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Investigation of Langevin Equation in Terms of Generalized
Proportional Fractional Derivatives with Respect to Another Function

Mohamed I. Abbas?

?Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21511, Egypt

Abstract. The current work concerns the existence and uniqueness results for a nonlinear Langevin equa-
tion involving two generalized proportional fractional operators with respect to another function. The
main results are proved by means of Krasnoselskii’s fixed point theorem and the Banach contraction prin-
ciple. An example is set forth to make efficient our main results.

1. Introduction

The theory of fractional differential equations has recently acquired plentiful circulation and great sig-
nificance because of its rife applications in the fields of science and engineering. For instance, we indicate
to the new papers and the books [2, 14, 17, 19, 20, 22-24] and references cited therein.

For many years, the Langevin equation, inspired by P. Langevin [18], was vastly utilized in mathemati-
cal physics to describe the dynamical processes revolving in a swing medium like Brownian motion [9]. For
the systems in the confused medium, the classical Langevin equation does not tool up the correct descrip-
tion of the dynamics. For this reason, Kubo [15], in 1966, established the generalized Langevin equation,
where a fractional memory kernel was incorporated into the Langevin equation to depict the fractal and
memory properties. As a result of the rapid progress of fractional calculus, Mainardi and collaborators
[20, 21] introduced the fractional Langevin equation at the beginning of the 1990s.

In recent years, there have been various new definitions of fractional derivatives, among these new
definitions the so-called fractional conformable derivative, which is introduced by Khalil et al. [13]. Unfor-
tunately, this new definition has a point of weakness as it does not tend to the original function where the

order p tends to zero. Anderson et al. [3] were able to define the proportional (conformable) derivative of
order p by

PRfR(t) = xa (o, t)h(t) + xolp, ) (1),

where h is differentiable function and xg, x1 : [0,1] X R — [0, &) are continuous functions of the variable ¢
and the parameter p € [0, 1] which satisfy the following conditions for all t € R:

lim xo(p,t) =0, lim xo(p,t) =1, xolp,t) #0, p € (0,1], 1)
p—0F p—1
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lim x1(p,t) =1, lim x1(p,t) =0, x1(o,t) #0, p € [0,1). ()
p—0" o—1

The new derivative tends to the initial function as p — 0 and hence improving the conformable derivatives.
In [11, 12], Jarad et al. proposed more general forms and properties of proportional derivative for function
f with respect to another continuous function g. The kernel acquired in their investigation includes an
exponential function and is considered as function dependent.

As a result of the emergence of new definitions of fractional derivatives with singular and non-singular
kernels, authors who are interested in fractional calculus are struggling to investigate of the Langevin equa-
tion that includes these new definitions in several research papers. For example, we address the following
brief survey:

In [4], D. Baleanu et al. studied the nonlinear Langevin equation involving Atangana-Baleanu fractional
derivatives

ABPDP (APPDF ) z(t) = h (t,2(1)), t€ (01), YER,
3)
z(0) = aq, 2'(1) = ay,

where 0 < a,8 < 1, and ABDDB ABD? denote the Atangana-Baleanu fractional derivatives. They inves-
tigated the existence and uniqueness results by means of the nonlinear alternative of Leray-Schauder type
and Banach contraction principle.

In [5], B. Ahmad et al. established sufficient conditions for the existence of solutions for the nonlinear
Langevin equation with generalized Liouville-Caputo fractional derivatives

fDs. (ED8 + ) x(t) = f (Lx(t), tE€[a,T], AER,
4)
x(a) =0, x(7) =0, x(T) = uPI",x(%), a<n <&<T,

where £ D2‘+,£D§ . denote the generalized Liouville-Caputo fractional derivatives of order 1 < a < 2,0 <
B < 1,p > 0, respectively and PIZ+ denotes the generalized fractional integral of order v > 0. In view of
Krasnoselskii’s fixed point theorem and Banach contraction mapping principle, they proved the desired
results.

In [10], Rabha W. Ibrahim et al. condidered the following fractional Langevin equation containing two
Hilfer-Katugampola fractional derivatives

Yyl (PD"‘Z'/5 +A)x(t) = f(t,x(t), te(ab], AeR,
5)
x(a) = x4, v = (01 +a2)(1—B) + B,

where PD*B, D%/ are the Hilfer-Katugampola fractional derivatives of order a1, 4 and type . They de-
rived the main results by means of Krasnoselskii’s fixed point theorem and Banach contraction mapping
principle. Also, they discussed the Ulam type stability.

