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Abstract. The spectrum of the Cesàro operator C is determined on the spaces which arises as intersections
Ap
α+ (resp. unions Ap

α−) of Bergman spaces Ap
α of order 1 < p < ∞ induced by standard radial weights

(1 − |z|)α, for 0 < α < ∞. We treat them as reduced projective limits (resp. inductive limits) of weighted
Bergman spaces Ap

α, with respect to α. Proving that these spaces admit the monomials as a Schauder
basis paves the way for using Grothendieck-Pietsch criterion to deduce that we end up with a non-nuclear
Fréchet-Schwartz space (resp. a non-nuclear (DFS)-space). We show that C is always continuous, while it
fails to be compact or to have bounded inverse on Ap

α+ and Ap
α−.

1. Introduction

Let H(D) denote the Fréchet space of all analytic functions f : D → C equipped with the topology of
uniform convergence on the compact subsets of the unit disc D := {z ∈ C : |z| < 1}. The classical Cesàro
operator C is given by

f 7→ C( f ) : z 7→
1
z

∫ z

0

f (ζ)
1 − ζ

dζ, z ∈ D \ {0}, C( f )(0) := f (0), (1.1)

for f ∈ H(D). The Cesàro operator C is an isomorphism of H(D) onto itself. From (1.1) one may obtain that

f (z) = (1 − z)(zC( f )(z))′, f ∈ H(D). (1.2)

In the sense of Taylor coefficients

f̂ ( j) :=
f ( j)(0)

j!
, n ∈N0 (1.3)

of the function f ∈ H(D) given by

f (z) =

∞∑
j=0

f̂ ( j)z j, (1.4)
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one has the expression

C f (z) =

∞∑
k=0

 1
k + 1

k∑
j=0

f̂ ( j)

 zk, z ∈ D. (1.5)

Let L(E) denote the space of all continuous operators on a topological vector space E. For ϕ ∈ H∞, we
denote Mϕ the operator in H(D) of multiplication by ϕ so that Mϕ ∈ L(H(D)). The differentiation operator
D : f 7→ f ′ for f ∈ H(D) also belongs to L(H(D)). Then it follows from (1.1) that C−1

∈ L(H(D)) given by
C−1 = M1−zDMz (see [28, p. 1185]). That is, for all h ∈ H(D) we have

C−1(h)(z) = (1 − z)(h(z) + zh′(z)), z ∈ D. (1.6)

The continuity, compactness and spectrum of generalized Cesàro operators on Banach spaces of analytic
functions on the unit disc have been studied by many authors [6–13, 16, 17, 20, 28, 30, 31]. Continuity of the
Cesàro operator on the Hilbert space H2(D) was studied by Hardy, Littlewood, and Pólya [20]. Continuity
of C on the general Hardy spaces and unweighted Bergman spaces Ap is due to Siskakis [30, 31]. Andersen
[13] proved that the Cesàro operator is bounded on a class of spaces of analytic functions on the unit disc,
including the weighted Bergman space. Boundedness and compactness of the class of a certain type of
integral operators (also containing the Cesàro operator) acting on spaces of analytic functions on the unit
disc have been studied by Aleman and Cima [7], Aleman and Siskakis [12]. Persson [28], Aleman and
Constantin [8], Aleman and Persson [10] investigated the spectrum of (generalized) Cesàro operators on
various spaces of analytic functions such as Hardy spaces, weighted Bergman spaces and Dirichlet spaces in
detail. We refer the reader to the introduction of [10] for a comprehensive information on the development
of the research in this area. The Bergman space Ap

α = Ap
α(D) of order 1 < p < ∞ induced by standard radial

weight (1 − |z|)α for 0 < α < ∞ is given by

Ap
α := { f ∈ H(D) :

∣∣∣∣∣∣ f ∣∣∣∣∣∣p,α =

(∫
D

∣∣∣ f (z)
∣∣∣pdsα(z)

)1/p

< ∞}, (1.7)

where dsα(z) = (1 − |z|)αds(z), and ds(z) = 1
πdxdy. Some authors prefer to define the space Ap

α with the
weight (1 − |z|2)α instead of (1 − |z|)α. Since we have 1 − |z| ≤ 1 − |z|2 ≤ 2(1 − |z|), these spaces coincide
and the norms are equivalent. Each Ap

α is a closed subspace of Lp(D,dsα(z)) in which the polynomials are
dense [21, Section 1.1]. The weighted Bergman space Ap

α is a Banach space with the norm ||·||p,α. Classical
Bergman space Ap(D) corresponds to the case α = 0. Contrary to H(D), the Cesàro operator C does not
have a bounded inverse on the Banach space Ap

α (see e.g. [28]). The aim of this paper is to investigate the
Cesàro operator C on spaces that arise as intersections and unions of Bergman spaces of order 1 < p < ∞
induced by the standard weights (1 − |z|)α for 0 < α < ∞:

