists of all f ∈ Bν satisfying ν(z)| f ′(z)| → 0 as |z| → 1−. It is easy to see that the space Bν,0 is a closed
subspace inBν. The Bloch type spaces have appeared in studies of composition, differentiation and integral
operators. For instance, S. Stević and his collaborators have many studies about these operators, as well as
product type operators containing them, acting from or to Bloch type spaces, as well as other spaces with
weight functions; see [3, 4, 8, 11–14] and the related references therein.

One of the major subjects in the fields of analytic function spaces and operator theory are composition
operators. For an analytic self-map ϕ of D, the composition operator Cϕ is defined by Cϕ f = f ◦ ϕ ( f ∈
H(D)). This composition operator has been studied extensively on various analytic function spaces. The
aim of these studies is to explore the relation between operator-theoretic behaviors of Cϕ and function-
theoretic properties of the map ϕ. Over the past few decades, a considerable number of studies have been
conducted on the difference of composition operators on analytic function spaces. Shapiro and Sundberg
[9] and MacCluer et al. [6] studied a compact difference of composition operators on the Hardy spaces and
topological structures of the space of composition operators. Hosokawa and Ohno [1] have considered
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the same operator acting on the Bloch spaces. They used the pseudo-hyperbolic metric to give equivalent
conditions for the compactness of the difference of composition operators. After that, several authors
[2, 5, 15, 16, 18] have studied the difference of composition type operators acting between two different
analytic function spaces.

Motivated by Zhu and Yang’s results [18] on the difference of composition operators from the weighted
Bergman space into Bloch space, we have investigated recently this type operator from the analytic Besov
space Bp into the Bloch type space Bν in [10]. In that paper, we dealt with the case Cϕ − Cψ : Bp

→ Bν

only. The results in [2, 5, 15, 16, 18], as well as our recent ones in [10], do not deal with the case when the
range space of Cϕ − Cψ is a little-type space. This case remains as a matter to be discussed further. Hence
the purpose of this paper is to describe equivalent conditions for the compactness of Cϕ − Cψ : Bp

→ Bν,0.
When we consider the case that the range space of Cϕ − Cψ is different from its domain space, we have to
take notice of the boundedness of it because a pair {ϕ,ψ} does not always induce the bounded difference of
composition operators. In Section 3, we will give characterizations for the boundedness of Cϕ − Cψ which
the range space is Bν,0. By applying this result for the boundedness, we will describe characterizations for
the compactness of Cϕ − Cψ. Section 4 is devoted to explain the details of them.

Throughout this paper, the notation A . B means that there exists a positive constant C such that
A ≤ CB. Of course, the constant C is independent of a function f , a point z ∈ D and related parameters
{t, r}. Moreover, if both A . B and B . A hold, then one says that A ≈ B.

2. Preliminaries

We will need the following results in Section 3 and 4. The following lemma is folklore, but we include
a proof of it for completeness.

Lemma 2.1. Let 1 ≤ p < ∞ and f ∈ Bp. Then

| f ′(z)| .
‖ f ‖p

1 − |z|2

for all z ∈ D.

Proof. We have to consider the following two cases: p , 1, and p = 1. For the case p , 1, by the definition
of the space Bp, f ∈ Bp if and only if f ′ belongs to the classical weighted Bergman space Lp

a(dAp−2). Hence
f ′ has the following point evaluation estimate:

| f ′(z)| ≤
‖ f ′‖Lp

a (dAp−2)

1 − |z|2

for all z ∈ D. Since ‖ f ′‖Lp
a (dAp−2) ≤ C‖ f ‖p, we obtain the desired estimate. To prove the case p = 1, we use the

atomic decomposition of f ∈ B1. If f ∈ B1, we can choose sequences (c j) j∈N ∈ l1 and (w j) j∈N ⊂ D such that
f = c0 +

∑
c jαw j . Thus we have | f (z)| .

∑
|c j| for all z ∈ D. By taking the infimum with respect to all such

representation of f , we obtain | f (z)| . ‖ f ‖1 for all z ∈ D. An application of Cauchy’s estimate to f ′ on the
circle with center at z and radius (1 − |z|)/2 shows | f ′(z)| . ‖ f ‖1/(1 − |z|2) for all z ∈ D.