For many interesting contributions relevant to the fractional Langevin equation, we refer the reader to
the papers [1, 6-8] and references cited therein.

Motivated by the above papers, we investigate the following Langevin equation with the generalized
proportional fractional derivatives with respect to another function
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{ DU (;DPPP L A) w(t) = G (w(t), t€[ab], AER,
(6)

VPP w(a) = wy, w(b) +pw(E) =0, a<&<b, w €R,

where p > 0, ;DP9 , DP9 are the generalized proportional fractional derivatives with respect to another
continuous function ¢ of order 0 < &, 8 < 1, respectively, ,3'~P#¢ is the generalized proportional frac-
tional integral with respect to another continuous function ¢ of order 1 — B, and G € C([a,b] x R,R) is
given function.

To the best knowledge of the author, no one has yet been treated with Langevin equation involving the
generalized proportional fractional derivative with respect to another function.
2. Preliminaries

Let € = C([a, b], R) be the Banach space of all continuous functions from |4, b] into R with the norm

[ylle = sup{ly(t)] : ¢ € [a, b]}.

Now, we recall some basic definitions and properties of the fractional proportional derivative and inte-
gral of a function with respect to another function. The terms and notations are adopted from [11, 12].

Definition 2.1. Take p € [0,1]. Let xo0, x1 : [0,1] x R — [0, 00) be continuous functions such that

lim x1(p,t) =1, lim xo(p,t) =0, lim x1(p,t) =0, lim xo(p,t) =1 tER,
p—0t p—0* p—1~ p—1~

and x1(p,t) # 0,0 € [0,1], xo(p,t) # 0,0 € [0,1]. Let ¢(t) be a strictly increasing continuous function, then the
proportional derivative of order p of h with respect to ¢ is defined by

W(t)
DPh(t) = x1(p, t)h , . 7
(t) Xl(P t) (t) +XO(P t)¢/(t) ( )
For x1(p,t) =1 —pand xo(p,t) = p, the formula (7) becomes
W (t)
DPh(t) = (1—p)h : 8
(1) = (1= p)h(1) + 55 ®)

Definition 2.2. Takep € (0,1],« > 0,and ¢ € C([a,b],R), ¢'(t) > 0. Then thee left-side and right-side fractional
integrals of h with respect to ¢ are defined by

1 E o1 (01 —o(s . ,

SO0 = gy [T 00 — g6 ) () ©
b o1 (ps)— a— !

) = s [T ) — (o) hs)g s, 10)

respectively.

Definition 2.3. Take p € (0,1] and « > 0. Then the left-side fractional derivative of h with respect to ¢ is defined
by
JDYPR(E) = DO IO (F)
e
Qt 0.9

e ey ORI O e O

!

(s)ds, (11)
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and the right-side fractional derivative of h with respect to ¢ is defined by

DYFPR(t) = LD T P (t)

[=) @n’P’(P /

b p-1 $)— e
ol el R CORFIO) R OTIOTS 12

wheren = [a] +1, D¢ = DPIDOP ... DY and
——,—
n-times

S DPh(t) = (1— p)i(t) — p L)

IOk D = [ DPP DO D

n-times

Lemma 2.4. ([11]) If p € (0,1] and «, p > 0. Then, for h is continuous and defined for t > a, one has
230 (asﬁ/wh) () = 3PP (3P0 (t) = (agwﬁ,p,d)h) (1), (13)
PP () (1) = P (S (1) = (35 Ph) (1), (14)

Lemma 2.5. ([12]) Letn € N¥, a € (n—1,n), h € L'(a,b), and (,3*?h)(t) € AC"([a,b],R). Then

S0P DRI — S 00-0@) N s (p(t) — p(a)*
2P DL (L) h(t) P ]; (IR ( )pa—fr(a+1—j)’ (15)

For 0 < a < 1, one has

3D D) = h(t)_e%((])(i)*(/)(ﬂ))(asl_a,p,th)(a—l-)((P(t)iqj(a))a*]' 0

Lemma 2.6. ([12]) Let «, > 0. Then, for any p > 0, we have
1 (HS“WeW” (9(t) - ¢><a>>ﬁ-l) (1) = MBS (1) — pla) P
2 (SZ'P"%"’?"’“) (9(b) - 4><t>>‘“) (1) = B (p(b) — p(e)) P,
3. (40eete T (9(0)  9a)) ) 1) = P gte) gl
4 (zvz'ﬂ"”ew” COR ¢<t>>ﬁl) (0 = ET0 T (56) - gl
3. Existence and uniqueness results

For investigating the existence and uniqueness of solutions for the Langevin problem (6), we consider
the following auxiliary lemma.