Ap
α+ := { f ∈ H(D) :

(∫
D

∣∣∣ f (z)
∣∣∣pdsµ(z)

)1/p

< ∞, ∀µ > α}

=
⋂
µ>α

Ap
µ =

⋂
n∈N

Ap
(α+ 1

n )
= proj

n∈N
Ap

(α+ 1
n )
, (1.8)

Ap
α− := { f ∈ H(D) :

(∫
D

∣∣∣ f (z)
∣∣∣pdsµ(z)

)1/p

< ∞, for some µ < α}

=
⋃
µ<α

Ap
µ =

⋃
n∈N

Ap
(α− 1

n )
= ind

n∈N
Ap

(α− 1
n )
, (1.9)

The monograph [21] presents an investigation of Bergman type spaces (of infinite order) in that fashion
with relevance to interpolation and sampling of analytic functions. The paper [24] gives a description of
intersections and unions of weighted Bergman spaces of order 0 < p < ∞. Unlike those, we treat the space
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Ap
α+ as a Fréchet space when equipped with the locally convex topology generated by the increasing system

of norms∣∣∣∣∣∣∣∣∣ f ∣∣∣∣∣∣∣∣∣p,α,n :=
(∫
D

∣∣∣ f (z)
∣∣∣pds(α+ 1

n )(z)
)1/p

, (1.10)

for f ∈ Ap
α+ and each n ∈N. The space Ap

α− is an (LB)-space endowed with the finest locally convex topology
such that each natural inclusion map from Ap

µ into Ap
γ, for 0 < µ < γ is continuous. It is also regular, since

every bounded set B ⊆ Ap
α− is contained and bounded in the Banach space Ap

µ, for some 0 < µ < α. We also
mention that for 0 < β < α < ∞, we have Ap

β ⊂ Ap
α− ⊂ Ap

α ⊂ Ap
α+.

We address the inspiration and motivation of this research to three sources. Aleman and Constantin [8]
investigated the spectrum of the Cesàro operator on weighted Bergman spaces. Albanese, Bonet and Ricker
[5] studied continuity, compactness and spectrum of the Cesàro operator in growth Banach spaces. In [3]
they conducted the same investigation for Cesàro operator within the context of intersections and unions
of growth spaces. We keep their setup in present paper, and use it for weighted Bergman spaces. Retaining
similar techniques, the patterns of our proofs are very close to the those of [3] concerning the spectrum of
the Cesàro operator.

The paper is organized as follows. In Section 2, we focus on the properties of the Cesàro operator C
defined on Ap

α+ and Ap
α−. We immediately reach that C is always continuous on Ap

α+ and Ap
α− since it is

continuous on each step. To show that C is not an isomorphism on Ap
α+ and Ap

α−, we construct specific
functions. Then, we determine its spectrum on Ap

α+ and Ap
α−. Spectral properties of C reveals that it is

non-compact on Ap
α+ and Ap

α−. In Section 3 we concentrate on the structural properties of Ap
α+ and Ap

α−. By
proving that for each pair 0 < µ < γ < ∞, each inclusion map from Ap

µ to Ap
γ is compact, we establish that

Ap
α+ is a Fréchet-Schwartz space and Ap

α− is a (DFS)-space. Using the approach in [14, Section 2], we show
that Ap

α+ and Ap
α− are non-nuclear spaces both admitting the monomials {z j

}
∞

j=1 as a Schauder basis.

2. The Cesàro operator C on Ap
α+

and Ap
α−

2.1. C is continuous on Ap
α+ and Ap

α−

Boundedness of the Cesàro operator on the Banach space Ap
α is due to Andersen [13, Corollary 1.2],

as it is proved for a more general class of spaces of analytic functions on the unit disc. This implies C is
continuous at every step Ap

(α+ 1
n )

or Ap
(α− 1

n )
, and hence C is also continuous on Ap

α+ and Ap
α− by means of the

properties of Fréchet and inductive limit topologies, respectively. Both Ap
α+ and Ap

α− contain polynomials.
Hence Ap

α+ is dense in Ap
µ, for every µ > α and Ap

α− is dense in Ap
α, for every 0 < α < ∞. Let us denote

ιn : Ap
α+ ↪→ Ap

(α+ 1
n )

and ιn,n+1 : Ap
(α+ 1

n+1 )
↪→ Ap

(α+ 1
n )

the canonical maps with dense range. We denote the Cesàro

operator Cn : Ap
(α+ 1

n )
→ Ap

(α+ 1
n )

, for each n ∈ N. Observe that ιC = Cnιn and ιn,n+1Cn+1 = Cnιn,n+1, for every

n ∈N.

2.2. Inverse of C on Ap
α+ and Ap

α−

Proposition 2.1. Let 1 < p < ∞, and 0 < α < ∞. Then,

(1) The Cesàro operator C fails to be an isomorphism on Ap
α+.