Lemma 2.2. Let 1 ≤ p < ∞ and f ∈ Bp. Then

|(1 − |z|2) f ′(z) − (1 − |w|2) f ′(w)| . ‖ f ‖pρ(z,w)

for all {z,w} ⊂ D. Here ρ(z,w) denotes the pseudohyperbolic distance for z,w ∈ D, that is, ρ(z,w) =
∣∣∣ z−w

1−zw

∣∣∣.
Proof. In [1, Proposition 2.2], Hosokawa and Ohno proved that

|(1 − |z|2) f ′(z) − (1 − |w|2) f ′(w)| . ρ(z,w) sup
ζ∈D

(1 − |ζ|2)| f ′(ζ)|

for f belonging to the Bloch space B and {z,w} ⊂ D. Since Lemma 2.1 implies that Bp
⊂ B (1 ≤ p < ∞) and

supζ∈D(1 − |ζ|2)| f ′(ζ)| . ‖ f ‖p, the desired estimate can be verified by the above estimate.
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A compact subset of Bν,0 can be characterized as following. The same result for the usual little Bloch
spaceB0 was proved by Madigan and Matheson [7]. By a slightly modification of their proof, we can prove
the following lemma.

Lemma 2.3. A closed subset L in Bν,0 is compact if and only if it is a bounded subset in Bν and satisfies

lim
|z|→1−

sup
f∈L

ν(z)| f ′(z)| = 0.

The following result is appeared in our previous work [10]. We will need it in the compactness argument
in Section 4.

Theorem 2.4. Let 1 ≤ p < ∞ and {ϕ,ψ} a pair of analytic self-maps of D. Then the following statements are
equivalent:

(i) Cϕ − Cψ : Bp
→ Bν is bounded,

(ii) ϕ and ψ satisfy the following two conditions:

sup
z∈D

ν(z)|ϕ′(z)|
1 − |ϕ(z)|2

ρ(ϕ(z), ψ(z)) < ∞

and

sup
z∈D

∣∣∣∣∣∣ ν(z)ϕ′(z)
1 − |ϕ(z)|2

−
ν(z)ψ′(z)

1 − |ψ(z)|2

∣∣∣∣∣∣ < ∞,
(iii) ϕ and ψ satisfy the following two conditions:

sup
z∈D

ν(z)|ψ′(z)|
1 − |ψ(z)|2

ρ(ϕ(z), ψ(z)) < ∞

and

sup
z∈D

∣∣∣∣∣∣ ν(z)ϕ′(z)
1 − |ϕ(z)|2

−
ν(z)ψ′(z)

1 − |ψ(z)|2

∣∣∣∣∣∣ < ∞.
3. Boundedness of Cϕ − Cψ

Before considering the compactness of Cϕ−Cψ, we have to mention the boundedness of it. The following
Theorem 3.1 can be found in [1, Theorem 3.4]. They proved the result for the case that Cϕ − Cψ is acting
on the little Bloch space B0. Under the assumption on the boundedness of Cϕ − Cψ and the density of the
polynomial set in the domain space, we can generalize their result as following.

Theorem 3.1. Let X be a Banach space of analytic functions over D such that the polynomial set is dense in X.
For each pair {ϕ,ψ} of analytic self-maps of D with Cϕ − Cψ : X → Bν is bounded, the following conditions are
equivalent:

(a) Cϕ − Cψ : X→ Bν,0 is bounded,
(b) ϕ − ψ ∈ Bν,0 and ϕ2

− ψ2
∈ Bν,0,

(c) ϕ − ψ ∈ Bν,0 and

lim
|z|→1−

ν(z)|ϕ(z) − ψ(z)|max{|ϕ′(z)|, |ψ′(z)|} = 0.
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Proof. The direction (a)⇒ (b) is verified by test functions p1(z) = z and p2(z) = z2 easily. Hence it is enough
to prove directions (b) ⇒ (c) and (c) ⇒ (a). Now we will prove (b) ⇒ (c). Since ϕ − ψ ∈ Bν,0 implies
ν(z)|ϕ′(z) − ψ′(z)| → 0 as |z| → 1− and ϕ2