Lemma 3.1. Let 0 < «, f < 1and o € €. Then the linear problem

JDYP (DPOP L A) w(t) = o(t), t € [ab],
{ (17)

Hslfﬁ'.ﬂﬂl’w(g) = w,, w(b)+ yw(g) =0, a<i<b,
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has a solution given by
wt) = SIFPPOG(t) — A ,IPPPw(t)

1, L (p(1)—g(a)) (@(1) — P(a))* P!
oy e o BT (a1 )

L (p(1)—pa)) (@(1) — 9(a))P
oP=1T(B)

Wy, (18)

where

L (p0)—0ta)) (@(b) — @(a)*F
p“TPIT (a + B)

vi= (P w) (0) + g (3P w) (2),
= (a3*P220) (0) +  (s3°P040) (@),

= p-g(a) (1) = 9@ estpe)—p(o) ($(E) = 9(a)P
pP=IT(B) pP=IT(B)

Proof. Applying the proportional fractional integral operator , 3% (-) on the first equation of (17) and
using Lemma 2.5, one has

1 () —p(a)) ($(E) — p(a)* P~
PP 1T (a + B)

Vv =

+ pe #0,

19)
V3

Vg 1= e

-1 _ a—1
(DP29 + 1) w(t) = o390 (1) + 1o’ PO (¢(2M§f;((62)) ’ 20)

where ¢; 1= (J17P9 (; DP9 + 1) w) (a™).

Applying the proportional fractional integral operator ;3% (-) on the equation (20), using Lemmas
2.5, 2.6 and the boundary condition aﬁl’ﬁ'f""i’w(a) = w,, we obtain

~a 1 (p(0)—g(a)) (@(1) — P(a))* TP
w(t) = IBPRG(E) — A SPP(t) 4 e D0 (iwﬁ?r(a)Jr 5
oL (p()—¢(a)) (9(1) — p(2))P!
L e i) 1)
Using the boundary condition w(b) + pw(¢) = 0in (21), we get
(e (o) o] re v
2L g9t (9 < )= 9@) P e @) (#(2) — (@) P
! l P SE g P F Ao+ )
2L (p(0)-9(a)) (P(b ) 9@)PT @) -p@) (9E) —p@)f |
[g p iy T T R
Consequently, we deduce that
1 = 1/17 ()Lllz — V3 — wuv4) ,

where the constants vy, 2, v3 and v4 are given in (19).
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By substitution the value of c; in (21), we get

w(t) = SIVPPOG(E) — A S3PPPu(t)

1 L (p(1)—g(a)) (@(1) — P(a))* P!
oy e e oI (u + )

e g(1)-g(a)) (9(1) — 9(a))P !
te 0PI (B)

wy.

This shows that w(t) satisfies (18). This completes the proof. [

Using Lemma 3.1, we deduce that the solution of the Langevin problem (6) is given by

) = aTh DD (90— 9(5)) 1 g (5, () ¢ (5)ds
— g [ (90— p(e)) wlo)g (s
t o L [T 00— gt wlo)g s
+ ey [T O (90— gt o) (o)
g LT ) — g G s (s ¢ s
e [ O (@)~ () G 5 wle)) ()
o 00 @) — @) P et (9() — (@)

p* Pl (a + ) pP~IT(B)

For fulfillment the main results, we shall pose the following hypotheses.

(H1) The function G : [2,b] x R — R is continuous.

(H2) There exists a positive constant Z; such that

|G(t,v1) — G(t,v2)| < Bglvyy — 12|, Vt € [a,b] and vy, v, € R.

(H3) There exist positive constants = and E; such that

|G(t,v)| < By + Ep|v|, Vt € [a,b] and v € R.