(2) The Cesàro operator C fails to be an isomorphism on Ap
α−.

Proof. Let p > 1. Then, there exists ε ∈ (0, 1) such that p ≥ 1 + 2ε.

(1) Given 0 < α < ∞, define fε(z) := 1

(1+z)
α+1−ε

p
for z ∈ D. Since 1 = |1 + z − z| ≤ |1 + z| + |z|, straightforward

calculation shows fε ∈ Ap
α, and so fε ∈ Ap

α+. Suppose that C−1 fε ∈ Ap
α+. Since clearly (1 − z) fε ∈ Ap

α+, this is
equivalent to assume that z(1− z) f ′ε ∈ Ap

α+. Let us define the region A ⊂ D by the intersection of Re(z) ≤ − 1
2 ,
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and the Stolz angle with vertex (−1, 0) in which the inequality |1 + z| ≤ 2(1 − |z|) is satisfied (see e.g. [25,
Lemma 6.20]). It is easy to verify that |1 + z| < 1 and |1 − z| > |z| > 1

2 whenever z ∈ A. Let us pick n0 ∈N such
that 1

n < ε, for all n ≥ n0. Hence, p + 1 − ε − 1
n ≥ 2 for every n ≥ n0. Then, by the fact that z(1 − z) f ′ε ∈ Ap

(α+ 1
n )

,

for a constant M > 0 and for all n ≥ n0 we have

M ≥
∣∣∣∣∣∣∣∣∣z(1 − z) f ′ε

∣∣∣∣∣∣∣∣∣p
p,α,n =

∫
D

∣∣∣z(1 − z) f ′ε(z)
∣∣∣pds(α+ 1

n )(z)

&

∫
A

∣∣∣∣∣∣∣ z(1 − z)

(1 + z)
α+1−ε

p +1

∣∣∣∣∣∣∣
p

ds(α+ 1
n )(z) &

∫
A

∣∣∣∣∣∣∣ 1

(1 + z)
α+1−ε

p +1

∣∣∣∣∣∣∣
p

ds(α+ 1
n )(z)

&

∫
A

ds(z)

|1 + z|2
=

−
1
2∫

−1

1
1 + x

arctan
( y0

1 + x

)
dx,

where y0 := 1
3

√
−9x2 + 6x − 8

√
6x + 7 + 23. An integration by parts shows that the right hand side fails to

be convergent. This is a contradiction.

(2) Define 1ε := 1

(1+z)
α+1−2ε

p
, for z ∈ D. Note that there exists nε ∈ N such that 1

n < ε, for all n ≥ nε. Then,

similar to part (1) we obtain 1ε ∈ Ap
(α− 1

nε
)
, and so 1ε ∈ Ap

α−. Now suppose that C−1 is continuous on Ap
α−.

Then, there exists m > nε such that the restriction C−1 : Ap
(α− 1

nε
)
→ Ap

(α− 1
m )

is continuous. Then, for a constant

M > 0, and the region A ⊂ D defined in part (1)

M ≥
∣∣∣∣∣∣z(1 − z)1′ε

∣∣∣∣∣∣p
p,(α− 1

m )
=

∫
D

∣∣∣z(1 − z)1′ε(z)
∣∣∣pds(α− 1

m )(z)

&

∫
A

∣∣∣∣∣∣∣ z(1 − z)

(1 + z)
α+1−2ε

p +1

∣∣∣∣∣∣∣
p

ds(α− 1
m )(z) &

∫
A

ds(α− 1
m )(z)

|1 + z|α+1−2ε+p

&

∫
A

ds(z)

|1 + z|p+1−2ε+ 1
m

≥

∫
A

ds(z)

|1 + z|2
.

Similar to part (1), the right hand side is not convergent. This is a contradiction.

Corollary 2.2. Let 1 < p < ∞, and 0 < α < ∞. Then,

(1) The differentiation operator D does not act on on Ap
α+.

(2) The differentiation operator D does not act on on Ap
α−.

Proof. Suppose that D ∈ L(Ap
α+). Since clearly both M1−z and Mz are continuous in Ap

α+, then by (1.6),
C−1 = M1−zDMz is continuous in Ap

α+. However, this contradicts Proposition 2.1(1). Part (2) is similar.