− ψ2
∈ Bν,0 implies ν(z)|ϕ(z)ϕ′(z) − ψ(z)ψ′(z)| → 0 as |z| → 1−, we

obtain that

ν(z)|ϕ(z) − ψ(z)||ϕ′(z)|
≤ ν(z)|ϕ(z)ϕ′(z) − ψ(z)ψ′(z)| + ν(z)|ϕ′(z) − ψ′(z)||ψ(z)|
≤ ν(z)|ϕ(z)ϕ′(z) − ψ(z)ψ′(z)| + ν(z)|ϕ′(z) − ψ′(z)| → 0,

as |z| → 1−. Similarly it is proved that ν(z)|ϕ(z)−ψ(z)||ψ′(z)| → 0 as |z| → 1−, and so the condition (c) is true.
In order to prove (c)⇒ (a), we assume (c). For each n ≥ 1, we put pn(z) = zn. Then

(Cϕ − Cψ)pn(z) = ϕn(z) − ψn(z) = (ϕ(z) − ψ(z))
n−1∑
k=0

ϕn−1−k(z)ψk(z).

We will claim that (Cϕ − Cψ)pn ∈ Bν,0. Sincen−1∑
k=0

ϕn−1−k(z)ψk(z)


′

= (n − 1)ϕn−2(z)ϕ′(z) + (n − 2)ϕn−3(z)ϕ′(z)ψ(z) + ϕn−2(z)ψ′(z)

+ · · · + ϕ′(z)ψn−2(z) + (n − 2)ϕ(z)ψn−3(z)ψ′(z) + (n − 1)ψn−2(z)ψ′(z),

we have that∣∣∣∣∣∣∣
n−1∑

k=0

ϕn−1−k(z)ψk(z)


′
∣∣∣∣∣∣∣ ≤ n(n − 1)

2
(|ϕ′(z)| + |ψ′(z)|).

Hence this inequality gives that

ν(z)|((Cϕ − Cψ)pn)′(z)|

≤ nν(z)|ϕ′(z) − ψ′(z)| +
n(n − 1)

2
ν(z)|ϕ(z) − ψ(z)|(|ϕ′(z)| + |ψ′(z)|).

Combining this estimate with the condition (c), we see that (Cϕ − Cψ)pn ∈ Bν,0, and so (Cϕ − Cψ)p ∈ Bν,0 for
each polynomial p. Since the polynomial set is dense in X, Cϕ −Cψ : X→ Bν is bounded and Bν,0 is closed
in Bν, we also see (Cϕ − Cψ) f ∈ Bν,0 for f ∈ X. This implies the boundedness of Cϕ − Cψ : X→ Bν,0.

The following lemma is also folklore. We include a standard proof of it for the benefit of the reader.

Lemma 3.2. For 1 ≤ p < ∞, the polynomial set is dense in Bp.

Proof. Each dilated function fr is analytic in the closed unit disk D, and so it belongs to Bp. Since fr is
approximated by polynomials in Bp, it is enough to prove that every f ∈ Bp satisfies ‖ f − fr‖p → 0 as
r → 1−. First we will consider the case p > 1. Fix ε > 0. Since f ∈ Bp, there exists an R ∈ (0, 1) such that∫
D\RD | f

′(z)|p(1 − |z|2)p−2dA(z) < ε. Noting that | f ′|p is subharmonic inD, we have∫
D\RD

| f ′(rz)|p(1 − |z|2)p−2dA(z) = 2
∫ 1

R
t(1 − t2)p−2dt

∫ 2π

0
| f ′(rteiθ)|p

dθ
2π

≤ 2
∫ 1

R
t(1 − t2)p−2dt

∫ 2π

0
| f ′(teiθ)|p

dθ
2π

=

∫
D\RD

| f ′(z)|p(1 − |z|2)p−2dA(z) < ε



A.K. Sharma, S. Ueki / Filomat 35:12 (2021), 3909–3917 3914

for any r ∈ (0, 1). Hence we obtain

‖ f − fr‖
p
p =

∫
D

| f ′(z) − r f ′(rz)|p(1 − |z|2)p−2dA(z)