We set

4078

(22)
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o, = FLOO) = @) (9(b) - 9@

= PP (a4 B+ 1) P11 (B) [l
L e DE ) = @) ] (60 = e(@) TP
il PP (et p+1) I e p) )
(23)
0, .~ Z200) —9@)"F M (@b) —¢@)"  (A+E)(|ul+1) (9(b) — p(a)*
T L prl)  pPT(BY) il T (@ BT+ p+1)
(24)

(A H+Eg) (Il +1) (p(b) — ¢(a))2a+2/8—1
D 1= R R Oy R T (25)

3.1. Existence result via Krasnoselskii’s fixed point theorem
Theorem 3.2. [16] (Krasnoselskii’s fixed point theorem) Let & be a closed convex and non-empty subset of a Banach
space X. Let Ty, T, be the operators from & to X such that:

i. Tiu+ Tyv € S, whenever u,v € S;
ii. Ty is compact and continuous;
iii. Ty is a contraction mapping.
Then, there exists a fixed point z € & such that z = T1z + Tpz.
By virtue of Lemma 3.1, we define the operator T : € — € by

T = gz LT 00 00 G 6 w) ¢ )
— s [T (00— p(e)) 7 wlo)g (s
b g [T 00 - g6 P o) 1
+ e [T O (900 gt el (s
et T ) 90 6 sl 9
= [T (9(0) — p(6)) 11 g (5, () ¢ (51 — s
o o) @) = 9@) T g @O —9e@)

PP (a + B) PP ()
(26)
The Langevin problem (6) will be transformed into the fixed point problem w = Tw.

Theorem 3.3. Assume that the hypotheses (H1)-(H3) are satisfied. Then the Langevin problem (6) has at least one
solution on [a, b], if

O3 <1, (27)
where @3 is given by (25).
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0,

Proof. LetT; = {w € € ||w||¢ < {} be a closed convex and non-empty subset of €, where { > 1= with

©; < 1, where ®; and ©; are given by (23) and (24).

The operator T will be split into two operators Ty and T, on I'; as T = T + T, where

_ v e —es) (N o (s () &

T) ) = mriaip ¢ (9(1) = 95" P71 G (5, () ¢ (5)ds
A [TER0O=00) (508 — (s (s
6 (9(0) — 4(s)P ™ wls)g

!

(s)ds,

and

!’

A [T (o) — g(6)) P ) (s)as

1
(Tow)(t) = " {p“ﬁr(wﬁ) /

t oy e ) — gl (o) (s
i T 00— g0 6 sl 91
e [T O 000 = ) G ) ¢ (5 —

5 @—p(@) (B = @) P estg—gia (B0 = p@)P bl

P P+ p)

The proof will be divided into three main steps.

of=1T(B)

p—1 —
Taking into consideration that |e ? (9t =gla))| 1, Vt >a, p € (0,1), since ¢ is monotonic increasing

function.
Step 1. Tywy + Tow, € I,
For each t € [a,b] and wy, wp € I'¢, one has

[(Tran)(t) + (Town)(t)]
1 t
p*TPT (o + B

)
AL L e —¢(s)

* gl

1 IA| b

T L“*ﬁf(wrﬁ)/a ‘
ALl §| L9 —¢(s)

* pwﬁr(wﬁ)/a ¢’
L (p(b)—(s))

e P

<

a

(@(t) — ()P |an (s)] ¢ (s)ds

(@(&) = () P an(s)| ¢ (s)ds

(@(b) = @(s) PG (5, wn(5))| ¢ (s)ds

1 b
T T (et B) /u

7 (9(0)=9(5)

" wﬁrhflﬂs) A (9(8) = @) 711G (5, wa(5)) 9 (5)ds + |wa s

(@(t) — P(a)) P! (9(t) — p(a))P "

R CORIO) -
p*HPIT (a + B) pP=IT(p)

R CORIO)

X

+

| s
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m [ @00 = 067 @1+ Zalan ()4 ()

|A|
oPT(B)

L L b _ s a+p—1 s /S s
+ |I/1| |:pa+/3r(a+ﬁ)/u (‘P(b) 47( )) |W2( )|§b( )d

ML 1% ) — o611 s ()] 0 (51
bt g, @O =9 ()¢ ()

m /ab (@(b) — ¢()* P (Bq + Eaun(s)])9

‘#| ¢ a+p—1 /= —- /
e | 00~ 0) P @+ Ealun(e) ) () + ]

(@(t) =¢(@)" |, (¢() —p(@)*"
pUHPIT (a + B) PP

(¢(b) — p(a)"*F (=

IN

/at (¢(t) = @(5))P " |wn(s)| ¢ (5)ds

!