2.3. Spectrum of C on Ap
α+

Let X be a locally convex Hausdorff space, and ΓX a system of continuous seminorms determining the
topology of X. Let X′ denote the space of all continuous linear functionals on X. Denote the identity
operator on X by I. Let L(X) denote the space of all continuous linear operators from X into itself. For
T ∈ L(X), the resolvent set ρ(T) of T consists of all λ ∈ C such that R(λ,T) := (λI − T)−1 exists in L(X). The
set σ(T; X) := C \ ρ(T) is called the spectrum of T. The point spectrum σpt(T; X) of T consists of all λ ∈ C
such that (λI − T) is not injective. Contrary to Banach spaces, concerning the spectrum of an operator T
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on the Fréchet space X, one may encounter that ρ(T) = ∅ or ρ(T) fails to be an open set in C. For this
reason, some authors prefer to consider the subset ρ∗(T) of ρ(T) consisting of λ ∈ C such that there exists
δ > 0 such that B(λ, δ) := {z ∈ C : |z − λ| < δ} ⊆ ρ(T) and {R(µ,T) : µ ∈ B(λ, δ)} is equicontinuous in
L(X). Define the Waelbroeck spectrum σ∗(T; X) := C \ ρ∗(T; X), which is a closed set containing σ(T; X). If
T ∈ L(X) with X a Banach space, then σ∗(T; X) = σ(T; X). For every r ≥ 1 we denote the open disk by
Dr :=

{
λ ∈ C :

∣∣∣λ − 1
2r

∣∣∣ < 1
2r

}
. Let us write Dr :=

{
λ ∈ C :

∣∣∣λ − 1
2r

∣∣∣ ≤ 1
2r

}
.

Proposition 2.3. [28, Theorem A; B] For the weighted Bergman space Ap
α(D), p ≥ 1, α ≥ 0, the following

statements hold:

(i) For each λ in the interior of σ(C; Ap
α), the set Im(λI − C) is a closed one codimensional subspace of Ap

α.

(ii) σpt(C; Ap
α) =

{
1
m : m ∈N, m < 2+α

p

}
.

(iii) σ(C; Ap
α) = D 2+α

p
∪ σpt(C; Ap

α).

To prove one of our main theorems, we need the following abstract spectral result.

Lemma 2.4. [2, Lemma 2.1] Let E =
⋂

n∈N En be a Fréchet space which is the intersection of a sequence of Banach
spaces ((En, ||·||n))n∈N satisfying En+1 ⊆ En with ||x||n ≤ ||x||n+1, for all n ∈N and x ∈ En+1. Let T ∈ L(E) satisfy:

(A) For all n ∈N, there exists Tn ∈ L(En) such that the restriction of Tn to E (resp. of Tn to En+1) coincides with T
(resp. Tn+1).

Then, the following statements hold:

(i) σ(T; E) ⊆ ∪n∈Nσ(Tn; En) and R(λ,T) coincides with the restriction of R(λ,Tn) to E, for all n ∈ N and λ ∈⋂
n∈N ρ(Tn; En).

(ii) If ∪n∈Nσ(Tn; En) ⊆ σ(T; E), then

σ∗(T; E) = σ(T; E).

For n ∈N, let us denote by Cn the Cesàro operator acting on the Banach space Ap
(α+ 1

n )
.

Theorem 2.5. Let 1 < p < ∞. Then, for 0 < α < ∞, the following statements hold:

(1) We have the inclusion{
1
m

: m ∈N, m <
2 + α

p

}
⊂ σpt(C; Ap

α+) ⊂
{

1
m

: m ∈N, m ≤
2 + α

p

}
(2) σ(C; Ap

α+) = {0} ∪D 2+α
p
∪ σpt(C; Ap

α+).

(3) σ∗(C; Ap
α+) = σ(C; Ap

α+).

Proof. (1) One inclusion follows from Proposition 2.3. For the other inclusion, take any λ ∈ σpt(C; Ap
α+).

Then, there exists f ∈ Ap
α+ such that C f = λ f . Since f ∈ Ap

µ for every µ > α, we have C f = λ f in Ap
µ as well.

Then λ ∈ σpt(C; Ap
µ), for all µ > α. Hence λ ∈ ∩µ>ασpt(C; Ap

µ). By Proposition 2.3(ii) we obtain

σpt(C; Ap
α+) ⊆

⋂
µ>α

σpt(C; Ap
µ) =

⋂
µ>α

{
1
m

: m ∈N,m <
2 + µ

p

}
=

{
1
m

: m ∈N,m ≤
2 + α

p

}
.
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(2) By part (1) and Lemma 2.4(i), we already know that

σpt(C; Ap
α+) ⊆ σ(C; Ap

α+) ⊆
⋃
n∈N

σ(Cn; Ap
(α+ 1

n )
).

Proposition 2.1 implies that 0 ∈ σ(C; Ap
α+). By Proposition 2.3, we obtain

σ(C; Ap
α+) ⊆ {0} ∪

⋃
n∈N


 1

m
: m ∈N,m <

2 + (α + 1
n )

p

 ∪D 2+(α+ 1
n )

p

 .
Then we clearly have

σ(C; Ap
α+) ⊆ {0} ∪

{
1
m

: m ∈N,m ≤
2 + α

p

}
∪D 2+α

p
.