. (1 − r)p
∫
D

| f ′(rz)|p(1 − |z|2)p−2dA(z)

+

∫
D

| f ′(z) − f ′(rz)|p(1 − |z|2)p−2dA(z)

. (1 − r)p
‖ f ‖pp + ε +

∫
RD
| f ′(z) − f ′(rz)|p(1 − |z|2)p−2dA(z).

Since f ′ is uniformly continuous on RD, it follows from this estimate that ‖ f − fr‖p → 0 as r→ 1−. For the
case p = 1, we obtain

‖ f − fr‖1 .
∫
D

| f ′′(z) − r2 f ′′(rz)|dA(z)

≤ (1 − r2)
∫
D

| f ′′(rz)|dA(z) +

∫
D

| f ′′(rz) − f ′′(z)|dA(z).

By the same argument as in the case p > 1, these inequalities also show that ‖ f − fr‖1 → 0 as r→ 1−.

Corollary 3.3. Let 1 ≤ p < ∞ and {ϕ,ψ} a pair of analytic self-maps of D which induces the bounded operator
Cϕ − Cψ : Bp

→ Bν. Then the following conditions are equivalent:

(a) Cϕ − Cψ : Bp
→ Bν,0 is bounded,

(b) ϕ − ψ ∈ Bν,0 and ϕ2
− ψ2

∈ Bν,0,
(c) ϕ − ψ ∈ Bν,0 and

lim
|z|→1−

ν(z)|ϕ(z) − ψ(z)|max{|ϕ′(z)|, |ψ′(z)|} = 0.

4. Compactness of Cϕ − Cψ

Theorem 4.1. Let 1 ≤ p < ∞. For each pair {ϕ,ψ} of analytic self-maps of D, Cϕ − Cψ : Bp
→ Bν,0 is compact if

and only if ϕ and ψ satisfy the following two condtions:

(a) lim
|z|→1−

max
{
|ϕ′(z)|

1 − |ϕ(z)|2
,
|ψ′(z)|

1 − |ψ(z)|2

}
ν(z)ρ(ϕ(z), ψ(z)) = 0,

(b) lim
|z|→1−

∣∣∣∣∣∣ ν(z)ϕ′(z)
1 − |ϕ(z)|2

−
ν(z)ψ′(z)

1 − |ψ(z)|2

∣∣∣∣∣∣ = 0.

Proof. First, we assume that conditions (a) and (b) hold. Let K = { f ∈ Bp : ‖ f ‖p ≤ 1} be the closed unit
ball in Bp. In order to prove the compactness of Cϕ − Cψ : Bp

→ Bν,0, by Lemma 2.3, we may prove that
Cϕ − Cψ : Bp

→ Bν,0 is bounded and

lim
|z|→1

sup
f∈K

ν(z)|((Cϕ − Cψ) f )′(z)| = 0. (2)

By Theorem 2.4 we see that (a) and (b) imply the boundedness of Cϕ − Cψ : Bp
→ Bν. Thus we will claim

that ϕ and ψ satisfy the condition (c) in Corollary 3.3. Since |ϕ(z) − ψ(z)| ≤ 2ρ(ϕ(z), ψ(z)) for z ∈ D, we see
that

ν(z)|ϕ(z) − ψ(z)||ϕ′(z)| ≤ 2
ν(z)|ϕ′(z)|
1 − |ϕ(z)|2

ρ(ϕ(z), ψ(z)),
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and

ν(z)|ϕ(z) − ψ(z)||ψ′(z)| ≤ 2
ν(z)|ψ′(z)|
1 − |ψ(z)|2

ρ(ϕ(z), ψ(z)),

and so the condition (a) shows

lim
|z|→1

ν(z)|ϕ(z) − ψ(z)|max{|ϕ′(z)|, |ψ′(z)|} = 0.