(s)ds

IN

— ¢(a))"F

E1+E20) +
Tt g+ T e ¢

I)\\(<i>(t)—4>(s))’5ng 1| A(ul +1) (¢(b)
PP (e + B+ 1)

(9(b) — p(a)P!

4

4081

_ola a+pB _#(a a+p—-1
o (p4+1) (9(6) — () (51+52g)+|wa||1/4]<(4’(b) $(a) >+

0BT (6 + B+1) PPl (a + B)
In view of (23) and (24), we infer that

[Ty + Toanll¢ < O+ 020 <,
which leads to Ty w; + Tow, € T.

Step 2. Ty is compact and continuous.

pP=IT(B)

|2

First, we shall show that T is continuous; Indeed, let w;, be a sequence such that w, — w in €. For each

t € [a,b], one has

1
PP (a + B

pﬂ|1ft(|ﬁ) /at (@(t) = ¢())P " [wn(s) — w(s)| ¢ (s)ds,

[(Tyen) (8) — (Trw)(8)] <

which leads to

Zg (¢(0) = ¢(@)* " AL (9(b) — p(@))"

Tiwy, — T S
|| T 2y, 1W||(S—< T (0 + B+ 1) PPT(B+1)

Thus, T is continuous. Also, Ty is uniformly bounded on I'; as

MO < g 000616 (5 wle))| 51
s 00— p(e) ale) ¢ 5)ds

>||wnw||(g%0, as n — oo,

) /ut (9(1) = () PG (5, wn(s)) = 6 (s, w(s))| ¢ (s)ds
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So, we get

Al (p(b) — ¢p(a))P
oPT(B+1)

_ a+p
ITyafe < QO =9 o

S e pan) o TE T

g

It remains to show that T is equicontinuos.
Set SUP (1 1) [a,b] T, |G(t, w)| = Mg < oo. Then, fora < ¢ < #, < band for any w € I';, we obtain that

[(T1w)(62) — (le)( 1)

= 1x+,5r( /
1 ih /
+ Mr(ﬁﬁ/ DTG (5, wls)| ¢ (5)ds

AL ) ) ,
- pmﬁ)/a (§(82) = $(5))P = (#(81) = ()| [w(s) ¢ (s)ds

()P = (9(81) = ¢()) |6 (s, w(s)) | ¢ (5)ds

AL . ,
bt Jy, 902 96D w9 ()
= pwr(Z{ ey [2(9(92) = 9(80)" + |(9(92) — 9(0))" " = (9(91) — 9(a))***|
A1
gy 2000 = 0000+ | (0(82) — 9(a))” ~ (o(00) ~ g0l

which tends to zero, as ¢, — ¢; independently of w € I';. Thus, Ty is equicontinuos and consequently
T, is relatively compact on I';. Hence, by the Arzela-Ascoli theorem, we conclude that Ty is compact on I';.

Step 3. T is a contraction.

For each t € [a,b] and any wy, w» € €, one has
[(T2zn) () — (Town)(1)]

1 A b h
=l L)*ﬁl“(ﬂi)/ (9(b) = 9(5)) P [an(s) — wa(s)| ¢ (s)ds

A {4 a+B— i
it 0@ =96 fua(s) = )] ¢ ()

g, 00— g 5 () — 6 5 () )

i g ape / (p(t) — ¢p(a)) P!
+ m/u (@E) = () PG (s, w1(5)) — G (5, wa(5))| @ (5)ds o B (2 1 )
(IA] + Eg) (] +1) (P(b) — Pp(a))> 2P
|vi]2* 26 ~1T (a + B)T (& + B+ 1)
Hence, using (25), we get

|w1n — wnl|c.

T — Town||¢ < Os|wy — wnl|g-

Using condition (27), we deduce that T is a contraction.
Therefore, by Krasnoselskii’s fixed point theorem (Theorem 3.2), we infer that the Langevin problem (6)
has at least one solution on [a, b]. The proof is completed. [J
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3.2. Uniqueness result via Banach contraction principle

Theorem 3.4. If hypotheses (H1) and (H2) hold. Then the Langevin problem (6) has a unique solution on [a, b],
provided

25 ($(0) = ¢(@)" P AL@(0) = ¢(@)® | (1A +Eo)(Inl +1) ($(b) — p(a))*

Y =2 B - <1,
PPl (a+p+1) PPT(B+1) |v1]0? 2T (0 + B)T (w + B+ 1)
(28)
and
M (@) = p(@) P ] (p(b) — 9(a))P !
O AT T Tt gD T T
3[R0 (90 — g™ T (@) = pa) P
1] BT (a+ B+ 1) alivd o“TF1T (o + B) '
(29)

Proof. Consider the operator T : € — € as defined in (26) and the set Ty = {w € € : ||w|/¢ < J}, where
6> 2. Set MG = SUpye(qp) |G(t,0)].