So it remains to show that D 2+α
p
⊆ σ(C; Ap

α+). Let us fix α > 0, and let λ ∈ D 2+α
p

. Let us set mα := max{m ∈N :
1
m ≥

p
2+α }. Then find n0 ∈N such that p

2+(α+ 1
n )
≥

1
mα+1 and since λ ∈ Dmα+1 we have∣∣∣∣∣∣λ − p

2(2 + (α + 1
n ))

∣∣∣∣∣∣ ≤
∣∣∣∣∣λ − 1

2(mα + 1)

∣∣∣∣∣ < 1
2(mα + 1)

≤
p

2(2 + (α + 1
n ))
,

for every n ≥ n0. Hence, λ ∈ D 2+(α+ 1
n )

p

, for all n ≥ n0. So by Proposition 2.3(ii), λ belongs to the interior of

σ(Cn; Ap
(α+ 1

n )
), for each n ≥ n0. We next show that the set Ap

α+ \ Im(λI − C) is a non-empty open set. Due to

Proposition 2.3(i), the argument is as in the proofs of [2, Theorem 2.2] and [3, Proposition 2.3]. We first take
any sequence (1 j) j∈N ⊆ Im(λI − C) such that 1 j −→

j
1 ∈ Ap

α+. For every j ∈ N let us select f j ∈ Ap
α+ such that

(λI − C) f j = 1 j. In particular, f j ⊆ Ap
(α+ 1

n )
, for every n ∈ N. Then we have 1 j −→

j
1 ∈ Ap

(α+ 1
n )

. Since Im(λI − Cn)

is closed in Ap
(α+ 1

n )
, 1 ∈ Im(λI − Cn), for all n ≥ n0. Then there exists hn ∈ Ap

(α+ 1
n )

such that Im(λI − Cn)hn = 1.

Moreover, for n ≥ n0 we have Im(λI − Cn)hn = 1 = (λI − Cn+1)hn+1. Since the restriction of Cn to Ap
(α+ 1

n+1 )

coincides with Cn+1 and λI − Cn is injective, we have hn = hn+1, for all n ≥ n0. So 1 ∈ Im(λI − C), and hence
Im(λI − C) is closed. Now it remains to show that Im(λI − C) is a proper subspace. Assume not, that is,
suppose that Im(λI − C) = Ap

α+. Since Ap
α+ is dense in Ap

(α+ 1
n )

, for all n ∈N,

Ap
(α+ 1

n )
= Ap

α+ = (λI − C)(Ap
α+) ⊆ (λI − Cn)(Ap

(α+ 1
n )

), (2.1)

where all the closures are taken in Ap
(α+ 1

n )
. However, this contradicts the fact that Im(λI − Cn) is a closed

subspace of Ap
(α+ 1

n )
. Hence λI − C is not surjective, so λ ∈ σ(C; Ap

α+).

(3) By part (2), we observe that

σ(C; Ap
α+) = {0} ∪D 2+α

p
∪

{
1
m

: m ∈N,m ≤
2 + α

p

}
.

From Proposition 2.3(ii), we deduce that⋃
n∈N

σ(Cn; Ap
(α+ 1

n )
) ⊆ {0} ∪D 2+α

p
∪

{
1
m

: m ∈N,m ≤
2 + α

p

}
.

So by Lemma 2.4(ii), we get the desired result.
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2.4. Spectrum of C on Ap
α−

Let us state an abstract spectral lemma which is needed for our next result.

Lemma 2.6. [3, Lemma 5.2] Let E = indn∈N(En, ||·||n) be a Hausdorff inductive limit of Banach spaces. Let T ∈ L(E)
satisfy the following condition:

(A) For each n ∈N, the restriction Tn of T to En maps En into itself and Tn ∈ L(En).

Then, the following properties are satisfied:

(i) σpt(T; E) =
⋃

n∈N σpt(Tn; En).

(ii) σ(T; E) ⊆
⋂

m∈N(
⋃
∞

n=m σ(Tn; En). Moreover, if λ ∈
⋂
∞

n=m ρ(Tn; En) for some m ∈ N, then R(λ,Tn) coincides
with the restriction of R(λ,T) to En, for every n ≥ m.

(iii) If
⋃
∞

n=m σ(Tn; En) ⊆ σ(T; E), for some m ∈N, then

σ∗(T; E) = σ(T; E).

In the light of Lemma 2.6, the following result will follow by using the arguments in [3, Propositions 2.5 -
2.9], adapted to our setting.

Theorem 2.7. Let 1 < p < ∞ be fixed, and let 0 < α < ∞. Then, the following statements hold:

(1) σpt(C; Ap
α−) = { 1

m : m ∈N,m < 2+α
p }.

(2) σ(C; Ap
α−) = σpt(C; Ap

α−) ∪D 2+α
p

.

(3) σ∗(C; Ap
α−) = σ(C; Ap

α−).

Proof. (1) By Lemma 2.6(i), we know that

σpt(C; Ap
α−) =

⋃
n∈N

σpt(Cn; Ap
(α− 1

n )
) =

⋃
n∈N

 1
m

: m ∈N,m <
2 + (α − 1

n )
p


=

{
1
m

: m ∈N,m <
2 + α

p

}
.