Moreover we also obtain that

ν(z)|ϕ′(z) − ψ′(z)|

= ν(z)

∣∣∣∣∣∣ (1 − |ϕ(z)|2)ϕ′(z)
1 − |ϕ(z)|2

−
(1 − |ψ(z)|2)ψ′(z)

1 − |ψ(z)|2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ ν(z)ϕ′(z)
1 − |ϕ(z)|2

−
ν(z)ψ′(z)

1 − |ψ(z)|2

∣∣∣∣∣∣
+ ν(z)

∣∣∣∣∣∣−|ϕ(z)|2ϕ′(z)
1 − |ϕ(z)|2

+
|ψ(z)|2ϕ′(z)
1 − |ϕ(z)|2

−
|ψ(z)|2ϕ′(z)
1 − |ϕ(z)|2

+
|ψ(z)|2ψ′(z)
1 − |ψ(z)|2

∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣ ν(z)ϕ′(z)
1 − |ϕ(z)|2

−
ν(z)ψ′(z)

1 − |ψ(z)|2

∣∣∣∣∣∣ +
∣∣∣|ϕ(z)|2 − |ψ(z)|2

∣∣∣ ν(z)|ϕ′(z)|
1 − |ϕ(z)|2

≤ 2

∣∣∣∣∣∣ ν(z)ϕ′(z)
1 − |ϕ(z)|2

−
ν(z)ψ′(z)

1 − |ψ(z)|2

∣∣∣∣∣∣ + 4ρ(ϕ(z), ψ(z))
ν(z)|ϕ′(z)|
1 − |ϕ(z)|2

.

Hence (a) and (b) show that ν(z)|ϕ′(z) − ψ′(z)| → 0 as |z| → 1−, that is ϕ − ψ ∈ Bν,0. By Corollary 3.3, we see
that Cϕ − Cψ : Bp

→ Bν,0 is bounded.
Now we prove that (2) holds. Fix z ∈ D and f ∈ K. Thus we have

ν(z)|((Cϕ − Cψ) f )′(z)|
= ν(z)| f ′(ϕ(z))ϕ′(z) − f ′(ψ(z))ψ′(z)|

= ν(z)

∣∣∣∣∣∣ ϕ′(z)
1 − |ϕ(z)|2

(1 − |ϕ(z)|2) f ′(ϕ(z)) −
ψ′(z)

1 − |ψ(z)|2
(1 − |ψ(z)|2) f ′(ψ(z))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ ν(z)ϕ′(z)
1 − |ϕ(z)|2

−
ν(z)ψ′(z)

1 − |ψ(z)|2

∣∣∣∣∣∣ (1 − |ϕ(z)|2)| f ′(ϕ(z))|

+
∣∣∣(1 − |ϕ(z)|2) f ′(ϕ(z)) − (1 − |ψ(z)|2) f ′(ψ(z))

∣∣∣ ν(z)|ψ′(z)|
1 − |ψ(z)|2

.

Combining this with Lemma 2.1 and 2.2, we obtain

ν(z)|((Cϕ − Cψ) f )′(z)| .

∣∣∣∣∣∣ ν(z)ϕ′(z)
1 − |ϕ(z)|2

−
ν(z)ψ′(z)

1 − |ψ(z)|2

∣∣∣∣∣∣ +
ν(z)|ψ′(z)|
1 − |ψ(z)|2

ρ(ϕ(z), ψ(z))

for any z ∈ D and f ∈ K. Conditions (a) and (b) imply (2). By Lemma 2.3 we see that (Cϕ − Cψ)(K) is a
compact subset in Bν,0. Hence Cϕ − Cψ : Bp

→ Bν,0 is compact.
To prove that the compactness of Cϕ − Cψ gives conditions (a) and (b), we take an arbitrary sequence