For each t € [a,b] and w € I'5, we have

|(Tw)(t)] < m /ut (p(t) — gb(s))ocﬂi—l (16 (5, w(s)) = 6 (5,0)| + |G (s,0) |)¢/(S)ds
A
pPT(B)
Ll/\7|b — (NP w(s)| ¢ (s)ds
o s L O =0 )¢
Al
p“+ﬁr(1x+‘8)
1
PP (o + B)

g 0 = o) 1G5 wls)) = 6 5,00+ (50) D <)+ o]

(@(t) — p(a)* P! L el (9(8) p(a))P !
PPN (w + B) pP=1T(B)
(E60 +96) (9(b) = @) A5 (p(0) — p(a))”
PP (e + B+ 1) pPT(B+1)

1 [ A8l + 1) (9(b) — gla))" TP N (Iul +1)(Bgd + ) (P(b) — p(a))* P
[u1] PP (a+ B+ 1) P TPr (e + p+1)

(@(b) — p(a)* P! o |l (p(0) = p(a))P !

PPN (w + B) pP=1T(B) '

Therefore, by (28) and (29), we get

+

t . ,
| @) =) lals) ¢ (s)ds

[ @0 96 P (o) g ()

IN

+Wa||1/4|]

[Tw|s < A+Y6 <6
Thus, TTs C T.
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We show that T is a contraction. For each t € [a,b] and w, z € €, we obtain

[(Tew)(t) — (T2)(#)]

< g ) O 0D G (s wls)) — 6 526611 ()
o [ 00 =906 wls) — (9] ¢ (s
g|;dwﬂg;hméﬂww—wm”ﬂHmw—wmd@w
* s [ 0@ = g ) — )] )
g ), 00— 0O G 6 wle) — 6 s, () ¢ (s
bt [ 00 90 16 sl — 6 (0| yas] LN
: (st wgn sy,
p P

(1Al +Eg) (1l + 1) (p(b) — pla))™ !
[v110*F 25T (o + B (o + B +-1)

which implies that

Iz = 2|,

ITw —Tzlls < Y[w - 2l|¢.
Therefor, the condition (28) emphasizes that T is a contraction. Hence, the Banach contraction principle

indicates that T has a unique fixed point, which matches the unique solution of Langevin problem (6) on
[a,1]. The proof is finished. [

4. An example

In this section, we will set forth an example to make efficient our main results.

Example 4.1. Consider the following generalized proportional fractional Langevin equation:

0 DI (e 2d a4 D) w(t) = g (L w(t)), tE(01),
(30)
0+3%'%'t2w(0) =0, w(l)+ tw(3) =0,

where,a = 0,b=1,a = %,[3: %,/\: %,y: %,(j: %,wazoandp: %

Set ¢(t) = t?, it is clear that ¢ is continuous and monotonic increasing function on [0, 1].
_ et 1
We choose G (t, w) = JorE T ooger SINW.

Let x1,x2 € Rand t € [0,1]. Then, we get

1
|G (t,v1) — G (t,v2) | < ﬁh’l — 1.
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Thus, the hypotheses (H1) and (H2) are satisfied with £ = ﬁ.

Let x € Rand t € [0,1]. Then, we get
1
16(t0) | < 2+l

Obviously, the hypothesis (H3) hold true with &; = % and E; = 155-

Using the above data, we obtain that ®, = 0.8351543259 < 1 and ®3 = 0.5559508375 < 1, where ®;

and @3 are given by (24) and (25) respectively. Therefore, the condition (27) hold true. Thus, all the hy-
potheses of Theorem 3.3 are satisfied. Hence, the consequence of Theorem 3.3 carries out to the Langevin
problem (30) on [0, 1].

Furthermore, we get Y = 0.8351543259 < 1. Thus, the condition (28) also hold true. Therefore, all the

hypotheses of Theorem 3.4 are satisfied. Hence, we conclude that the Langevin problem (30) has a unique
solution on [0, 1].
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