(2) If we apply Lemma 2.6(ii) we obtain

σ(C; Ap
α−) ⊆

⋂
m∈N,m> 1

α

 ∞⋃
n=m

σ(Cn; Ap
(α− 1

n )
)

 .
On the other hand, by Proposition 2.3(ii) we know that for every n ∈N satisfying n > 1

α

σ(Cn; Ap
(α− 1

n )
) =

 1
m

: m ∈N,m <
2 + (α − 1

n )
p

 ∪D 2+(α− 1
n )

p

Since for each n,m ∈Nwith n ≥ m > 1
α one has

D 2+(α− 1
n )

p

⊆ D 2+(α− 1
m )

p

,

it follows

σ(C; Ap
α−) ⊆

{
1
m

: m ∈N,m <
2 + α

p

}
∪D 2+α

p
.
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For the other inclusion, first let us notice that by part (1),{
1
m

: m ∈N,m <
2 + α

p

}
⊆ σ(C; Ap

α−).

Now let us assume that there exists λ ∈ C satisfying
∣∣∣∣λ − p

2(2+α)

∣∣∣∣ < p
2(2+α) , but λ < σ(C; Ap

α−). Then, (λI −

C)(Ap
α−) = Ap

α−. However, Proposition 2.3(i) implies that Im(λI − C) is a one-dimensional closed subspace
of Ap

α. Since Ap
α− is dense in Ap

α, we have

Ap
α = Ap

α− = (λI − C)(Ap
α−) ⊆ (λI − C)(Ap

α),

closures taken in Ap
α. Then, Im(λI − C) is dense in Ap

α. Contradiction. Therefore λ ∈ σ(C; Ap
α−). Now it

remains to show that{
λ ∈ C :

∣∣∣∣∣λ − p
2(2 + α)

∣∣∣∣∣ =
p

2(2 + α)

}
⊆ σ(C; Ap

α−).

Fix λ ∈ C such that
∣∣∣∣λ − p

2(2+α)

∣∣∣∣ =
p

2(2+α) , that is, Re( 1
λ ) = 2+α

p . Then, by [28, Proposition 4], constant

functions do not belong to (λI − C)(Ap
α). For instance, take 1 ∈ Ap

α− ⊆ Ap
α so that 1 < (λI − C) and hence

(λI − C) : Ap
α− → Ap

α− fails to be surjective. Therefore, λ ∈ σ(C; Ap
α−), and this completes the proof.

(3) By definition, it is always true to say σ(C; Ap
α−) ⊆ σ∗(C; Ap

α−). For the reverse inclusion, let us take
λ < σ(C; Ap

α−) and show λ < σ∗(C; Ap
α−). By part (2), the set σ(C; Ap

α−) is compact. So there exist r > 0
and n0 ∈ N with n0 > 1

α such that B(λ, r) ∩ σ(C; Ap
(α− 1

n0
)
) = ∅. By Proposition 2.3(iii), we have B(λ, r) ∩

σ(Cn; Ap
(α− 1

n )
) = ∅, for every n ≥ n0. That is, B(λ, r) ⊆ ρ(Cn; Ap

(α− 1
n )

), for every n ≥ n0. Hence the set

{(µI − Cn)−1 : Ap
(α− 1

n )
→ Ap

(α− 1
n )
|µ ∈ B(λ, r)} is equicontinuous, for every n ≥ n0. Now we show that the set

{(µI−C)−1 : Ap
α− → Ap

α−|µ ∈ B(λ, r)} is equicontinuous in L(Ap
α−). As we shall show that Ap

α− is a (DFS)-space
(see Corollary 3.2), it is barrelled. Hence, by means of Banach-Steinhaus Theorem, it suffices to show that
the set

{(µI − C)−1 f : µ ∈ B(λ, r)}

is bounded in Ap
α−. This will guarantee λ < σ∗(C; Ap

α−). Let us fix f ∈ Ap
(α− 1

n )
, for some n ≥ n0. So

{(µI−Cn)−1 f : µ ∈ B(λ, r)} is a bounded set in Ap
(α− 1

n )
and hence also in Ap

α−. Since (µI−C)−1
|Ap

(α− 1
n )

= (µI−Cn)−1

for µ ∈ B(λ, r), we are done.

2.5. Other properties of C on Ap
α+ and Ap

α−

The following result follows from Section 2.3 and Section 2.4.

Proposition 2.8. Let 1 < p < ∞ be fixed, and let 0 < α < ∞. Then, the Cesàro operator C fails to be compact on
Ap
α+ and Ap

α−.