(zn)n∈N of D with |zn| → 1− as n → ∞. Moreover we may assume that |ϕ(zn)| > 1/2 and |ψ(zn)| > 1/2 for
sufficiently large n. Put

fn(z) =
ϕ(zn) − z

1 − ϕ(zn)z
, and 1n(z) =

 ϕ(zn) − z

1 − ϕ(zn)z

2
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for n ≥ 1 and z ∈ D. By Forelli-Rudin estimate (cf. [19, Lemma 3.10]), we see { fn, 1n} ⊂ Bp and can
choose a positive constant C which is independent of n, ϕ and ψ such that ‖ fn‖p ≤ C and ‖1n‖p ≤ C. Let
KC = { f ∈ Bp : ‖ f ‖p ≤ C}. By Lemma 2.3, the compactness of Cϕ − Cψ implies

lim
n→∞

sup
f∈KC

ν(zn)|((Cϕ − Cψ) f )′(zn)| = 0. (3)

By the definition of fn, we have

ν(zn)|((Cϕ − Cψ) fn)′(zn)|

= ν(zn)

∣∣∣∣∣∣∣ −ϕ′(zn)
1 − |ϕ(zn)|2

+
ψ′(zn)(1 − |ϕ(zn)|2)

(1 − ϕ(zn)ψ(zn))2

∣∣∣∣∣∣∣
≥

∣∣∣∣∣∣ν(zn)|ϕ′(zn)|
1 − |ϕ(zn)|2

−
ν(zn)|ψ′(zn)|
1 − |ψ(zn)|2

(1 − ρ(ϕ(zn), ψ(zn))2)

∣∣∣∣∣∣ . (4)

Since 0 ≤ ρ(ϕ(zn), ψ(zn)) < 1, (3) and (4) give

lim
n→∞

∣∣∣∣∣∣ν(zn)|ϕ′(zn)|
1 − |ϕ(zn)|2

ρ(ϕ(zn), ψ(zn))

−
ν(zn)|ψ′(zn)|
1 − |ψ(zn)|2

ρ(ϕ(zn), ψ(zn))(1 − ρ(ϕ(zn), ψ(zn))2)

∣∣∣∣∣∣ = 0. (5)

Since 1′n(ϕ(zn)) = 0, we have

ν(zn)|((Cϕ − Cψ)1n)′(zn)|

= 2ν(zn)
|ϕ(zn) − ψ(zn)||ψ′(zn)|

|1 − ϕ(zn)ψ(zn)|3
(1 − |ϕ(zn)|2)

= 2
ν(zn)|ψ′(zn)|
1 − |ψ(zn)|2

ρ(ϕ(zn), ψ(zn))(1 − ρ(ϕ(zn), ψ(zn))2).

The equation (3) also gives

lim
n→∞

ν(zn)|ψ′(zn)|
1 − |ψ(zn)|2

ρ(ϕ(zn), ψ(zn))(1 − ρ(ϕ(zn), ψ(zn))2) = 0. (6)

(5) and (6) show that

lim
n→∞

ν(zn)|ϕ′(zn)|
1 − |ϕ(zn)|2

ρ(ϕ(zn), ψ(zn)) = 0. (7)

By replacing the role of ϕ and ψ in definitions of { fn, 1n} and the above argument, we also have that

lim
n→∞

ν(zn)|ψ′(zn)|
1 − |ψ(zn)|2

ρ(ϕ(zn), ψ(zn)) = 0. (8)

Since (zn)n∈N ⊂ D with |zn| → 1 as n → ∞ was arbitrary, (7) and (8) imply the condition (a) holds.
Furthemore, the estimate (4) gives

ν(zn)|((Cϕ − Cψ) fn)′(zn)|

≥

∣∣∣∣∣∣ν(zn)|ϕ′(zn)|
1 − |ϕ(zn)|2

−
ν(zn)|ψ′(zn)|
1 − |ψ(zn)|2

∣∣∣∣∣∣ − ν(zn)|ψ′(zn)|
1 − |ψ(zn)|2

ρ(ϕ(zn), ψ(zn)).
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By (3) and (8), we obtain

lim
n→∞

∣∣∣∣∣∣ν(zn)|ϕ′(zn)|
1 − |ϕ(zn)|2

−
ν(zn)|ψ′(zn)|
1 − |ψ(zn)|2

∣∣∣∣∣∣ = 0,

and so this indicates the condition (b).
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