Proof. We make use of the results in [18, Theorem 9.10.2(4)] and [19, Theorem 2.4] stating that a compact
operator T : X → X on a Hausdorff locally convex space X necessarily has a spectrum σ(T; X) which is
compact as a set in C and every element of σ(T; X) except for the origin is isolated. We see in Theorem 2.5 C
has a non-compact spectrum on Ap

α+. Although it has a compact spectrum on Ap
α− as shown in Theorem 2.7,

the points in the spectrum are not isolated.
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We conclude this section with some remarks on the dynamical properties of the Cesàro operator C on
Ap
α+. A Fréchet space operator T ∈ L(X), where X is separable, is called hypercyclic if there exists x ∈ X such

that the orbit {Tkx : k ∈ N0} is dense in X. If, for some z ∈ X, the projective orbit {λTkz : λ ∈ C, k ∈ N0} is
dense in X, then T is called supercyclic. Clearly, if T is hypercyclic then T is supercyclic.

Proposition 2.9. Let 1 < p < ∞, and 0 < α < ∞. Then, both C : Ap
α+ → Ap

α+ and C : Ap
α− → Ap

α− fail to be
supercyclic. In particular, they are not hypercyclic.

Proof. It is proved in [4, Proposition 2.20] that the Cesàro operator C acting on H(D) fails to be supercyclic.
So if C : Ap

α− → Ap
α− or C : Ap

α+ → Ap
α+ were supercyclic, by the fact that Ap

α+ and Ap
α− are dense in H(D) since

it contains the polynomials, C would also be supercyclic on H(D). This is a contradiction.

3. Further discussion on the structures of Ap
α+

and Ap
α−

The well-known Korenblum space [23] is defined by

A−∞ :=
⋃

0<α<∞

A−α =
⋃
n∈N

A−n,

where

A−α = { f ∈ H(D) : sup
z∈D

(1 − |z|)α
∣∣∣ f (z)

∣∣∣ < ∞}.
The classical Korenblum space A−∞ is a regular (LB)-space when endowed with the finest locally convex
topology which makes each natural inclusion map A−n

⊆ A−∞ continuous. So, A−∞ = ind
n∈N

A−n. Let f ∈ Ap
α.

Then, by means of [28, Lemma 3.1], we obtain f ∈ A
−( 2+α

p )

0 , where

A−α0 = { f ∈ H(D) : lim
|z|→1−

(1 − |z|)α
∣∣∣ f (z)

∣∣∣ = 0} ⊆ A−α.

This means ∪α∈NAp
α ⊂ A−∞. For the converse, let us take any f ∈ A−∞. Then there exists n ∈ N and a

constant M > 0 such that supz∈D(1 − |z|)n
∣∣∣ f (z)

∣∣∣ < M. Then,∫
D

∣∣∣ f (z)
∣∣∣p(1 − |z|)npds(z) ≤Mp

∫
D

ds(z) = Mp,

which implies that f ∈ Ap
np. This shows A−∞ ⊂ ∪α>0Ap

α. See also [21, p. 111]. Continuity, compactness and
the spectrum of the Cesàro operator acting on the classical Korenblum space have been studied completely
in [3]. This was the reason we avoided any study of C acting on the (LB)-space ∪α>0Ap

α although it seems
quite tempting concerning the nature of the spaces we deal with.

3.1. Schwartz property in Ap
α+ and Ap

α−

For each 0 < µ < γ it is easy to observe that it holds for the pair of weighted Bergman spaces Ap
µ ⊆ Ap

γ.

Lemma 3.1. For each pair 0 < µ < γ < ∞, the canonical inclusion map ι : Ap
µ ↪→ Ap

γ is compact.

Proof. Fix 0 < µ < γ < ∞, M > 0. By the fact that lim|z|→1− (1 − |z|)γ−µ = 0, for any ε > 0 given, we find
R ∈ (0, 1) such that (1 − |z|)γ−µ < ε

2Mp , for all |z| > R. Let us take f = ( f j) ∈ Ap
µ with

∣∣∣∣∣∣ f ∣∣∣∣∣∣p,µ ≤ M, which
converges to 0 in the topology of uniform convergence on compact subsets ofD. Then, we have∫

|z|>R

∣∣∣ f j(z)
∣∣∣pdsγ(z) =

∫
|z|>R

∣∣∣ f j(z)
∣∣∣p(1 − |z|)γ−µdsµ(z)
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≤
ε

2Mp

∫
|z|>R

∣∣∣ f j(z)
∣∣∣pdsµ(z) ≤

ε
2Mp

∣∣∣∣∣∣ f ∣∣∣∣∣∣pp,µ ≤ ε2 .
Now let us find j0 ∈N such that we have

∣∣∣ f j(z)
∣∣∣ < ( ε

2(γ+1) )
1/p, for all j ≥ j0. So, for every j ≥ j0 we obtain∫

|z|≤R

∣∣∣ f j(z)
∣∣∣pdsγ(z) ≤

ε
2(γ + 1)

∫
|z|≤R

dsγ(z) =
ε
2
.

Therefore, combining the arguments above, we obtain
∣∣∣∣∣∣ι( f j)

∣∣∣∣∣∣p
p,γ ≤ ε. This means, f j converges to 0 in norm

topology as well. Then, ι is a compact operator.

Corollary 3.2. For a fixed 1 < p < ∞ and for all 0 < α < ∞. Then,

(1) Ap
α+ is a Fréchet-Schwartz space.

(2) Ap
α− is a (DFS)-space.

Proof. (1) By (1.8), this result follows directly by the combination of arguments in Lemma 3.1, and [22,
§21.1, Example 1(b)].

(2) By (1.9), it follows by Lemma 3.1 and [27, Proposition 25.20].

3.2. On nuclearity of Ap
α+ and Ap

α−

A sequence (x j)∞j=0 in a locally convex space E is said to be a Schauder basis if each element y ∈ E can
be written uniquely as y =

∑
∞

j=1 f j(y)x j, where f j : E → K, j ∈ N are continuous linear forms. See [22] for
further information on Schauder basis in Fréchet spaces. The work of Lusky [26, Theorem 2.2] tells us that
the monomials Λ = {z j

}
∞

j=0 is a Schauder basis for Ap
α, since it is proved for a more general setup (see also

[15]). In the light of that, and with the help of Fréchet and inductive limit topologies, it is straightforward
to assert that

Theorem 3.3. Let 1 < p < ∞ be fixed, and let 0 < α < ∞. Then,

(1) Λ is a Schauder basis for Ap
α+.

(2) Λ is a Schauder basis for Ap
α−.

Proof. (1) We need to prove that the Taylor series of any f ∈ Ap
α+, α ≥ 0, converges in Ap

α+ to f . Let us fix
µ > α and pick µ1 with α < µ1 < µ. Since f ∈ Ap

µ1
we may apply [26, Theorem 2.2] to deduce that the Taylor

series of f converges to f in Ap
α+. This implies Λ is a Schauder basis for Ap

α+.

(2) A direct consequence of [26, Theorem 2.2] and the properties of inductive limits.

Thanks to Theorem 3.3, we are now allowed to make use of Grothendieck-Pietsch criterion to determine
whether Ap

α+ and Ap
α− are nuclear or not. We adapt this approach from [14]. First we need the following

estimate, which is essentially known (cf. [29, Lemma 4]).

Lemma 3.4. Let 1 < p < ∞, and 0 < α < ∞. For j ∈N,

∣∣∣∣∣∣z j
∣∣∣∣∣∣

p,α �

(
1

jα+1

)1/p

.
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Proof. For any f ∈ Ap
α we have

∣∣∣∣∣∣ f ∣∣∣∣∣∣pp,α =
∫ 1

0 r(1 − r)α
(

1
2π

∫ 2π

0

∣∣∣ f (reit)
∣∣∣pdt

)
dr. Let β(·, ·) denote the usual Beta

function, and Γ(·) denote the usual Gamma function. Then we have the estimate

∣∣∣∣∣∣z j
∣∣∣∣∣∣p

p,α �

∫ 1

0
(1 − r)α

(
1

2π

∫ 2π

0
(r j)pdt

)
dr =

∫ 1

0
(1 − r)αr jpdr

= β( jp + 1, α + 1) =
Γ( jp + 1)Γ(α + 1)

Γ( jp + α + 2)

�
( jp) jp+ 1

2α(α+ 1
2 )e−(α+ jp)

( jp + α + 1) jp+α+ 3
2 e−( jp+α+1)

=

(
jp

jp + α + 1

) jp+ 1
2 α(α+ 1

2 )

e( jp + α + 1)
�

1
jα+1 ,

where the first estimate is due to an extension of Stirling’s formula (see e.g. [1, p. 257]).

Theorem 3.5. Let 1 < p < ∞ be fixed and let 0 < α < ∞. Then,

(1) The Fréchet-Schwartz space Ap
α+ fails to be nuclear.

(2) The (DFS)-space Ap
α− fails to be nuclear.

Proof. We give the argument for part (1). Suppose that Ap
α+ is nuclear. Then, by Grothendieck-Pietsch

criterion (see e.g. [27, Proposition 28.15]), given n = 1 we find m > 1 such that

∞∑
j=1

∣∣∣∣∣∣z j
∣∣∣∣∣∣

p,α+1∣∣∣∣∣∣z j
∣∣∣∣∣∣

p,α+ 1
m

< ∞.

On the other hand, by Lemma 3.4 we have

∞∑
j=1

∣∣∣∣∣∣z j
∣∣∣∣∣∣

p,α+1∣∣∣∣∣∣z j
∣∣∣∣∣∣

p,α+ 1
m

�

 ∞∑
j=1

jα+ 1
m +1

jα+2


1/p

=

 ∞∑
j=1

1

j1−
1
m


1/p

= ∞.

This is a contradiction.
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